Aldehyde-Alcohol Dehydrogenase And/Or Thiolase Overexpression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Aldehyde Dehydrogenase ALDH2*2 Allele Exhibits Dominance Over ALDH2*1 in Transduced Hela Cells
The aldehyde dehydrogenase ALDH2*2 allele exhibits dominance over ALDH2*1 in transduced HeLa cells. Q Xiao, … , T Johnston, D W Crabb J Clin Invest. 1995;96(5):2180-2186. https://doi.org/10.1172/JCI118272. Research Article Individuals heterozygous or homozygous for the variant aldehyde dehydrogenase (ALDH2) allele (ALDH2*2), which encodes a protein differing only at residue 487 from the normal protein, have decreased ALDH2 activity in liver extracts and experience cutaneous flushing when they drink alcohol. The mechanisms by which this allele exerts its dominant effect is unknown. To study this effect, the human ALDH2*1 cDNA was cloned and the ALDH2*2 allele was generated by site-directed mutagenesis. These cDNAs were transduced using retroviral vectors into HeLa and CV1 cells, which do not express ALDH2. The normal allele directed synthesis of immunoreactive ALDH2 protein (ALDH2E) with the expected isoelectric point. Extracts of these cells contained increased aldehyde dehydrogenase activity with low Km for the aldehyde substrate. The ALDH2*2 allele directed synthesis of mRNA and immunoreactive protein (ALDH2K), but the protein lacked enzymatic activity. When ALDH2*1-expressing cells were transduced with ALDH2*2 vectors, both mRNAs were expressed and immunoreactive proteins with isoelectric points ranging between those of ALDH2E and ALDH2K were present, indicating that the subunits formed heteromers. ALDH2 activity in these cells was reduced below that of the parental ALDH2*1-expressing cells. Thus, the ALDH2*2 allele is sufficient to cause ALDH2 deficiency in vitro. Find the latest version: https://jci.me/118272/pdf The Aldehyde Dehydrogenase ALDH2*2 Allele Exhibits Dominance over ALDH2*1 in Transduced HeLa Cells Qing Xiao, * Henry Weiner,* Timothy Johnston,* and David W. -
ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
A Polyketoacyl-Coa Thiolase-Dependent Pathway for the Synthesis of Polyketide Backbones
ARTICLES https://doi.org/10.1038/s41929-020-0471-8 A polyketoacyl-CoA thiolase-dependent pathway for the synthesis of polyketide backbones Zaigao Tan1,3, James M. Clomburg1,2, Seokjung Cheong1, Shuai Qian1 and Ramon Gonzalez 1,2 ✉ Polyketides found in nature originate from backbones synthesized through iterative decarboxylative Claisen condensations catalysed by polyketide synthases (PKSs). However, PKSs suffer from complicated architecture, energy inefficiencies, complex regulation, and competition with essential metabolic pathways for extender unit malonyl-CoA, all combining to limit the flux of polyketide biosynthesis. Here we show that certain thiolases, which we term polyketoacyl-CoA thiolases (PKTs), catalyse polyketide backbone formation via iterative non-decarboxylative Claisen condensations, hence offering a synthetic and effi- cient alternative to PKSs. We show that PKTs can synthesize polyketide backbones for representative lactone, alkylresorcinolic acid, alkylresorcinol, hydroxybenzoic acid and alkylphenol polyketide families, and elucidate the basic catalytic mechanism and structural features enabling this previously unknown activity. PKT-catalysed reactions offer a route to polyketide formation that leverages the simple architecture of thiolases to achieve higher ATP efficiencies and reduced competition with essential metabolic pathways, all of which circumvent intrinsic inefficiencies of PKSs for polyketide product synthesis. olyketides represent a large class of secondary metabolites that Here we show that enzymes other -
WO 2013/180584 Al 5 December 2013 (05.12.2013) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/180584 Al 5 December 2013 (05.12.2013) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/21 (2006.01) C12N 15/74 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 15/52 (2006.01) C12P 5/02 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C12N 15/63 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/NZ20 13/000095 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 4 June 2013 (04.06.2013) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 61/654,412 1 June 2012 (01 .06.2012) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (71) Applicant: LANZATECH NEW ZEALAND LIMITED MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, [NZ/NZ]; 24 Balfour Road, Parnell, Auckland, 1052 (NZ). -
Expression and Characterization of Pantoea CO Dehydrogenase To
www.nature.com/scientificreports OPEN Expression and characterization of Pantoea CO dehydrogenase to utilize CO-containing industrial Received: 31 October 2016 Accepted: 06 February 2017 waste gas for expanding the Published: 14 March 2017 versatility of CO dehydrogenase Eun Sil Choi1,2,*, Kyoungseon Min3,*, Geun-Joong Kim2, Inchan Kwon1 & Yong Hwan Kim3 Although aerobic CO dehydrogenases (CODHs) might be applicable in various fields, their practical applications have been hampered by low activity and no heterologous expression. We, for the first time, could functionally express recombinant PsCODH in E. coli and obtained a highly concentrated recombinant enzyme using an easy and convenient method. Its electron acceptor spectra, optimum −1 conditions (pH 6.5 and 30 °C), and kinetic parameters (kcat of 12.97 s , Km of 0.065 mM, and specific activity of 0.86 Umg−1) were examined. Blast furnace gas (BFG) containing 20% CO, which is a waste gas from the steel-making process, was tested as a substrate for PsCODH. Even with BFG, the recombinant PsCODH retained 88.2% and 108.4% activity compared with those of pure CO and 20% CO, respectively. The results provide not only a promising strategy to utilize CO-containing industrial waste gases as cheap, abundant, and renewable resources but also significant information for further studies about cascade reactions producing value-added chemicals via CO2 as an intermediate produced by a CODH- based CO-utilization system, which would ultimately expand the versatility of CODH. Carbon monoxide (CO), which is a pollutant in the atmosphere, is massively emitted through both natural (e.g., production by plants and volcanic activity) and artificial processes (e.g., incomplete combustion of fuels and industrial processes)1–3. -
Test Catalog for Pharma
Test Catalog for Pharma Newborn Screening ………………………………………………………………………….. 2 Biochemical Genetic Testing ……………………………………………….. 2 Molecular Genetic Testing ……………………………………………………. 4 Genetic Testing …………………………………………………………………………………… 6 Molecular Genetic Testing ……………………………………………….….. 6 Biochemical Genetic Testing ……………………………………………….. 10 How to order? ………………………………………………………………………………..….. 11 1 Newborn Screening > Biochemical Genetic Testing StepOne® (Comprehensive with SCID) Fatty Acid Oxidation Disorders Organic Acid Disorders Amino Acid Disorders Carnitine/Acylcarnitine Translocase Deficiency 3-Hydroxy-3-Methylglutaryl-CoA Lyase Deficiency Argininemia Carnitine Palmitoyl Transferase Deficiency Type I1 Glutaric Acidemia Type I Argininosuccinic Aciduria 3-Hydroxy Long Chain Acyl-CoA Dehydrogenase Deficiency Isobutyryl-CoA Dehydrogenase Deficiency 5-Oxoprolinuria1 2,4-Dienoyl-CoA Reductase Deficiency1 Isovaleric Acidemia Carbamoyl Phosphate Synthetase Deficiency1 Medium Chain Acyl-CoA Dehydrogenase Deficiency 2-Methylbutyryl-CoA Dehydrogenase Deficiency Citrullinemia Multiple Acyl-CoA Dehydrogenase Deficiency 3-Methylcrotonyl-CoA Carboxylase Deficiency Homocystinuria Neonatal Carnitine Palmitoyl Transferase Deficiency Type II 3-Methylglutaconyl-CoA Hydratase Deficiency Hypermethioninemia Short Chain Acyl-CoA Dehydrogenase Deficiency Methylmalonic Acidemias Hyperammonemia, Hyperornithinemia, Homocitrullinuria Short Chain Hydroxy Acyl-CoA Dehydrogenase Deficiency Methylmalonyl-CoA Mutase Deficiency Syndrome1 Trifunctional Protein Deficiency Some Adenosylcobalamin -
The Evolution and Population Genetics of the ALDH2 Locus: Random Genetic Drift, Selection, and Low Levels of Recombination
doi: 10.1046/j.1529-8817.2003.00060.x The evolution and population genetics of the ALDH2 locus: random genetic drift, selection, and low levels of recombination Hiroki Oota1, Andrew J. Pakstis1, Batsheva Bonne-Tamir2, David Goldman3, Elena Grigorenko4, Sylvester L. B. Kajuna5, Nganyirwa J. Karoma5, Selemani Kungulilo6, Ru-Band Lu7, Kunle Odunsi8, Friday Okonofua9, Olga V. Zhukova10, Judith R. Kidd1 and Kenneth K. Kidd1,∗ 1Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, New Haven, CT 06520-8005, USA 2Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel 3Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA 4Department of Psychology, Yale University, New Haven, CT 06520, USA 5The Hubert Kairuki Memorial University, Dar es Salaam, Tanzania 6Muhimbili University College of Health Sciences, Dar es Salaam, Tanzania 7Department of Psychiatry, Tri-Service General hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C. 8Department of Gynecological Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA 9Department of Obstetrics and Gynecology, Faculty of Medicine, University of Benin, Benin City, Nigeria 10N.I. Vavilov Institute of General Genetics RAS, Moscow, Russia Summary The catalytic deficiency of human aldehyde dehydrogenase 2 (ALDH2) is caused by a nucleotide substitution (G1510A; Glu487Lys) in exon 12 of the ALDH2 locus. This SNP,and four non-coding SNPs, including one in the promoter, span 40 kb of ALDH2; these and one downstream STRP have been tested in 37 worldwide populations. Only four major SNP-defined haplotypes account for almost all chromosomes in all populations. -
How Is Alcohol Metabolized by the Body?
Overview: How Is Alcohol Metabolized by the Body? Samir Zakhari, Ph.D. Alcohol is eliminated from the body by various metabolic mechanisms. The primary enzymes involved are aldehyde dehydrogenase (ALDH), alcohol dehydrogenase (ADH), cytochrome P450 (CYP2E1), and catalase. Variations in the genes for these enzymes have been found to influence alcohol consumption, alcohol-related tissue damage, and alcohol dependence. The consequences of alcohol metabolism include oxygen deficits (i.e., hypoxia) in the liver; interaction between alcohol metabolism byproducts and other cell components, resulting in the formation of harmful compounds (i.e., adducts); formation of highly reactive oxygen-containing molecules (i.e., reactive oxygen species [ROS]) that can damage other cell components; changes in the ratio of NADH to NAD+ (i.e., the cell’s redox state); tissue damage; fetal damage; impairment of other metabolic processes; cancer; and medication interactions. Several issues related to alcohol metabolism require further research. KEY WORDS: Ethanol-to acetaldehyde metabolism; alcohol dehydrogenase (ADH); aldehyde dehydrogenase (ALDH); acetaldehyde; acetate; cytochrome P450 2E1 (CYP2E1); catalase; reactive oxygen species (ROS); blood alcohol concentration (BAC); liver; stomach; brain; fetal alcohol effects; genetics and heredity; ethnic group; hypoxia The alcohol elimination rate varies state of liver cells. Chronic alcohol con- he effects of alcohol (i.e., ethanol) widely (i.e., three-fold) among individ- sumption and alcohol metabolism are on various tissues depend on its uals and is influenced by factors such as strongly linked to several pathological concentration in the blood T chronic alcohol consumption, diet, age, consequences and tissue damage. (blood alcohol concentration [BAC]) smoking, and time of day (Bennion and Understanding the balance of alcohol’s over time. -
Practitioner's Manual
Hawai`i Practitioner’s Manual Northwest Regional Newborn Screening Program Hawai`i Practitioner’s Manual The Northwest Regional Newborn Screening Program Hawai`i Practitioner’s Manual Hawai`i Department of Health Gwen Palmer, RN Janice Y. Kong, MT Oregon Health & Science University Cary Harding, MD Stephen L. LaFranchi, MD Gregory Thomas, MD Michael Wall, MD Oregon Health Authority Public Health Michael R. Skeels, PhD, MPH Cheryl A. Hermerath, MBA, DLM (ASCP), RM (NRM) Lindsey Caudle, RN, BSN Becky J. Whittemore, MN, MPH, FNP 9th Edition, 2011 ii Northwest Regional Newborn Screening Program Hawai`i Practitioner’s Manual Table of contents Hawai`i medical program and follow-up team . 1 Medical program consultants . 2. Oregon State Public Health Laboratory and follow-up team . 3. Introduction . 4. Newborn screening essentials . 6. Conditions included in the screening panel . 7. Table I: Summary of conditions on the screening panel . .8 Table II: Normal values and criteria for requesting follow-up specimens . 11 Screening practices . 13 Definition . 13. Who is responsible for ensuring that the screening test is performed? . 13. Parent refusal to have the infant screened . 13. Screening before discharge . 13. Proper time for specimen collection . 13. Table III - Validity of 1st and 2nd NBS tests........................................ 13 Table IV - Age of infant at specimen collection*................................... 14 Diagnostic laboratories for screening older children and/or adults . 15. Specimen collection before transfer of infant to another facility . 15. Patient demographic information . 15. Specimen transport . 15. Newborn screening for preterm, low birth weight or sick infants . 16 Table V: Maternal conditions affecting the newborn screening results ............... 16 Table VI: Treatments used in special care baby unit and effects on newborn screening results ................................................... -
Bioalcohol Production by a New Synthetic Route in a Hyperthermophilic Archaeon
COMMENTARY COMMENTARY Bioalcohol production by a new synthetic route in a hyperthermophilic archaeon Volker Müller1 Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, 60438 Frankfurt, Germany The still growing demand for bioethanol is establishing an electrochemical ion gradient currently met by two microbiological pro- across the cytoplasmic membrane that then cesses. The by far most important process is drives ATP synthesis by a membrane-bound the use of first- (sugar) or second- (lignocel- ATP synthase (5). One widespread, ferre- lulosic biomass) generation raw materials and doxin-fueled ion-translocating enyzme is + yeast as catalysts. Yeasts convert the sugars the ferredoxin:NAD oxidoreductase found via glycolysis to pyruvate, which is decar- in many bacteria and few archaea (6). In P. furiosus boxylated, and the resulting acetaldehyde is , the reduced ferredoxin is oxidized Fig. 1. Pathways for ethanol formation from glucose in then reduced to ethanol by a monofunctional by a different enzyme, a membrane-bound, yeasts (A) and bacteria (B). Adh1, alcoholdehydrogenase ethanol dehydrogenase. The second and in- multisubunit hydrogenase (Mbh) with evolu- 1; AdhE, bifunctional CoA-dependent ethanol/aldehyde dustrially less important is the bacterial pro- tionarysimilaritytothecomplexIofbacterial dehydrogenase. cess, in which pyruvate is oxidized to acetyl- and mitochondrial electron transport chains CoA, which is then reduced by a bifunctional (7). The Mbh is a proton-reducing (hydrogen aldehyde dehydrogenase/ethanol dehydroge- evolving) and sodium ion-extruding mem- used to drive acetate reduction and not the nase (AdhE) to ethanol. This pathway is brane protein complex (8, 9). generation of a chemiosmotic ion gradient, found in many fermenting bacteria (Fig. -
Fatty Acid Degradation Monounsaturated Fatty Acids
BI/CH 422/622 OUTLINE: OUTLINE: Lipid Degradation (Catabolism) Protein Degradation (Catabolism) FOUR stages in the catabolism of lipids: Digestion Mobilization from tissues (mostly adipose) Inside of cells hormone regulated Protein turnover specific lipases Ubiquitin glycerol Proteosome Activation of fatty acids Amino-Acid Degradation Fatty-acyl CoA Synthetase Transport into mitochondria carnitine Oxidation rationale Saturated FA 4 steps dehydrogenation hydration oxidation thiolase energetics Unsaturated FA Odd-chain FA Ketone Bodies Other organelles Fatty Acid Degradation Monounsaturated Fatty Acids cis trans During first of five ⦚ ⦚ ⦚ ⦚ ⦚ remaining cycles, acyl- CoA dehydrogenase step is skipped, resulting in 1 fewer FADH2. 1 Fatty Acid Degradation Energy from Fatty Acid Catabolism TABLE 17-1a Yield of ATP during Oxidation of One Molecule of PalmitoylOleoyl--CoA to CO2 and H2O Number of NADH or Number of ATP a Enzyme catalyzing the oxidation step FADH2 formed ultimately formed β Oxidation Acyl-CoA dehydrogenase 7 FADH2 10.5 β-Hydroxyacyl-CoA dehydrogenase 8 NADH 20 Citric acid cycle 35 à87.5 ATP Isocitrate dehydrogenase 9 NADH 22.5 α-Ketoglutarate dehydrogenase 9 NADH 22.5 Succinyl-CoA synthetase 16 9b Succinate dehydrogenase à24 ATP 9 FADH2 13.5 Malate dehydrogenase 9 NADH 22.5 Total 120.5 – 2 = 118.5* aThese calculations assume that mitochondrial oxidative phosphorylation produces 1.5 ATP per FADH2 oxidized and 2.5 ATP per NADH oxidized. bGTP produced directly in this step yields ATP in the reaction catalyzed by nucleoside diphosphate kinase (p. 516). *These 2 ”ATP” equivalents were expended in the activation by Fatty acyl–CoA synthetase. Fatty Acid Degradation Oxidation of Polyunsaturated Fatty Acids Results in 1 fewer FADH2 after isomerization, as the acyl-CoA dehydrogenase step is skipped and goes right to the hydratase. -
Lecture 9: Citric Acid Cycle/Fatty Acid Catabolism
Metabolism Lecture 9 — CITRIC ACID CYCLE/FATTY ACID CATABOLISM — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Bryan Krantz: University of California, Berkeley MCB 102, Spring 2008, Metabolism Lecture 9 Reading: Ch. 16 & 17 of Principles of Biochemistry, “The Citric Acid Cycle” & “Fatty Acid Catabolism.” Symmetric Citrate. The left and right half are the same, having mirror image acetyl groups (-CH2COOH). Radio-label Experiment. The Krebs Cycle was tested by 14C radio- labeling experiments. In 1941, 14C-Acetyl-CoA was used with normal oxaloacetate, labeling only the right side of drawing. But none of the label was released as CO2. Always the left carboxyl group is instead released as CO2, i.e., that from oxaloacetate. This was interpreted as proof that citrate is not in the 14 cycle at all the labels would have been scrambled, and half of the CO2 would have been C. Prochiral Citrate. In a two-minute thought experiment, Alexander Ogston in 1948 (Nature, 162: 963) argued that citrate has the potential to be treated as chiral. In chemistry, prochiral molecules can be converted from achiral to chiral in a single step. The trick is an asymmetric enzyme surface (i.e. aconitase) can act on citrate as through it were chiral. As a consequence the left and right acetyl groups are not treated equivalently. “On the contrary, it is possible that an asymmetric enzyme which attacks a symmetrical compound can distinguish between its identical groups.” Metabolism Lecture 9 — CITRIC ACID CYCLE/FATTY ACID CATABOLISM — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY [STEP 4] α-Keto Glutarate Dehydrogenase.