Your Project in Safe Hands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter Three Lateral Earth Pressure
Addis Ababa University, Faculty of Technology, Department of Civil Engineering CHAPTER THREE LATERAL EARTH PRESSURE Table of Contents 3 Introduction ........................................................................................... 36 3.1 Definitions of Key Terms ....................................................................... 36 3.2 Lateral Earth Pressure at Rest ............................................................... 36 3.3 Active and Passive Lateral Earth Pressures .............................................. 38 3.4 Rankine Active and Passive Earth Pressures ............................................ 38 3.5 Lateral Earth Pressure due to Surcharge ................................................. 42 3.6 Lateral Earth Pressure When Groundwater is Present ................................ 43 3.7 Summary of Rankine Lateral Earth Pressure Theory ................................. 44 3.8 Rankine Active & Passive Earth Pressure for Inclined Granular Backfill ........ 45 3.9 Coulomb’s Earth Pressure Theory ........................................................... 46 Soil Mechanics II: Lecture Notes Instructor: Dr. Hadush Seged 35 Addis Ababa University, Faculty of Technology, Department of Civil Engineering 3 Introduction A retaining wall is a structure that is used to support a vertical or near vertical slopes of soil. The resulting horizontal stress from the soil on the wall is called lateral earth pressure . To determine the magnitude of the lateral earth pressure, a geotechnical engineer must know the basic soil -
UNIFORM STANDARD SPECIFICATIONS for PUBLIC WORKS CONSTRUCTION
UNIFORM STANDARD SPECIFICATIONS for PUBLIC WORKS CONSTRUCTION SPONSORED and DISTRIBUTED by the 1998 ARIZONA (Includes revisions through 2010) FOREWORD Publication of these Uniform Standard Specifications and Details for Public Works Construction fulfills the goal of a group of agencies who joined forces in 1966 to produce such a set of documents. Subsequently, in the interest of promoting county-wide acceptance and use of these standards and details, the Maricopa Association of Governments accepted their sponsorship and the responsibility of keeping them current and viable. These specifications and details, representing the best professional thinking of representatives of several Public Works Departments, reviewed and refined by members of the construction industry, were written to fulfill the need for uniform rules governing public works construction performed for Maricopa County and the various cities and public agencies in the county. It further fulfills the need for adequate standards by the smaller communities and agencies who could not afford to promulgate such standards for themselves. A uniform set of specifications and details, updated and embracing the most modern materials and construction techniques will redound to the benefit of the public and the private contracting industry. Uniform specifications and details will eliminate conflicts and confusion, lower construction costs, and encourage more competitive bidding by private contractors. The Uniform Standard Specifications and Details for Public Works Construction will be revised periodically and reprinted to reflect advanced thinking and the changing technology of the construction industry. To this end a Specifications and Details Committee has been established as a permanent organization to continually study and recommend changes to the Specifications and Details. -
City of Laredo Engineering Department
ADDENDUM No.1 Page 1 of 46 CITY OF LAREDO ENGINEERING DEPARTMENT lARED�, T�Xp.$ 1755 ADDENDUM No.1 November 30, 2017 PROJECT: Riverbank Drive Extension All contractors, holders of plans and specifications, plan rooms and all interested parties on the above identified project are hereby notified of the following revisions taking precedence over all previous declarations and notes made on this project. This addendum is to clarify comments brought up during the pre-bid meeting held on November 29, 2017. 1. Street Lights (2) are by others. A $12,500.00 "Street Lights System" allowance was added through Item 42 in attached Bid Schedule ( 4 pages) which shall be submitted with the bid documents properly signed and showing the total base bid amount written with numbers and words. 2. Attached is the Geotechnical Report and its Addendum #1 (32 and 7 pages respectively). 3. There is a $750,000.00 total budget for this project. 4. Regarding the availability of Type "A" HMAC, if this material cannot be found, the Contractor may submit an alternate similar material for approval. 5. About "Partial Monthly Payments" please read section C-9.06 for information on this subject and the retainage. 6. Pavement striping and markings by others. This addendum is being submitted to all contractors, holders of plans and/or specifications, plan rooms, and all interested parties to the project and acknowledgement of same is required by inserting its number and date in the proposal form. --''o''''' City of La edo Engineering D art.m��1J.... f..tf-t''• , * ..• t ,, *.. •.v·\ I , ... -
Seismic Lateral Earth Pressures on Retaining Structures
Missouri University of Science and Technology Scholars' Mine International Conferences on Recent Advances 2010 - Fifth International Conference on Recent in Geotechnical Earthquake Engineering and Advances in Geotechnical Earthquake Soil Dynamics Engineering and Soil Dynamics 28 May 2010, 2:00 pm - 3:30 pm Seismic Lateral Earth Pressures on Retaining Structures A. Murali Krishna Indian Institute of Technology Guwahati, India Follow this and additional works at: https://scholarsmine.mst.edu/icrageesd Part of the Geotechnical Engineering Commons Recommended Citation Krishna, A. Murali, "Seismic Lateral Earth Pressures on Retaining Structures" (2010). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 13. https://scholarsmine.mst.edu/icrageesd/05icrageesd/session06/13 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. SEISMIC LATERAL EARTH PRESSURES ON RETAINING STRUCTURES A. Murali Krishna Indian Institute of Technology Guwahati Guwahati - India – 781039 ABSTRACT Various methods are available to estimate seismic earth pressures on soil retaining structures which cane be grouped to experimental, analytical and numerical methods. 1G model shaking table studies or high-g level centrifuge model shaking studies give some insight on the variation of seismic earth pressures along height of the retaining structure. -
Geotechnical Design Manual Chapter 15- Retaining Structures
VERSION 2.1 5/6/2019 GEOTECHNICAL DESIGN MANUAL CHAPTER 15- RETAINING STRUCTURES GEO-ENVIRONMENTAL SECTION OREGON DEPARTMENT OF TRANSPORTATION CHAPTER 15- RETAINING STRUCTURES TABLE OF CONTENTS SUMMARY OF CHANGES ............................................................................................................................... 6 15 RETAINING STRUCTURES .................................................................................................................. 7 15.1 INTRODUCTION ...........................................................................................................................................8 15.2 RETAINING WALL PRACTICES AND PROCEDURES ....................................................................................8 15.2.1 RETAINING WALL CATEGORIES AND DEFINITIONS ................................................................ 8 15.2.2 GENERAL STEPS IN A RETAINING WALL PROJECT ................................................................ 14 15.2.3 RETAINING WALL PROJECT SCHEDULE ................................................................................ 15 15.2.4 SELECTION OF RETAINING WALL SYSTEM TYPE ................................................................... 16 15.2.5 PROPRIETARY RETAINING WALL SYSTEMS .......................................................................... 19 15.2.6 NONPROPRIETARY RETAINING WALL SYSTEMS .................................................................. 19 15.2.7 UNIQUE NONPROPRIETARY WALL DESIGNS ....................................................................... -
Final Geotechnical Report Proposed Tower ‘B’ Multi-Level Building at the Corner of Parkdale Avenue and Bullman Street Ottawa, ON
Final Geotechnical Report Proposed Tower ‘B’ Multi-Level Building at the Corner of Parkdale Avenue and Bullman Street Ottawa, ON Prepared for: Richcraft Group of Companies 2280 St. Laurent Blvd, Ottawa, ON K1G 4K1 Prepared by: Stantec Consulting Ltd. 1331 Clyde Ave, Ottawa, Ontario K2G 3H7 Project No. 122410780 June 2013 FINAL GEOTECHNICAL REPORT Table of Contents 1.0 INTRODUCTION ................................................................................................................ 1 2.0 SITE DESCRIPTION AND BACKGROUND ....................................................................... 1 3.0 SCOPE OF WORK ............................................................................................................. 1 4.0 METHOD OF INVESTIGATION .......................................................................................... 2 5.0 RESULTS OF INVESTIGATION ......................................................................................... 3 5.1 SUBSURFACE INFORMATION .......................................................................................... 3 5.1.1 Surficial Materials ................................................................................................. 3 5.1.2 Bedrock ................................................................................................................ 3 5.2 GROUNDWATER ............................................................................................................... 5 6.0 DISCUSSION AND RECOMMENDATIONS ...................................................................... -
Alhaji Alhassan Adejumo Umar Geomate 17 63
Articles (2019 / volume 17 / issue 63) (Pages 297-385) APPLICATION OF DIGITAL IMAGE TECHNOLOGY FOR DETERMINING GEOMETRY, STRATIGRAPHY, AND POSITION OF CRACKS INSIDE EARTH SLOPE Pages (297-306) Dewi Amalia, Indrasurya Budisatria Mochtar and Noor Endah Mochtar FLOOD ROUTING ANALYSIS OF THE WAY SEPUTIH RIVER, CENTRAL LAMPUNG, INDONESIA Pages (307-314) Andojo Wurjanto, Trika Agnestasia Tarigan and Julfikhsan Ahmad Mukhti SOIL TREATMENT BY BENTONITE AND FLY ASH FOR LINERS OF WASTE LANDFILL: A CASE STUDY IN VIETNAM Lan Chau Nguyen, Hai Long Chu and Lanh Si Ho Pages (323-330) SEEPAGE FAILURE IN FOUNDATION OF WEIR WITH CUT-OFF WALLS BY MODEL EXPERIMENTS AND ELASTO-PLASTIC FEMKenji Okajima Pages (331-339) DETERMINE THE VULNERABILITY OF URBAN SURFACE WATER RESOURCES IN RACH GIA CITY, VIETNAM USING GEOGRAPHIC INFORMATION SYSTEM Pages (340-346) Dinh Tuan Hai and Trinh Thi Phin COMPARATIVE ANALYSIS OF CONVENTIONAL SEISMIC SURVEY WITH PASSIVE SEISMOELECTRIC EXPLORATION AT GAS CONDENSATE FIELD Pages (347-352) V. S. Potylitsyn, G. Y. Shaydurov, D. S. Kudinov, E. A Kokhonkova and P. V. Balandin STRENGTH OF SOFT CLAY REINFORCED WITH 10 MM SINGLE CRUSHED COCONUT SHELL (CCS) COLUMN Muzamir Hasan, Ieszaliana Ali and Masayuki Hyodo Pages (353-359) LABORATORY AND FIELD EVALUATION OF A-6 LATERITIC SOIL TREATED WITH RECLAIMED ASPHALT PAVEMENT AND ORDINARY PORTLAND CEMENT Pages (360-370) Mustapha Mohammed Alhaji, Musa Alhassan, Taiye Waheed Adejumo and Awwal Tanko Umar ANALYSIS OF EROSION USING HYDROSEEDING ON POST COAL MINING IN MELAK SITE Pages (371-377) Waterman Sulistyana Bargawa and Arisdiansyah Putra, M. Nurcholis MEASUREMENT OF ANTI-STRIPPING AGENT CONTENT IN ASPHALT MIXTURE WITH COLORIMETRIC TEST Zulkarnain Abdul Muis, Meriani Batubara, Adina Sari Lubis and Renita Manurung Pages (378-385) Introduction The "International Journal of GEOMATE" is a Scientific Journal of the GEOMATE International Society that encompasses a broad area in Geotechnique, Construction Materials and Environment. -
Calculation Sheet 5010.65
Private Fuel Storage, L.L.C. "P.O.Box C4010, La Crosse, WI 54602-4010 Phone 303-741-7009 Fax: 303-741-7806 John L. Donnell, P.E., Project Director U.S. Nuclear Regulatory Commission June 19, 2000 ATTN: Document Control Desk Washington, D.C. 20555-0001 SUBMITTAL OF COMMITMENT RESOLUTION LETTER #34 INFORMATION DOCKET NO. 72-22 / TAC NO. L22462 PRIVATE FUEL STORAGE FACILITY PRIVATE FUEL STORAGE L.L.C. Reference: PFS Letter, Donnell to U.S. Nuclear Regulatory Commission, Commitment Resolution Letter # 34, dated June 2, 2000 In the referenced letter, Private Fuel Storage (PFS) committed to provide the NRC with information on tipover of a cask transporter, propane vapor cloud dispersion, and a revised calculation package associated with bearing capacity and sliding stability of the cask storage pads and the Canister Transfer Building. This letter provides the informational commitments and the calculation package. Attachment 1 contains the calculation package that addresses bearing capacity and sliding stability analyses of the cask storage pads and the Canister Transfer Building. The package consists of the following three calculations which have been revised to address issues discussed in the referenced letter: PFSF Calculation No. 05996.02-G(B)-4, Stability Analysis of Storage Pad, Rev. 6, Stone & Webster. PFSF Calculation No. 05996.02-G(B)-5, Bases for Geotechnical Parameters Provided in Geotechnical Design Criteria, Rev. 2, Stone & Webster. PFSF Calculation No. 05996.02-G(B)-1 3, Stability Analyses of the Canister Transfer Building Supported on a Mat Foundation, Rev. 3, Stone & Webster. IQ rPL~s)jCb U.S. NRC 2 June 19, 2000 Attachment 2 provides the results of an evaluation of the stability of the cask transporter when carrying a storage cask, assuming it is subjected to the PFSF design basis ground motion, or to the design tornado-driven missile. -
Unit 3 Lateral Earth Pressure
ANJUMAN COLLEGE OF ENGINEERING & TECHNOLOGY MANGALWARI BAZAAR ROAD, SADAR, NAGPUR - 440001. DEPARTMENT OF CIVIL ENGINEERING Geotechnical Engineering – II B.E. FIFTH SEMESTER Prof. Rashmi G. Bade, Department of Civil Engineering, Geotechnical Engineering – II 1 ANJUMAN COLLEGE OF ENGINEERING & TECHNOLOGY MANGALWARI BAZAAR ROAD, SADAR, NAGPUR - 440001. DEPARTMENT OF CIVIL ENGINEERING UNIT – III LATERAL EARTH PRESSURE: Earth pressure at rest, active & passive pressure, General & local states of plastic equilibrium in soil. Rankines and Coulomb‟s theories for earth pressure. Effects of surcharge, submergence. Rebhann‟s criteria for active earth pressure. Graphical construction by Poncelet and Culman for simple cases of wall-soil system for active pressure condition. Prof. Rashmi G. Bade, Department of Civil Engineering, Geotechnical Engineering – II 2 ANJUMAN COLLEGE OF ENGINEERING & TECHNOLOGY MANGALWARI BAZAAR ROAD, SADAR, NAGPUR - 440001. DEPARTMENT OF CIVIL ENGINEERING INTRODUCTION This is required in designs of various earth retaining structures like: - i) Retaining walls ii) Sheeting & bracings in cuts / excavations iii) Bulkheads iv) Bridge abutments, tunnels, cofferdams etc. Lateral earth pressure depends on:- i) Type of soil. ii) Type of wall movement:- a) Translatory b) Rotational iii) Soil-structure interaction. A retaining wall or retaining structure is used for maintaining the ground surface at different elevations on either side of it. The material retained or supported by the structure is called backfill which may have its top surface horizontal or inclined. The position of the backfill lying above a horizontal plane at the elevation of the top of a wall is called the surcharge, and its inclination to the horizontal is called surcharge angle β. Lateral earth pressure can be grouped into 3 categories, depending upon the movement of the retaining wall with respect to the soil retained. -
Seismic Design of Earth Retaining Structures by Atop Lego, M.Tech (Struct.) SSW (E/Z) AP, PWD; Itanagar Introduction
Seismic Design of Earth Retaining Structures By Atop Lego, M.Tech (Struct.) SSW (E/Z) AP, PWD; Itanagar Introduction The problem of retaining soil is one the oldest in the geotechnical engineering; some of the earliest and most fundamental principles of soil mechanics were developed to allow rational design of retaining walls. Many approaches to soil retention have been developed and used successfully. In the recent years, the development of metallic, polymer, and geotextile reinforcement has also led to the development of many innovative types of mechanically stabilized earth retention system. Retaining walls are often classified in terms of their relative mass, flexibility, and anchorage condition. The common types of the retaining wall are: 1. Gravity Retaining wall 2. Cantilever Retaining wall 3. Counter fort Retaining wall 4. Reinforced Soil Retaining wall 5. Anchored bulkhead a. Gravity b. Cantilever c. Reinforced soil Wall wall wall d. Anchored e. Counterfort Retaining bulkhead Fig. 1 Common type of Retaining Wall Gravity Retaining walls (Fig 1 a) are the oldest and simplest type of retaining walls. The gravity wall retaining walls are thick and stiff enough that they do not bend; their movement occurs essentially by rigid body translation and or by rotation. 2 The cantilever retaining wall as shown in Fig.1b bends as well as translates and rotates. They rely on the flexural strength to resist lateral earth pressures. The actual distribution of lateral earth pressure on a cantilever wall is influenced by the relative stiffness and deformation both the wall and the soil. In the present context considering the maximum applicability of free standing gravity retaining wall the presentation is focused mainly on the seismic design of gravity retaining wall. -
Chapter 12: Lateral Earth Pressure
Civil Engineering Department: Foundation Engineering (ECIV 4052) Part 4: Lateral Earth Pressure and Earth-Retaining Structures Chapter 12: Lateral Earth Pressure Introduction Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheetpile walls, sheet-pile bulkheads, braced cuts, and other, similar structures. The proper design of those structures requires an estimation of lateral earth pressure, which is a function of several factors, such as: (a) the type and amount of wall movement, (b) the shear strength parameters of the soil, (c) the unit weight of the soil, and (d) the drainage conditions in the backfill. The following Figure shows a retaining wall of height H. For similar types of backfill: a. The wall may be restrained from moving (Figure a). The lateral earth pressure on the wall at any depth is called the at- rest earth pressure. b. The wall may tilt away from the soil that is retained (Figure b). With sufficient wall tilt, a triangular soil wedge behind the wall will fail. The lateral pressure for this condition is referred to as active earth pressure. c. The wall may be pushed into the soil that is retained (Figure c). With sufficient wall movement, a soil wedge will fail. The lateral pressure for this condition is referred to as passive earth pressure. Engr. Yasser M. Almadhoun Page 1 Civil Engineering Department: Foundation Engineering (ECIV 4052) Lateral Earth Pressure at Rest Consider a vertical wall of height H, as shown in Figure 12.3, retaining a soil having a unit weight of g. A uniformly distributed load, q/unit area, is also applied at the ground surface. -
An Improved California Bearing Ratio Test Procedure
TRANSPORTATION RESEARCH RECORD 1119 91 An Improved California Bearing Ratio Test Procedure COLIN A. FRANCO AND K. WAYNE LEE The California bearing ratio (CBR) test is one of the most BACKGROUND common strength tests conducted to evaluate subgrade quality of soils and the suitability of soils for sub base and base courses A statewide investigation at the California Division of High in pavements. Yet there are variations in the procedures used ways was conducted to determine local drainage conditions and by various transportation agencies; this results in confusion among highway engineers. To Improve the existing CBR pro other factors that affect the stability of pavement during 1928 cedures, an alternative method has been employed successfully and 1929. The study indicated that pavement failures could be to obtain CBR-values of soil and to evaluate the moisture ·. traced directly to poor compaction during construction or was susceptibility of soils. This method is not only easier to perform brought about by insufficient thickness of pavement and by the but also requires less effort because only four samples need be existence of a base course over soils inherently weak in shear compacted and tested. There are also fewer sources of error in strength. Therefore a static field load test was first tried for that obtaining the "correct" optimum moisture content for compaction is not required because the test Is considered an establishing the density that should be used in the construction extension of the compaction tests (i.e., AASHTO T99 and of subgrades and the shear strength that was required. Tl80). This method has been used successfully on various soil However, it was practically impossible to moisten the soil types as well as on soil-cement mixtures.