Plate U. Relation of Lithostratigraphic Units to Hydrogeologic Units, Hanna and Laramie Basins

Total Page:16

File Type:pdf, Size:1020Kb

Plate U. Relation of Lithostratigraphic Units to Hydrogeologic Units, Hanna and Laramie Basins Hydrogeologic units of Lundy (1978), Hydrogeologic role/unit of Richter (1981a; Hydrogeologic division of Lowry et al. (1973) Hydrogeologic role/unit of Statewide Huntoon and Lundy (1979a), Thompson (1979), Figure II-6, Table IV-2, and text) Hydrogeologic unit of Mazor (1990) Lithostratigraphic units of Love et al. (1993) [Laramie, Hanna, and Shirley Basins; Hydrogeologic role/unit of Younus (1992) Hydrogeologic unit of HydroGeo, Inc. (2003) Hydrogeologic unit of Taboga (2006) Framework Water Plan Hydrogeologic unit used in this report for SYSTEM AND SERIES Davis (1984), Western Water Consultants, Inc. [Laramie, Hanna, and Shirley Basins; and Mazor et al. (1993) in the Hanna and Laramie Basins Sierra Madre, Laramie Mountains (west flank) [Laramie area/southern Laramie Basin] [Hanna Basin] [Laramie area] (WWC Engineering et al., 2007, Figure 4-9) Hanna and Laramie Basins (1993, 1995), and WWC Engineering (2006a) Sierra Madre, Laramie Mountains (west flank) [Laramie area] ERATHEM and Saratoga Valley areas] [All of Wyoming] [Laramie area] and Saratoga Valley areas] Holocene QUATERNARY and Alluvium and terrace deposits Unit 8 Local aquifers3 Local aquifers Major aquifer–alluvial Quaternary unconsolidated-deposit aquifers Pleistocene Pliocene1 Miocene Miocene and Oligocene rocks Not discussed or not present Undefined Presumed aquifer(s) in investigator’s study area Conglomerate CENOZOIC TERTIARY Oligocene White River Unit 8 Marginal aquifer White River aquifer and confining unit Formation Lower part Principal aquifer–Tertiary aquifer(s)4 Wagon Bed Formation Marginal aquifer Wagon Bed aquifer and confining unit Eocene Wind River Formation Major aquifer–sandstone Wind River aquifer Hanna Formation Aquifer8 Marginal aquifer Hanna aquifer Paleocene 8 Ferris Formation Aquifers and confining units Aquifer Marginal aquifer Ferris aquifer Medicine Bow Formation (not divided or classified in report). Aquifer Minor aquifer Medicine Bow aquifer Lithostratigraphic units composed primarily of Fox Hills Sandstone Not discussed marine shales are regional confining units. Aquifer Major aquifer Fox Hills aquifer Sandstone beds can be aquifers. Unit 6 Confining unit with local discontinuous saturated Confining unit Major aquitard Lewis confining unit Lewis Shale (Fox Hills Sandstone not discussed) sandstone lenses Almond Formation Not discussed Pine Ridge Sandstone Not discussed Secondary aquifer–Mesaverde aquifer Interbedded aquifers and confining units8 Major aquifer Mesaverde aquifer Allen Ridge Formation Rock River Formation Haystack Mountains CRETACEOUS Mesaverde Group Upper Formation Steele Shale Cretaceous Steele Shale Leaky confining unit Confining unit Major aquitard Steele confining unit Niobrara Formation Major aquitard Niobrara confining unit Unit 5 Frontier Formation Secondary aquifer–Frontier aquifer Minor aquifer Frontier aquifer Mowry Shale Major aquitard ? Regional MESOZOIC leaky 5 Mowry-Thermopolis Muddy Sandstone Muddy Sandstone Aquifer Not discussed confining unit aquifer confining unit Lower Thermopolis Shale Major aquitard Cretaceous Cloverly Formation Principal aquifer–Cloverly aquifer Aquifer Minor aquifer Cloverly aquifer Leaky confining unit with local discontinuous 7 Upper Morrison Formation Unit 4 saturated sandstone lenses Confining unit Minor aquifer Morrison aquifer and confining unit Jurassic JURASSIC Sundance Formation Secondary aquifer–Sundance aquifer Aquifer Marginal aquifer Sundance aquifer Middle Jurassic JURASSIC (?) AND TRIASSIC (?) Upper Jelm Formation Aquifer3 Not discussed Not discussed Jelm aquifer Triassic TRIASSIC Chugwater Formation of Darton (1908) Lower Chugwater confining unit Triassic 7 Unit 3 Regional leaky confining unit with Redbeds Confining unit Major aquitard groundwater Goose (Forelle Limestone not discussed) Not present in locally permeable sandstone and Not present in Not present in Not present in Aquifer system/ Goose Egg Egg Forelle investigators’ fractured limestone interbeds investigator’s confining unit investigator’s investigator’s Major aquitard Limestone (WWC Engineering, 2006a) Confining unit confining unit Forelle aquifer PERMIAN Formation study area study area study area study area Satanka Shale Confining unit Confining unit7 Confining unit Major aquitard Satanka confining unit Upper Not discussed Pennsylvanian Unit 2 Casper Formation 2 Principal aquifer–Casper aquifer Casper aquifer Casper aquifer Major aquifer–limestone Casper aquifer (Fountain Formation not discussed) Casper aquifer Confining Middle Fountain PENNSYLVANIAN unit Pennsylvanian Formation Casper aquifer/groundwater system6 Lower Pennsylvanian Upper Mississippian MISSISSIPPIAN Lower Madison Limestone Confining unit3 Major aquifer–limestone Madison aquifer Mississippian Not discussed or not present in Not present in Not present in Not present in investigator’s study area investigator’s study area investigator’s study area Upper investigators’ study area Devonian Fremont Canyon Sandstone Not discussed Not discussed Not discussed Fremont Canyon aquifer PALEOZOIC DEVONIAN Lower Devonian SILURIAN1 Middle Silurian Upper Ordovician Not discussed or not present in investigators’ study area ORDOVICIAN1 Middle Ordovician Lower Casper aquifer6 Ordovician Upper Cambrian CAMBRIAN1 Lower Cambrian PRECAMBRIAN Precambrian rocks Unit 1 Confining unit Confining unit with locally permeable zones3 Confining unit Precambrian crystalline aquifer or Precambrian aquifer Major aquitard Precambrian basal confining unit with locally permeable zones 1Rocks of Pliocene, Silurian, Ordovician, and Cambrian age not present in Hanna and Laramie Basins. 2Casper Formation (aquifer) divided into five informally named subaquifers in Lundy (1978): alpha, beta, gamma, delta, and epsilon, in ascending order. This nomenclature is retained/used by most subsequent studies of the Casper aquifer in the Laramie area, including many of the investigators listed at the top of this column. 3Hydrogeologic role/unit inferred from description provided in “Hydrologic Properties” column (Richter, 1981a, Table IV-2). 4Each lithostratigraphic unit in”Tertiary aquifer” category is inferred to be an individual aquifer on the basis of description provided in “Hydrologic Properties” column (Richter, 1981a, Table IV-2). 5Muddy Sandstone inferred to be an aquifer within “Leaky confining unit” classification on the basis of description provided in “Hydrologic Properties” column (Richter, 1981a, Table IV-2). 6Casper aquifer composed of Casper and Fountain Formations and underlying Precambrian rocks (where locally permeable) in Mazor (1990). In contrast to Mazor (1990), Mazor et al. (1993, Figure 8, p. 198) classified the Precambrian rocks and overlying Fountain Formation as a “basal confining unit.” 7Although classified primarily as a confining unit, local sandstone beds may yield mineralized water and be classified as local aquifers (Younus, 1992, Figure 11, p. 25). 8Hydrogeologic classification inferred from description in report (HydroGeo, Inc., 2003, p. 2–4). Plate U. Relation of lithostratigraphic units to hydrogeologic units, Hanna and Laramie Basins..
Recommended publications
  • Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1973
    Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1973 GEOLOGICAL SURVEY BULLETIN 1395-A NOV1419/5 5 81 Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1973 By GEORGE V. COHEE and WILNA R. WRIGHT CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1395-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1975 66 01-141-00 oM UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Cohee, George Vincent, 1907 Changes in stratigraphic nomenclatures by the U. S. Geological Survey, 1973. (Contributions to stratigraphy) (Geological Survey bulletin; 1395-A) Supt. of Docs, no.: I 19.3:1395-A 1. Geology, Stratigraphic Nomenclature United States. I. Wright, Wilna B., joint author. II. Title. III. Series. IV. Series: United States. Geological Survey. Bulletin; 1395-A. QE75.B9 no. 1395-A [QE645] 557.3'08s 74-31466 [551.7'001'4] For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, B.C. 20402 Price 95 cents (paper cover) Stock Number 2401-02593 CONTENTS Page Listing of nomenclatural changes ______ _ Al Beulah Limestone and Hardscrabble Limestone (Mississippian) of Colorado abandoned, by Glenn R. Scott _________________ 48 New and revised stratigraphic names in the western Sacramento Valley, Calif., by John D. Sims and Andre M. Sarna-Wojcicki __ 50 Proposal of the name Orangeburg Group for outcropping beds of Eocene age in Orangeburg County and vicinity, South Carolina, by George E. Siple and William K. Pooser _________________ 55 Abandonment of the term Beattyville Shale Member (of the Lee Formation), by Gordon W.
    [Show full text]
  • Mineral Occurrence and Development Potential Report Rawlins Resource
    CONTENTS 1.0 INTRODUCTION......................................................................................................................1-1 1.1 Purpose of Report ............................................................................................................1-1 1.2 Lands Involved and Record Data ....................................................................................1-2 2.0 DESCRIPTION OF GEOLOGY ...............................................................................................2-1 2.1 Physiography....................................................................................................................2-1 2.2 Stratigraphy ......................................................................................................................2-3 2.2.1 Precambrian Era....................................................................................................2-3 2.2.2 Paleozoic Era ........................................................................................................2-3 2.2.2.1 Cambrian System...................................................................................2-3 2.2.2.2 Ordovician, Silurian, and Devonian Systems ........................................2-5 2.2.2.3 Mississippian System.............................................................................2-5 2.2.2.4 Pennsylvanian System...........................................................................2-5 2.2.2.5 Permian System.....................................................................................2-6
    [Show full text]
  • Appendix 1 – Environmental Predictor Data
    APPENDIX 1 – ENVIRONMENTAL PREDICTOR DATA CONTENTS Overview ..................................................................................................................................................................................... 2 Climate ......................................................................................................................................................................................... 2 Hydrology ................................................................................................................................................................................... 3 Land Use and Land Cover ..................................................................................................................................................... 3 Soils and Substrate .................................................................................................................................................................. 5 Topography .............................................................................................................................................................................. 10 References ................................................................................................................................................................................ 12 1 OVERVIEW A set of 94 potential predictor layers compiled to use in distribution modeling for the target taxa. Many of these layers derive from previous modeling work by WYNDD1, 2, but a
    [Show full text]
  • Paleogene: Paleocene) Of
    Cainozoic Research, 8(1-2), pp. 13-28, December2011 Chondrichthyans from the Clayton Limestone Unit of the Midway Group (Paleogene: Paleocene) of Hot Spring County, Arkansas, USA ¹, ² Martin+A. Becker Lauren+C. Smith¹ & John+A. Chamberlain+Jr. 1 Department ofEnvironmentalScience, William Paterson University, Wayne, New Jersey 07470; e-mail: [email protected] 2 Department ofGeology, Brooklyn College andDoctoralProgram in Earth and EnvironmentalSciences, City University ofNew YorkGraduate Center, New York 10016; email:[email protected] Received 7 September 2010; revised version accepted 26 June 2011 LimestoneUnit of The Clayton the Midway Group (Paleocene) in southwestern Arkansas preserves one ofthe oldest chondrichthyan Cenozoic from the Gulf Coastal Plainofthe United assemblages yet reported States. Present are at least eight taxa, including; Odontaspis winkleriLeriche, Carcharias cf. whitei Carcharias Anomotodon 1905; (Arambourg, 1952); sp.; novus (Winkler, 1874); Cretalamnasp.; Otodus obliquus Agassiz, 1843; Hypolophodon sylvestris (White, 1931); Myliobatis dixoni Agassiz, 1843; and a chimaeridofindeterminate affiliation.Also present are lamnoid-type and carcharhinoid-type chondrichthyan vertebral centra. The Clayton chondrichthyan assem- blage derives from an outcrop locatedonly a few kilometersfrom a site exposing an assemblage ofMaastrichtianchondrichthyans from Because and the upper Arkadelphia Marl. these assemblages are closely spaced stratigraphically geographically, they provide data on chondrichthyan taxonomic turnover
    [Show full text]
  • Meddelelser139.Pdf
    MEDDELELSER NR. 139 Soviet Geological Research in Svalbard 1962-1992 Extended abstracts of unpublished reports Edited by: A.A. Krasil'scikov Polar Marine Geological Research Expedition NORSK POLARINSTITUTT OSLO 1996 Sponsored by: Russian-Norwegian Joint Venture "SEVOTEAM", St.Petersburg lAse Secretariat, Oslo ©Norsk Polarinstitutt, Oslo 1996 Compilation: AAKrasil'sCikov, M.Ju.Miloslavskij, AV.Pavlov, T.M.Pcelina, D.V.Semevskij, AN.Sirotkin, AM.Teben'kov and E.p.Skatov: Poljamaja morskaja geologorazvedocnaja ekspedicija, Lomonosov - St-Peterburg (Polar Marine Geological Research Expedition, Lomonosov - St.Petersburg) 189510, g. Lomonosov, ul. Pobedy, 24, RUSSIA Figures drawn by: N.G.Krasnova and L.S.Semenova Translated from Russian by: R.V.Fursenko Editor of English text: L.E.Craig Layout: W.K.Dallmann Printed February 1996 Cover photo: AM. Teben'kov: Field camp in Møllerfjorden, northwestem Spitsbergen, summer 1991. ISBN 82-7666-102-5 2 CONTENTS INTRODUCTORY REMARKS by W.K.DALLMANN 6 PREFACE by A.A.KRASIL'SCIKOV 7 1. MAIN FEATURES OF THE GEOLOGY OF SVALBARD 8 KRASIL'SCIKOV ET 1986: Explanatory notes to a series of geological maps of Spitsbergen 8 AL. 2. THE FOLDED BASEMENT 16 KRASIL'SCIKOV& LOPA 1963: Preliminary results ofthe study ofCaledonian granitoids and Hecla TIN Hoek gneis ses in northernSvalbard 16 KRASIL'SCIKOV& ABAKUMOV 1964: Preliminary results ofthe study of the sedimentary-metamorphic Hecla Hoek Complex and Paleozoic granitoids in centralSpitsbergen and northern Nordaustlandet 17 ABAKUMOV 1965: Metamorphic rocks of the Lower
    [Show full text]
  • Triassic-Jurassic 'Red Beds' of the Rocky Mountain Region": a Discussion
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 1929 "Triassic-Jurassic 'Red Beds' of the Rocky Mountain Region": A Discussion John B. Reeside Jr. U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Earth Sciences Commons Reeside, John B. Jr., ""Triassic-Jurassic 'Red Beds' of the Rocky Mountain Region": A Discussion" (1929). USGS Staff -- Published Research. 498. https://digitalcommons.unl.edu/usgsstaffpub/498 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Journal of Geology, Vol. 37, No. 1 (Jan. - Feb., 1929), pp. 47-63 "TRIASSIC-JURASSIC 'RED BEDS' OF THE ROCKY MOUNTAIN REGION": A DISCUSSION' JOHN B. REESIDE, JR. U.S. Geological Survey ABSTRACT The conclusion drawn by Professor E. B. Branson in a recent paper on the "Red Beds" of the Rocky Mountain region that parts of these beds are marine is considered likely. The conclusion that there exists no basis for subdivision of the beds is not accepted, and a division of the Mesozoic part into Lower Triassic, Upper Triassic, and Jurassic units is advocated. The conclusion that no eolian deposits are present likewise is not accepted, and the interpretation of important parts of the Jurassic unit as eolian is advocated. Disagreement is expressed with much of Professor Branson's correlation table, and a substitute is offered.
    [Show full text]
  • Basin-Centered Gas Systems of the U.S. by Marin A
    Basin-Centered Gas Systems of the U.S. By Marin A. Popov,1 Vito F. Nuccio,2 Thaddeus S. Dyman,2 Timothy A. Gognat,1 Ronald C. Johnson,2 James W. Schmoker,2 Michael S. Wilson,1 and Charles Bartberger1 Columbia Basin Western Washington Sweetgrass Arch (Willamette–Puget Mid-Continent Rift Michigan Basin Sound Trough) (St. Peter Ss) Appalachian Basin (Clinton–Medina Snake River and older Fms) Hornbrook Basin Downwarp Wasatch Plateau –Modoc Plateau San Rafael Swell (Dakota Fm) Sacramento Basin Hanna Basin Great Denver Basin Basin Santa Maria Basin (Monterey Fm) Raton Basin Arkoma Park Anadarko Los Angeles Basin Chuar Basin Basin Group Basins Black Warrior Basin Colville Basin Salton Mesozoic Rift Trough Permian Basin Basins (Abo Fm) Paradox Basin (Cane Creek interval) Central Alaska Rio Grande Rift Basins (Albuquerque Basin) Gulf Coast– Travis Peak Fm– Gulf Coast– Cotton Valley Grp Austin Chalk; Eagle Fm Cook Inlet Open-File Report 01–135 Version 1.0 2001 This report is preliminary, has not been reviewed for conformity with U. S. Geological Survey editorial standards and stratigraphic nomenclature, and should not be reproduced or distributed. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U. S. Government. 1Geologic consultants on contract to the USGS 2USGS, Denver U.S. Department of the Interior U.S. Geological Survey BASIN-CENTERED GAS SYSTEMS OF THE U.S. DE-AT26-98FT40031 U.S. Department of Energy, National Energy Technology Laboratory Contractor: U.S. Geological Survey Central Region Energy Team DOE Project Chief: Bill Gwilliam USGS Project Chief: V.F.
    [Show full text]
  • EVIDENCE for CLUSTERING of DELTA-LOBE RESERVOIRS WITHIN FLUVIO-LACUSTRINE SYSTEMS, JURASSIC KAYENTA FORMATION, UTAH by Galen
    EVIDENCE FOR CLUSTERING OF DELTA-LOBE RESERVOIRS WITHIN FLUVIO-LACUSTRINE SYSTEMS, JURASSIC KAYENTA FORMATION, UTAH by Galen Alden Huling Bachelor of Science, 2012 Brigham Young University Provo, Utah Submitted to the Graduate Faculty of the School of Science and Engineering Texas Christian University in partial fulfillment of the requirements for the Degree of Master of Science in Geology December 2014 Copyright © by Galen Alden Huling 2014 All Rights Reserved Acknowledgements I would like to thank first and foremost my wife for standing by me and supporting me through this entire process. For all of her long days and nights with our two boys while I worked to finish. Also to John Holbrook, who patiently guided me through the process and took time from his busy schedule to mentor. I would also like to thank all other friends and family who supported me and my wife throughout my undergraduate and postgraduate work to get me to this point. ii Table of Contents ACKNOWLEDGEMENTS ................................................................................................ ii LIST OF FIGURES .............................................................................................................v LIST OF TABLES ............................................................................................................ vii Chapter 1. INTRODUCTION ...............................................................................................1 Fluvio-Lacustrine .........................................................................................2
    [Show full text]
  • Stratigraphic Distribution of Species of the Megaspore Genus Minerisporites in North America
    Stratigraphic Distribution of Species of the Megaspore Genus Minerisporites in North America GEOLOGICAL SURVEY PROFESSIONAL PAPER 743-E Stratigraphic Distribution of Species of the Megaspore Genus Minerisporites in North America By ROBERT H. TSCHUDY CONTRIBUTIONS TO PALEONTOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 743-E Taxonomy, stratigraphic ranges, and facies significance of Minerisporites megaspores UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Tschudy, Robert H. Stratigraphic distribution of species of the megaspore genus Minerisporites in North America. (Contributions to Paleontology) (Geological Survey Professional Paper 743-E) Bibliography: p. Includes index. Supt. of Docs. no.: I 19.16:743-E 1. Minerisporites. 2. Paleobotany-Cretaceous. 3. Paleobotany-Paleocene. 4. Paleobotany-North America. I. Title. II. Series. III. Series: United States Geological Survey Professional Paper 743-E. QE996.T7 560' .13 76-608080 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02892-1 CONTENTS Page Page Abstract ............................................................................................... EI Systematics-Continued New species of Minerisporites............................................................ I Genus Minerisporites-Continued Stratigraphic distribution................................................................... I Minerisporites
    [Show full text]
  • Contributions to Geology Table of Contents
    Table of Contents for Rocky Mountain Geology (Contributions to Geology) Contributions to Geology 01.1 1962 3-7 Non-paleontological methods of correlation of rocks of Tertiary age in Wyoming: Part 1 - HOUSTON, ROBERT S. heavy elements in bone fragments 7-12 Gulf and Atlantic coast mollusks in the Late Cretaceous Mesaverde Formation of Wyoming TOOTS, HEINRICH AND JOHN F. CUTLER 13-20 Precambrian agmatites of the Wind River Range, Wyoming PARKER, RONALD B. 21-30 Glaciation of Libby Creek Canyon, east flank of Medicine Bow Mountains, southeastern MCCALLUM, M. E. Wyoming 31-40 Mechanical analysis of the Lake Agnes landslide SCOTT, ROBERT W. 41-47 The origin of Precambrian crystalline rocks in the Pelton Creek area; Medicine Bow Mountains, SWETNAM, MONTE N. Wyoming Contributions to Geology 02.1 1963 7-12 Columnar jointing in sandstone BLACKSTONE, JR., D. L. 13-20 Correlation of volcanic rock units in the southern Absaroka Mountains, northwest Wyoming WILSON, WILLIAM H. 21-38 Compositions of silicate surfaces and surface phenomena DEVORE, GEORGE W. 39-42 Environmental significance of sharks in the Shotgun fauna, Paleocene of Wyoming MCGREW, PAUL O. 43-46 Ice expansion ramparts on south arm of Yellowstone Lake, Wyoming DE LA MONTAGNE, JOHN 47-54 Laramide vertical movements in central Wyoming KEEFER, W. R. AND J. D. LOVE 55-58 Pedestal rocks in the Laramie Range, Albany County, Wyoming CRAMER, LOUIS W. 59-62 Rubidium in alkali feldspar perthites PARKER, RONALD B., JOHN S. KING, AND RONALD G. WORL 63-68 A Wyoming specimen of Dendrophycus BOYD, DONALD W. AND H. THOMAS ORE 69-80 The chemistry of fossil bones from Wyoming and adjacent states TOOTS, HEINRICH 81-86 Non-paleontological methods of correlation of rocks of Tertiary age in Wyoming: Part II - HOUSTON, R.
    [Show full text]
  • Identifying a Mass Extinction in Front Range Open Space: Age
    March 14, 2019 Final Report for two-year OSMP-BCPOS-JCOS proposal: “Identifying a mass extinction in Front Range open space: Age & environments of the Lykins Formation” Investigators: James Hagadorn (PI), Bonita Lahey, Linda Smith, Karen Whiteley, and Michael Yusas, Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO 80205 Project Summary: For this project, we analyzed the paleontology, sedimentology, diagenesis, geochemistry and geochronology of the Lykins Formation in JCOS, OSMP, and BCPOS, integrating results from this work with data from other regional exposures of the Lykins Formation and equivalent units. Key outcomes include: A) identification of the overall age of the Lykins Formation and the interval in which the Permian-Triassic boundary occurs; B) assessment of the environments that produced the Lykins and associated strata; and C) characterization of locations in Open Space parcels that may be suitable for connecting the public to the science and history of these rocks. These accomplishments and opportunities are synthesized below. Figure 1: Major basins (dashed outlines) in which Permian-Triassic sedimentary rocks (blue) are exposed. A) Age of the Lykins Formation and position of the Permian-Triassic transition The studied outcrops represent surface exposures of strata that also occur below the surface in the Denver-Julesberg Basin, and they have correlatives in three other Colorado basins, known as the Eagle Basin, Hugoton Embayment, and North Park Basin (Fig. 1). Although the focus of this scholarship is on the surface exposures in OSMP-BCPOS-JCOS, (J1-J3, B1-B2 in Figs. 1, 3) we augment them with data from core (DH01-640; L1-L2 in Fig 1) and outcrop in Larimer County Open Space (L3-L5 in Figs.
    [Show full text]
  • Index to the Geologic Names of North America
    Index to the Geologic Names of North America GEOLOGICAL SURVEY BULLETIN 1056-B Index to the Geologic Names of North America By DRUID WILSON, GRACE C. KEROHER, and BLANCHE E. HANSEN GEOLOGIC NAMES OF NORTH AMERICA GEOLOGICAL SURVEY BULLETIN 10S6-B Geologic names arranged by age and by area containing type locality. Includes names in Greenland, the West Indies, the Pacific Island possessions of the United States, and the Trust Territory of the Pacific Islands UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.G. - Price 60 cents (paper cover) CONTENTS Page Major stratigraphic and time divisions in use by the U.S. Geological Survey._ iv Introduction______________________________________ 407 Acknowledgments. _--__ _______ _________________________________ 410 Bibliography________________________________________________ 410 Symbols___________________________________ 413 Geologic time and time-stratigraphic (time-rock) units________________ 415 Time terms of nongeographic origin_______________________-______ 415 Cenozoic_________________________________________________ 415 Pleistocene (glacial)______________________________________ 415 Cenozoic (marine)_______________________________________ 418 Eastern North America_______________________________ 418 Western North America__-__-_____----------__-----____ 419 Cenozoic (continental)___________________________________
    [Show full text]