Geochemical Analysis of Ironstone Preserved Molluscan Fossils of the Hell Creek Formation (Cretaceous) and Ludlow Member Of

Total Page:16

File Type:pdf, Size:1020Kb

Geochemical Analysis of Ironstone Preserved Molluscan Fossils of the Hell Creek Formation (Cretaceous) and Ludlow Member Of University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 2008 Geochemical Analysis of Ironstone Preserved Molluscan Fossils of the Hell Creek Formation (Cretaceous) and Ludlow Member of the Fort Union Formation (Paleogene) of Southwestern North Dakota Tanya P. Justham University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Justham, Tanya P., "Geochemical Analysis of Ironstone Preserved Molluscan Fossils of the Hell Creek Formation (Cretaceous) and Ludlow Member of the Fort Union Formation (Paleogene) of Southwestern North Dakota" (2008). Theses and Dissertations. 154. https://commons.und.edu/theses/154 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. GEOCHEMICAL ANALYSIS OF IRONSTONE PRESERVED MOLLUSCAN FOSSILS OF THE HELL CREEK FORMATION (CRETACEOUS) AND LUDLOW MEMBER OF THE FORT UNION FORMATION (PALEOGENE) OF SOUTHWESTERN NORTH DAKOTA by Tanya P. Justham Bachelor of Science, St. Lawrence University, 2001 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota May 2008 This thesis, submitted by Tanya P. Justham in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. __________________________ Chairperson __________________________ __________________________ This thesis meets the standards for appearance, conforms to the style and format requirements of the Graduate School of the University of North Dakota, and is hereby approved. ____________________________ Dean of the Graduate School ____________________________ Date ii PERMISSION Title Geochemical Analysis of Ironstone Preserved Molluscan Fossils of the Hell Creek Formation (Cretaceous) and Ludlow Member of the Fort Union Formation (Paleogene) of Southwestern North Dakota Department Geology Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the chairperson of the department or the dean of the Graduate School. It is understood that any copying or publication or other use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis. Signature _______________________ Date _______________________ iii TABLE OF CONTENTS LIST OF FIGURES...........................................................................................................vii LIST OF TABLES..............................................................................................................ix ACKNOWLEDGMENTS...................................................................................................x ABSTRACT......................................................................................................................xii CHAPTER I. INTRODUCTION.......................................................................................1 Purpose.............................................................................................1 Location...........................................................................................2 Stratigraphic Nomenclature.............................................................3 Sedimentology and Paleogeography................................................5 Cretaceous/Paleogene Boundary in the Study Area........................5 Previous Work.................................................................................6 North Dakota Hell Creek and Ludlow Ironstone Fossils and Nodules.........................................................................6 Siderite Nodules and Fossils................................................7 II. METHODS................................................................................................11 Field Methods................................................................................11 Locality L6799...................................................................12 Locality L6521...................................................................12 iv Locality L6466...................................................................14 Locality L6808...................................................................16 Locality L6809...................................................................17 Lab Methods..................................................................................19 X-ray Diffraction...............................................................19 Isotopes..............................................................................21 Scanning Electron Microscopy..........................................22 Geochemist’s Workbench® Essentials...............................22 III. RESULTS..................................................................................................24 X-ray Diffraction...........................................................................24 *13C and *18O Isotope Results............................................................28 Scanning Electron Microscopy EDS Results.................................29 IV. DISCUSSION............................................................................................32 Composition...................................................................................32 Fossil Preservation.........................................................................33 Groundwater Geochemistry...........................................................38 Porewater Composition..................................................................46 Organic Influences.........................................................................47 Time Occurrence............................................................................48 V. CONCLUSIONS........................................................................................50 Future Work...................................................................................51 v APPENDICES...................................................................................................................53 A. X-ray Diffractometer Graphs.....................................................................54 B. Scanning Electron Microscopy EDS Results and Photographs.................70 C. Geochemist’s Workbench® Rxn Calculations for Siderite Replacement of Aragonite............................................................................................104 D. Geochemist’s Workbench® Act2 Eh-pH iron species stability diagrams..... .................................................................................................................117 REFERENCES................................................................................................................148 vi LIST OF FIGURES Figure Page 1. Study area location and bedrock geology map........................................................3 2. North Dakota stratigraphic column showing generalized stratigraphic nomenclature and relationships in the North Dakota portion of the Williston Basin........................................................................................................................4 3. Northwest view of Locality L6799 at Mud Buttes, Bowman County...................13 4. View east of Locality L6521, with relationship to K-Pg boundary.......................13 5. Specimen S4712, Sphaerium sp. (Locality L6521)...............................................14 6. View east, outline encompasses Larkin Locality L6466 in Bowman County.......15 7. Specimen S4704, Proparreysia percorrugata (Larkin Locality L6466)...............16 8. Ironstone nodule and associated unionoid fossil specimen S4727 (Larkin Locality L6466).....................................................................................................16 9. North view of Locality L6808, Das Goods area, Slope County............................17 10. South view of Locality L6809 at Mud Buttes, Bowman County..........................18 11. Specimen S4725, Campeloma sp. in nodule (Locality L6809).............................23 12. Nodule cores..........................................................................................................26 13. Specimen S2906, Proparreysia verrucosiformis (Locality L5233b)....................28 14. Silica replaced, distorted gastropod specimen S4726 (Locality L6809)...............30 15. Eh-pH stability diagrams for calcium and iron minerals and dissolved species...37 16. Initial diagram for the 10oC series of simulations................................................41 vii 17. Eh-pH diagram created for iron species
Recommended publications
  • GIS in the Paleontology
    GIS in the Paleontology Notes from the field By Vincent Bruscas SECRET STUFF • SEC. 6309. CONFIDENTIALITY. • Information concerning the nature and specific location of a paleontological resource shall be exempt from disclosure under section 552 of title 5, United States Code, and any other law unless the Secretary determines that disclosure would-- • (1) further the purposes of this subtitle; • (2) not create risk of harm to or theft or destruction of the resource or the site containing the resource; and • (3) be in accordance with other applicable laws. MAP OF GRASSLANDS Paleo digs in Thunder Basin, Buffalo Gap, and Oglala National Grasslands. FS has a geodatabase program for Paleo that is called PaleoEX. The “ex” is an arcmap extension. The database has fields ranging from specific site location, geology, stratigraphic markers, types of fossils, preservation of fossils, unauthorized collection evidence, to the museum side with accessioning and even site mitigation. The program also allows to store photos of sites, reports, theft reports, court documents, etc. and it will produce reports as well. Needless to say it is way too cumbersome for 2 paleos to keep up to date. VOLUNTEER OPPURTUNITY, INTERESTED? Wyoming First dino dig with JR. It was his first year at University of Idaho. We packed all of his dorm stuff with camp equipment. He was a little stuffed. Devil’s Tower Interesting geological feature in the area. All of the area’s we work in are part of the Lance Creek or Hell’s Creek formation. Geology formation The Hell Creek Formation is an intensively-studied division of mostly Upper Cretaceous and some lower Paleocene rocks in North America, named for exposures studied along Hell Creek, near Jordan, Montana.
    [Show full text]
  • Theropod Teeth from the Upper Maastrichtian Hell Creek Formation “Sue” Quarry: New Morphotypes and Faunal Comparisons
    Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons TERRY A. GATES, LINDSAY E. ZANNO, and PETER J. MAKOVICKY Gates, T.A., Zanno, L.E., and Makovicky, P.J. 2015. Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons. Acta Palaeontologica Polonica 60 (1): 131–139. Isolated teeth from vertebrate microfossil localities often provide unique information on the biodiversity of ancient ecosystems that might otherwise remain unrecognized. Microfossil sampling is a particularly valuable tool for doc- umenting taxa that are poorly represented in macrofossil surveys due to small body size, fragile skeletal structure, or relatively low ecosystem abundance. Because biodiversity patterns in the late Maastrichtian of North American are the primary data for a broad array of studies regarding non-avian dinosaur extinction in the terminal Cretaceous, intensive sampling on multiple scales is critical to understanding the nature of this event. We address theropod biodiversity in the Maastrichtian by examining teeth collected from the Hell Creek Formation locality that yielded FMNH PR 2081 (the Tyrannosaurus rex specimen “Sue”). Eight morphotypes (three previously undocumented) are identified in the sample, representing Tyrannosauridae, Dromaeosauridae, Troodontidae, and Avialae. Noticeably absent are teeth attributed to the morphotypes Richardoestesia and Paronychodon. Morphometric comparison to dromaeosaurid teeth from multiple Hell Creek and Lance formations microsites reveals two unique dromaeosaurid morphotypes bearing finer distal denticles than present on teeth of similar size, and also differences in crown shape in at least one of these. These findings suggest more dromaeosaurid taxa, and a higher Maastrichtian biodiversity, than previously appreciated.
    [Show full text]
  • Rule Booklet
    Dig for fossils, build skeletons, and attract the most visitors to your museum! TM SCAN FOR VIDEO RULES AND MORE! FOSSILCANYON.COM Dinosaurs of North America edimentary rock formations of western North America are famous for the fossilized remains of dinosaurs The rules are simple enough for young players, but and other animals from the Triassic, Jurassic, and serious players can benefit Cretaceous periods of the Mesozoic Era. Your objective from keeping track of the cards that is to dig up fossils, build complete skeletons, and display have appeared, reasoning about them in your museum to attract as many visitors as possible. probabilities and expected returns, and choosing between aggressive Watch your museum’s popularity grow using jigsaw-puzzle and conservative plays. scoring that turns the competition into a race! GAME CONTENTS TM 200,000300,000 160,000 VISITORS VISITORS PER YEAR 140,000 VISITORS PER YEAR 180,000 VISITORS PER YEAR 400,000 VISITORS PER YEAR Dig for fossils, build skeletons, and 340,000 VISITORS PER YEAR RD COLOR ELETONS CA GENUS PERIODDIET SK FOSSIL VISITORSPARTS 360,000 VISITORS PER YEAR PER YEAR attract the most visitors to your museum! VISITORS PER YEAR PER YEAR Tyrannosaurus K C 1 4 500,000 Brachiosaurus J H 1 3 400,000 ON YOUR TURN: TM SCAN FOR VIDEO Triceratops K H 1 3 380,000 RULES AND MORE! Allosaurus J C 2 Dig3 a first360,000 card. If it is a fossil, keep it hidden. FOSSILCANYON.COM Ankylosaurus K H 2 If it3 is an340,000 action card, perform the action.
    [Show full text]
  • Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
    Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia.
    [Show full text]
  • The Hell Creek Formation, Montana: a Stratigraphic Review and Revision Based on a Sequence Stratigraphic Approach
    Review The Hell Creek Formation, Montana: A Stratigraphic Review and Revision Based on a Sequence Stratigraphic Approach Denver Fowler 1,2 1 Badlands Dinosaur Museum, Dickinson Museum Center, Dickinson, ND 58601, USA; [email protected] 2 Museum of the Rockies, Montana State University, Bozeman, MT 59717, USA Received: 12 September 2020; Accepted: 30 October 2020; Published: date Supporting Information 1. Methods: Lithofacies Descriptions Facies descriptions follow methodology laid out in Miall (1985). Descriptions mostly follow those of Flight (2004) for the Bearpaw Shale and Fox Hills Sandstone. Additional lithofacies are described for the Colgate sandstone, ?Battle Formation, an undivided Hell Creek Formation, and the lowermost 5–10 m of the Fort Union Formation. It was desirable to stay as close to Flight's (2004) definitions as possible in order to facilitate cross comparison between measured sections and interpretation; however I have also chosen to remain true to the intentions of Brown (1906) in keeping the Basal Sandstone (and associated basal scour) as the first unit of the Hell Creek Formation, rather than the tidal flats identified by Flight (2004). This analysis is not as concerned with the nature of the basal contacts as much as internal stratigraphy within the Hell Creek Formation itself, hence some of the stratal and facies relationships described by Flight (2004) were not directly observed by myself, but I have included them here to ease comparisons. 1.1. Bearpaw Shale The Bearpaw Shale is the basalmost formation considered in this study; as such only the uppermost 10–20 m have been observed in outcrop. In this upper 20 m or so, the Bearpaw Shale generally coarsens upwards, predominantly comprising shale with occasional interbedded sandstone.
    [Show full text]
  • A Census of Dinosaur Fossils Recovered from the Hell Creek and Lance Formations (Maastrichtian)
    The Journal of Paleontological Sciences: JPS.C.2019.01 1 TAKING COUNT: A Census of Dinosaur Fossils Recovered From the Hell Creek and Lance Formations (Maastrichtian). ______________________________________________________________________________________ Walter W. Stein- President, PaleoAdventures 1432 Mill St.. Belle Fourche, SD 57717. [email protected] 605-210-1275 ABSTRACT: A census of Hell Creek and Lance Formation dinosaur remains was conducted from April, 2017 through February of 2018. Online databases were reviewed and curators and collections managers interviewed in an effort to determine how much material had been collected over the past 130+ years of exploration. The results of this new census has led to numerous observations regarding the quantity, quality, and locations of the total collection, as well as ancillary data on the faunal diversity and density of Late Cretaceous dinosaur populations. By reviewing the available data, it was also possible to make general observations regarding the current state of certain exploration programs, the nature of collection bias present in those collections and the availability of today's online databases. A total of 653 distinct, associated and/or articulated remains (skulls and partial skeletons) were located. Ceratopsid skulls and partial skeletons (mostly identified as Triceratops) were the most numerous, tallying over 335+ specimens. Hadrosaurids (Edmontosaurus) were second with at least 149 associated and/or articulated remains. Tyrannosaurids (Tyrannosaurus and Nanotyrannus) were third with a total of 71 associated and/or articulated specimens currently known to exist. Basal ornithopods (Thescelosaurus) were also well represented by at least 42 known associated and/or articulated remains. The remaining associated and/or articulated specimens, included pachycephalosaurids (18), ankylosaurids (6) nodosaurids (6), ornithomimids (13), oviraptorosaurids (9), dromaeosaurids (1) and troodontids (1).
    [Show full text]
  • A Fast-Growing Basal Troodontid (Dinosauria: Theropoda) from The
    www.nature.com/scientificreports OPEN A fast‑growing basal troodontid (Dinosauria: Theropoda) from the latest Cretaceous of Europe Albert G. Sellés1,2*, Bernat Vila1,2, Stephen L. Brusatte3, Philip J. Currie4 & Àngel Galobart1,2 A characteristic fauna of dinosaurs and other vertebrates inhabited the end‑Cretaceous European archipelago, some of which were dwarves or had other unusual features likely related to their insular habitats. Little is known, however, about the contemporary theropod dinosaurs, as they are represented mostly by teeth or other fragmentary fossils. A new isolated theropod metatarsal II, from the latest Maastrichtian of Spain (within 200,000 years of the mass extinction) may represent a jinfengopterygine troodontid, the frst reported from Europe. Comparisons with other theropods and phylogenetic analyses reveal an autapomorphic foramen that distinguishes it from all other troodontids, supporting its identifcation as a new genus and species, Tamarro insperatus. Bone histology shows that it was an actively growing subadult when it died but may have had a growth pattern in which it grew rapidly in early ontogeny and attained a subadult size quickly. We hypothesize that it could have migrated from Asia to reach the Ibero‑Armorican island no later than Cenomanian or during the Maastrichtian dispersal events. During the latest Cretaceous (ca. 77–66 million years ago) in the run-up to the end-Cretaceous mass extinc- tion, Europe was a series of islands populated by diverse and distinctive communities of dinosaurs and other vertebrates. Many of these animals exhibited peculiar features that may have been generated by lack of space and resources in their insular habitats.
    [Show full text]
  • Taphonomic and Depositional Analysis of Megaflora of the Cretaceous Hell Creek Formation Near Marmarth, North Dakota
    OpenRiver Student Research and Creative Projects 2016-2017 Grants & Sponsored Projects 9-1-2016 Taphonomic and Depositional Analysis of Megaflora of the Cretaceous Hell Creek Formation near Marmarth, North Dakota Nelson Mallory Winona State University Chelsea Ames Winona State University Will Franta Winona State University Follow this and additional works at: https://openriver.winona.edu/studentgrants2017 Recommended Citation Mallory, Nelson; Ames, Chelsea; and Franta, Will, "Taphonomic and Depositional Analysis of Megaflora of the Cretaceous Hell Creek Formation near Marmarth, North Dakota" (2016). Student Research and Creative Projects 2016-2017. 3. https://openriver.winona.edu/studentgrants2017/3 This Grant is brought to you for free and open access by the Grants & Sponsored Projects at OpenRiver. It has been accepted for inclusion in Student Research and Creative Projects 2016-2017 by an authorized administrator of OpenRiver. For more information, please contact [email protected]. Taphonomic and Depositional Analysis of Megaflora of the Cretaceous Hell Creek Formation near Marmarth, North Dakota Mallory Nelson, Chelsea Ames, Will Franta Department of Geoscience, Winona State University, Winona, Minnesota 55987 ABSTRACT The Hell Creek formation of western North Dakota and eastern Montana contains a large variety of plant, pollen, and vertebrate fossils. A high quality plant fossil site near Marmarth, North Dakota was studied to obtain megafloral fossils characteristic of the unit. Plant fossils from the unit were obtained, photographed, and identified so as to obtain a more thorough knowledge of the depositional environment and climate of the region during the Cretaceous period. Fossils identified indicate a forested, deltaic environment rich in water and sediment influx. Introduction been extensively sought after and analyzed by The Hell Creek formation of Western North paleontologists, plant and pollen fossils receive far Dakota and Eastern Montana has long been less study (Johnson, 330).
    [Show full text]
  • Competition Structured a Late Cretaceous Megaherbivorous Dinosaur Assemblage Jordan C
    www.nature.com/scientificreports OPEN Competition structured a Late Cretaceous megaherbivorous dinosaur assemblage Jordan C. Mallon 1,2 Modern megaherbivore community richness is limited by bottom-up controls, such as resource limitation and resultant dietary competition. However, the extent to which these same controls impacted the richness of fossil megaherbivore communities is poorly understood. The present study investigates the matter with reference to the megaherbivorous dinosaur assemblage from the middle to upper Campanian Dinosaur Park Formation of Alberta, Canada. Using a meta-analysis of 21 ecomorphological variables measured across 14 genera, contemporaneous taxa are demonstrably well-separated in ecomorphospace at the family/subfamily level. Moreover, this pattern is persistent through the approximately 1.5 Myr timespan of the formation, despite continual species turnover, indicative of underlying structural principles imposed by long-term ecological competition. After considering the implications of ecomorphology for megaherbivorous dinosaur diet, it is concluded that competition structured comparable megaherbivorous dinosaur communities throughout the Late Cretaceous of western North America. Te question of which mechanisms regulate species coexistence is fundamental to understanding the evolution of biodiversity1. Te standing diversity (richness) of extant megaherbivore (herbivores weighing ≥1,000 kg) com- munities appears to be mainly regulated by bottom-up controls2–4 as these animals are virtually invulnerable to top-down down processes (e.g., predation) when fully grown. Tus, while the young may occasionally succumb to predation, fully-grown African elephants (Loxodonta africana), rhinoceroses (Ceratotherium simum and Diceros bicornis), hippopotamuses (Hippopotamus amphibius), and girafes (Girafa camelopardalis) are rarely targeted by predators, and ofen show indiference to their presence in the wild5.
    [Show full text]
  • Paleontological Contributions
    Paleontological Contributions Number 14 The first giant raptor (Theropoda: Dromaeosauridae) from the Hell Creek Formation Robert A. DePalma, David A. Burnham, Larry D. Martin, Peter L. Larson, and Robert T. Bakker October 30, 2015 Lawrence, Kansas, USA ISSN 1946-0279 (online) paleo.ku.edu/contributions Life restoration by Emily Willoughby of Dakotaraptor steini running with the sparrow-sized birds, Cimolopteryx petra while the mammal, Purgatorius, can be seen in the foreground. Paleontological Contributions October 30, 2015 Number 14 THE FIRST GIANT RAPTOR (THEROPODA: DROMAEOSAURIDAE) FROM THE HELL CREEK FORMATION Robert A. DePalma1,2, David A. Burnham2,*, Larry D. Martin2,†, Peter L. Larson3 and Robert T. Bakker4 1 Department of Vertebrate Paleontology, The Palm Beach Museum of Natural History, Fort Lauderdale, Florida; 2 University of Kansas Bio- diversity Institute, Lawrence, Kansas; 3Black Hills Institute of Geological Research, Hill City, South Dakota; 4Houston Museum of Nature and Science, Houston, Texas; e-mail: [email protected] ABSTRACT Most dromaeosaurids were small- to medium-sized cursorial, scansorial, and arboreal, sometimes volant predators, but a comparatively small percentage grew to gigantic proportions. Only two such giant “raptors” have been described from North America. Here, we describe a new giant dromaeosaurid, Dakotaraptor steini gen. et sp. nov., from the Hell Creek Formation of South Dakota. The discovery represents the first giant dromaeosaur from the Hell Creek Formation, and the most recent in the fossil record worldwide. A row of prominent ulnar papilli or “quill knobs” on the ulna is our first clear evidence for feather quills on a large dromaeosaurid forearm and impacts evolutionary reconstructions and functional morphology of such derived, typically flight-related features.
    [Show full text]
  • The Extinction of the Dinosaurs
    Biol. Rev. (2014), pp. 000–000. 1 doi: 10.1111/brv.12128 The extinction of the dinosaurs Stephen L. Brusatte1,∗,†, Richard J. Butler2,†, Paul M. Barrett3, Matthew T. Carrano4, David C. Evans5, Graeme T. Lloyd6, Philip D. Mannion7, Mark A. Norell8, Daniel J. Peppe9, Paul Upchurch10 and Thomas E. Williamson11 1School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JW, U.K. 2School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K. 3Department of Earth Sciences, Natural History Museum, London SW7 5BD, U.K. 4Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, U.S.A. 5Department of Natural History, Royal Ontario Museum, Toronto, Ontario M5S 2C6, Canada 6Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, U.K. 7Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, U.K. 8Division of Paleontology, American Museum of Natural History, New York, NY 10024, U.S.A. 9Department of Geology, Baylor University, Waco, TX 76706, U.S.A. 10Department of Earth Sciences, University College London, London WC1E 6BT, U.K. 11New Mexico Museum of Natural History and Science, Albuquerque, NM 87104, U.S.A. ABSTRACT Non-avian dinosaurs went extinct 66 million years ago, geologically coincident with the impact of a large bolide (comet or asteroid) during an interval of massive volcanic eruptions and changes in temperature and sea level. There has long been fervent debate about how these events affected dinosaurs. We review a wealth of new data accumulated over the past two decades, provide updated and novel analyses of long-term dinosaur diversity trends during the latest Cretaceous, and discuss an emerging consensus on the extinction’s tempo and causes.
    [Show full text]
  • Hell Creek Formation
    North Dakota NORTH DAKOTA’S HELL CREEK DELTA Stratigraphy ROCK ROCK UNIT COLUMN During the Cretaceous, about 65 million years ago, a well drained lowland PERIOD EPOCH AGES MILLIONS OF YEARS AGO Holocene Oahe .01 corridor existed between the rising Rocky Mountains and the Western Interior Seaway to the east. Sediments eroded from the Rocky Mountains Coleharbor were carried to this western North Dakota lowland by rivers and streams Pleistocene QUATERNARY 1.8 Pliocene Unnamed 5 and were deposited in a huge delta, the Hell Creek Delta. These Miocene 25 Arikaree sediments, now turned into sandstone, siltstone, and mudstone, are called the Hell Creek Formation. Woodlands, ponds, and swamps that existed on Brule this subtropical, deltaic coastal plain provided habitats for many kinds of Oligocene 38 exotic plants and animals including several species of dinosaurs such as South Heart Chadron Chalky Buttes Triceratops and Tyrannosaurus rex. Freshwater fishes, salamanders, Camels Butte Eocene Golden lizards, turtles, crocodiles, birds, snails, clams and small mammals coexisted 55 Valley Bear Den with the dinosaurs. Fossils of animals, including sharks, rays, and mosasaurs (large marine lizards) that inhabited shallow marine waters Sentinel Butte adjacent to the delta are found in the Fox Hills Formation and Breien TERTIARY Member of the Hell Creek Formation. The species of dinosaurs that existed at this time were the last dinosaurs to ever live. Bullion Paleocene Creek Slope Cannonball Ludlow 65 Hell Creek Fox Hills ACEOUS Pierre CRET 84 Niobrara Carlile Carbonate Calcareous Shale Claystone/Shale Outcrop in Sioux County showing the Fox Hills Formation (Cretaceous) Siltstone Sandstone Sand & Gravel overlain by the Hell Creek Formation (Cretaceous).
    [Show full text]