The Interplay Between Retinal Pathways of Cholesterol Output and Its Effects on Mouse Retina

Total Page:16

File Type:pdf, Size:1020Kb

The Interplay Between Retinal Pathways of Cholesterol Output and Its Effects on Mouse Retina biomolecules Article The Interplay between Retinal Pathways of Cholesterol Output and Its Effects on Mouse Retina Alexey M. Petrov , Artem A. Astafev, Natalia Mast, Aicha Saadane, Nicole El-Darzi and Irina A. Pikuleva * Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; [email protected] (A.M.P.); [email protected] (A.A.A.); [email protected] (N.M.); [email protected] (A.S.); [email protected] (N.E.-D.) * Correspondence: [email protected]; Tel.: +1-216-368-3823 Received: 13 November 2019; Accepted: 10 December 2019; Published: 12 December 2019 Abstract: In mammalian retina, cholesterol excess is mainly metabolized to oxysterols by cytochromes P450 27A1 (CYP27A1) and 46A1 (CYP46A1) or removed on lipoprotein particles containing apolipoprotein E (APOE). In contrast, esterification by sterol-O-acyltransferase 1 (SOAT) plays only a minor role in this process. Accordingly, retinal cholesterol levels are unchanged / / / / in Soat1− − mice but are increased in Cyp27a1− −Cyp46a1− − and Apoe− − mice. Herein, we / / / / / / characterized Cyp27a1− −Cyp46a1− −Soat1− − and Cyp27a1− −Cyp46a1− −Apoe− − mice. In the former, retinal cholesterol levels, anatomical gross structure, and vasculature were normal, yet the / / / electroretinographic responses were impaired. Conversely, in Cyp27a1− −Cyp46a1− −Apoe− − mice, retinal cholesterol levels were increased while anatomical structure and vasculature were unaffected with only male mice showing a decrease in electroretinographic responses. Sterol profiling, qRT-PCR, proteomics, and transmission electron microscopy mapped potential compensatory mechanisms / / / / / / in the Cyp27a1− −Cyp46a1− −Soat1− − and Cyp27a1− −Cyp46a1− −Apoe− − retina. These included decreased cholesterol biosynthesis along with enhanced formation of intra- and extracellular vesicles, possibly a reserve mechanism for lowering retinal cholesterol. In addition, there was altered / / / abundance of proteins in Cyp27a1− −Cyp46a1− −Soat1− − mice that can affect photoreceptor function, survival, and retinal energy homeostasis (glucose and fatty acid metabolism). Therefore, the levels of retinal cholesterol do not seem to predict retinal abnormalities, and it is rather the network of compensatory mechanisms that appears to determine retinal phenotype. Keywords: CYP27A1; CYP46A1; SOAT1; APOE; cholesterol; oxysterols; vesicular traffic; glucose metabolism; fatty acid oxidation; synaptic function; inflammation; photoreceptors; cilia; age-related macular degeneration 1. Introduction Cholesterol is abundant in mammalian retina, a multilayered light-sensitive tissue lining the back of the eye. The neurosensory retina is underlined by the retinal pigment epithelium (RPE) and then choroid, which nourish the retina. Evidence suggests that retinal cholesterol dyshomeostasis is linked to age-related macular degeneration (AMD), a cause of vision loss in ~200 million older adults worldwide [1]. First, in aging humans, cholesterol accumulates on either side of the RPE and represents a significant component of drusen and subretinal drusenoid deposits [2–6], the AMD hallmarks. Second, genetic studies identified several cholesterol-related genes (CETP, ABCA1, LIPC, LPL, VLDLR, LRP6, and APOE, which encodes apolipoprotein E) as risk factors for AMD and suggested that these gene effects are independent of plasma lipid profiles [7–11]. Lastly, the two prospective clinical trials of statins, drugs prescribed for reduction of plasma cholesterol, showed a decreased risk Biomolecules 2019, 9, 867; doi:10.3390/biom9120867 www.mdpi.com/journal/biomolecules Biomolecules 2019, 9, 867 2 of 22 of progressionBiomolecules 2019 of, non-advanced 9, x AMD in specific patient populations [12,13]. Moreover, evidence2 of 22 was obtained that intensive statin therapy may even remove drusen in early stages of AMD [13]. These resultsdecreased underscore risk theof progression importance of of non-advanced understanding AM theD in mechanisms specific patient by which populations retinal [12,13]. cholesterol is managed.Moreover, evidence was obtained that intensive statin therapy may even remove drusen in early Thestages major of AMD pathways [13]. These of results cholesterol underscore input the andimportance output ofin understanding the retina seemthe mechanisms to be identified by (Figurewhich1)[14 retinal–20]. cholesterol Input is dependent is managed. on cholesterol biosynthesis in di fferent retinal cells and uptake The major pathways of cholesterol input and output in the retina seem to be identified (Figure from the systemic circulation; the latter is likely from the choriocapillaris, as cholesterol delivery 1) [14−20]. Input is dependent on cholesterol biosynthesis in different retinal cells and uptake from fromthe the systemic inner retinal circulation; blood the vessels latter is islikely currently from the speculative choriocapillaris, [20]. as Output cholesterol includes delivery metabolism from the to oxysterolsinner retinal by the blood cytochrome vessels is P450 currently enzymes speculative CYP27A1 [20]. and Output CYP46A1, includes the metabolism photoreceptor to oxysterols phagocytosis, by and etheffl uxcytochrome to lipoprotein P450 enzymes particles CYP27A1 (LP), which and CYP46A1 circulate, the in photoreceptor the intraretinal phag space.ocytosis, LP and then efflux deliver cholesterolto lipoprotein to different particles retinal (LP), cells which as well circulate as the in systemic the intraretinal circulation, space. probably LP then deliver through cholesterol the RPE [to14 –20]. Intracellulardifferent esterificationretinal cells as by well sterol-O-acyltransferase as the systemic circulation, 1 (SOAT1, probably named through previously the RPE as[14 acyl-CoA−20]. cholesterolIntracellular acyltransferase esterification 1 orby ACAT1,sterol-O-acyltransferase Text S1) represents 1 (SOAT1, themeans namedof previously cholesterol as storageacyl-CoA and a formcholesterol of cholesterol acyltransferase output. Cholesterol 1 or ACAT1, esters Text form S1) represents lipid droplets, the means cellular of cholesterol organelles, storage which and provide a a uniqueform separation of cholesterol of the output. aqueous Cholesterol and organic esters form phases lipid of droplets, the cell [cellular21]. Cholesterol organelles, esterswhich areprovide found in a unique separation of the aqueous and organic phases of the cell [21]. Cholesterol esters are found the photoreceptors outer segments, drusen, and Bruch’s membrane [2,3,22]. in the photoreceptors outer segments, drusen, and Bruch’s membrane [2,3,22]. FigureFigure 1. Schematic1. Schematic representation representation ofof thethe known chol cholesterol-relatedesterol-related pathways pathways contributing contributing to to cholesterolcholesterol homeostasis homeostasis in in the the retina. retina. Local Local biosynthesisbiosynthesis accounts accounts for for the the majority majority (~72%) (~72%) of retinal of retinal cholesterolcholesterol input, input, at least at least in in mice, mice, with with the the remaining remaining cholesterol cholesterol (~28%) (~28%) being being taken taken up by up the by retina the retina fromfrom the systemicthe systemic circulation circulation [ 23[23].]. A small small fraction fraction of ofretinal retinal cholesterol cholesterol (up to (up 15%) to is 15%) esterified is esterified by by SOAT1SOAT1 [24[24,25],25] andand isis storedstored in the form of of lipid lipid droplets. droplets. Retinal Retinal choles cholesterolterol output output includes includes metabolismmetabolism by CYP27A1by CYP27A1 and and CYP46A1, CYP46A1, the the photoreceptorphotoreceptor phagocytosis, phagocytosis, and and removal removal on lipoprotein on lipoprotein particlesparticles containing containing APOE. APOE. The The relative relative quantitative quantitative contribution of of these these three three pathways pathways to the to total the total cholesterol output in the retina is currently unknown. 27HC and 24HC are 27-hydroxycholesterol and cholesterol output in the retina is currently unknown. 27HC and 24HC are 27-hydroxycholesterol and 24-hydroxycholesterol, respectively, the products of CYP27A1 and CYP46A1; EC, esterified 24-hydroxycholesterol, respectively, the products of CYP27A1 and CYP46A1; EC, esterified cholesterol, cholesterol, the product of SOAT1; LP, lipoprotein particles. the product of SOAT1; LP, lipoprotein particles. To ascertain retinal significance of cholesterol removal by metabolism and LP, we previously Tocomprehensively ascertain retinal characterized significance the retina of cholesterol of Cyp27a1 removal−/−Cyp46a1 by−/− metabolism mice and mice and lacking LP, we APOE, previously a / / comprehensivelymajor apolipoprotein characterized in the retina the retina[22,26,27]. of Cyp27a1In the former,− −Cyp46a1 total cholesterol− − mice was and increased mice lacking up to 2- APOE, a majorfold, apolipoprotein and all of the cholesterol in the retina surplus [22,26 was,27]. converted In the former, to cholesterol total cholesterol esters, which was were increased mainly up to 2-fold,accumulated and all of in the the cholesterolphotoreceptor surplus outer segments was converted [22]. In addition, to cholesterol there we esters,re focal which accumulations were mainly accumulatedof free (unesterified) in the photoreceptor cholesterol outer in the segments Cyp27a1 [−/22−Cyp46a1]. In addition,−/− retina, there impairments were focal in accumulationsthe retinal function (as assessed by electroretinographic recordings,/ ERG),/ and pathologic
Recommended publications
  • SOAT1 Polyclonal Antibody
    PRODUCT DATA SHEET Bioworld Technology,Inc. SOAT1 polyclonal antibody Catalog: BS8121 Host: Rabbit Reactivity: Human,Mouse,Rat BackGround: Purification&Purity: SOAT1 (sterol O-acyltransferase-1), also designated The antibody was affinity-purified from rabbit antiserum ACAT1, is a homotetra-meric enzyme that catalyzes the by affinity-chromatography using epitope-specific im- formation of cholesterol esters from cholesterol and long munogen and the purity is > 95% (by SDS-PAGE). chain fatty acyl-coenzyme A (acyl-CoA). The gene en- Applications: coding human SOAT1 maps to chromosome 1 and is ex- WB 1:500 - 1:2000 pressed as a protein that localizes to the endoplasmic re- Storage&Stability: ticulum (ER) in several tissues, including liver, kidney, Store at 4°C short term. Aliquot and store at -20°C long adrenal glands and macrophages. SOAT1 is involved in term. Avoid freeze-thaw cycles. cellular cholesterol homeostasis as well as in foam cell Specificity: formation and the subsequent progression of atheroscle- SOAT1 polyclonal antibody detects endogenous levels of rosis. Several SOAT inhibitors have been developed for SOAT1 protein. the treatment of atherosclerosis. SOAT2 (sterol DATA: O-acyltransferase-2), also known as ACAT2 (acyl-CoA:cholesterol acyltransferase-2), participates in lipo-protein assembly, catalyzing cholesterol esterifica- tion in mammalian cells. SOAT2 is an integral membrane protein that localizes to the endoplasmic reticulum of human intestinal cells. SOAT2 deficiency contributes to severe mental retardation and hypotonus. Product: WesternBlot (WB) analysis of SOAT1 polyclonal antibody Rabbit IgG, 1mg/ml in PBS with 0.02% sodium azide, Note: 50% glycerol, pH7.2 For research use only, not for use in diagnostic procedure.
    [Show full text]
  • ACAT) in Cholesterol Metabolism: from Its Discovery to Clinical Trials and the Genomics Era
    H OH metabolites OH Review Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in Cholesterol Metabolism: From Its Discovery to Clinical Trials and the Genomics Era Qimin Hai and Jonathan D. Smith * Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-216-444-2248 Abstract: The purification and cloning of the acyl-coenzyme A: cholesterol acyltransferase (ACAT) enzymes and the sterol O-acyltransferase (SOAT) genes has opened new areas of interest in cholesterol metabolism given their profound effects on foam cell biology and intestinal lipid absorption. The generation of mouse models deficient in Soat1 or Soat2 confirmed the importance of their gene products on cholesterol esterification and lipoprotein physiology. Although these studies supported clinical trials which used non-selective ACAT inhibitors, these trials did not report benefits, and one showed an increased risk. Early genetic studies have implicated common variants in both genes with human traits, including lipoprotein levels, coronary artery disease, and Alzheimer’s disease; however, modern genome-wide association studies have not replicated these associations. In contrast, the common SOAT1 variants are most reproducibly associated with testosterone levels. Keywords: cholesterol esterification; atherosclerosis; ACAT; SOAT; inhibitors; clinical trial Citation: Hai, Q.; Smith, J.D. Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in Cholesterol Metabolism: From Its 1. Introduction Discovery to Clinical Trials and the The acyl-coenzyme A:cholesterol acyltransferase (ACAT; EC 2.3.1.26) enzyme family Genomics Era. Metabolites 2021, 11, consists of membrane-spanning proteins, which are primarily located in the endoplasmic 543. https://doi.org/10.3390/ reticulum [1].
    [Show full text]
  • ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • A Polyketoacyl-Coa Thiolase-Dependent Pathway for the Synthesis of Polyketide Backbones
    ARTICLES https://doi.org/10.1038/s41929-020-0471-8 A polyketoacyl-CoA thiolase-dependent pathway for the synthesis of polyketide backbones Zaigao Tan1,3, James M. Clomburg1,2, Seokjung Cheong1, Shuai Qian1 and Ramon Gonzalez 1,2 ✉ Polyketides found in nature originate from backbones synthesized through iterative decarboxylative Claisen condensations catalysed by polyketide synthases (PKSs). However, PKSs suffer from complicated architecture, energy inefficiencies, complex regulation, and competition with essential metabolic pathways for extender unit malonyl-CoA, all combining to limit the flux of polyketide biosynthesis. Here we show that certain thiolases, which we term polyketoacyl-CoA thiolases (PKTs), catalyse polyketide backbone formation via iterative non-decarboxylative Claisen condensations, hence offering a synthetic and effi- cient alternative to PKSs. We show that PKTs can synthesize polyketide backbones for representative lactone, alkylresorcinolic acid, alkylresorcinol, hydroxybenzoic acid and alkylphenol polyketide families, and elucidate the basic catalytic mechanism and structural features enabling this previously unknown activity. PKT-catalysed reactions offer a route to polyketide formation that leverages the simple architecture of thiolases to achieve higher ATP efficiencies and reduced competition with essential metabolic pathways, all of which circumvent intrinsic inefficiencies of PKSs for polyketide product synthesis. olyketides represent a large class of secondary metabolites that Here we show that enzymes other
    [Show full text]
  • WO 2013/180584 Al 5 December 2013 (05.12.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/180584 Al 5 December 2013 (05.12.2013) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/21 (2006.01) C12N 15/74 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 15/52 (2006.01) C12P 5/02 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C12N 15/63 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/NZ20 13/000095 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 4 June 2013 (04.06.2013) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 61/654,412 1 June 2012 (01 .06.2012) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (71) Applicant: LANZATECH NEW ZEALAND LIMITED MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, [NZ/NZ]; 24 Balfour Road, Parnell, Auckland, 1052 (NZ).
    [Show full text]
  • Role of De Novo Cholesterol Synthesis Enzymes in Cancer Jie Yang1,2, Lihua Wang1,2, Renbing Jia1,2
    Journal of Cancer 2020, Vol. 11 1761 Ivyspring International Publisher Journal of Cancer 2020; 11(7): 1761-1767. doi: 10.7150/jca.38598 Review Role of de novo cholesterol synthesis enzymes in cancer Jie Yang1,2, Lihua Wang1,2, Renbing Jia1,2 1. Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 2. Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China. Corresponding authors: Renbing Jia, [email protected] and Lihua Wang, [email protected]. Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai 200011, China © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.07.21; Accepted: 2019.11.30; Published: 2020.01.17 Abstract Despite extensive research in the cancer field, cancer remains one of the most prevalent diseases. There is an urgent need to identify specific targets that are safe and effective for the treatment of cancer. In recent years, cancer metabolism has come into the spotlight in cancer research. Lipid metabolism, especially cholesterol metabolism, plays a critical role in membrane synthesis as well as lipid signaling in cancer. This review focuses on the contribution of the de novo cholesterol synthesis pathway to tumorigenesis, cancer progression and metastasis. In conclusion, cholesterol metabolism could be an effective target for novel anticancer treatment. Key words: metabolic reprogramming, de novo cholesterol synthesis, cancer progress Introduction Over the past few decades, numerous published that cholesterol plays a critical role in cancer studies have focused on cancer cell metabolism and progression15-19.
    [Show full text]
  • Test Catalog for Pharma
    Test Catalog for Pharma Newborn Screening ………………………………………………………………………….. 2 Biochemical Genetic Testing ……………………………………………….. 2 Molecular Genetic Testing ……………………………………………………. 4 Genetic Testing …………………………………………………………………………………… 6 Molecular Genetic Testing ……………………………………………….….. 6 Biochemical Genetic Testing ……………………………………………….. 10 How to order? ………………………………………………………………………………..….. 11 1 Newborn Screening > Biochemical Genetic Testing StepOne® (Comprehensive with SCID) Fatty Acid Oxidation Disorders Organic Acid Disorders Amino Acid Disorders Carnitine/Acylcarnitine Translocase Deficiency 3-Hydroxy-3-Methylglutaryl-CoA Lyase Deficiency Argininemia Carnitine Palmitoyl Transferase Deficiency Type I1 Glutaric Acidemia Type I Argininosuccinic Aciduria 3-Hydroxy Long Chain Acyl-CoA Dehydrogenase Deficiency Isobutyryl-CoA Dehydrogenase Deficiency 5-Oxoprolinuria1 2,4-Dienoyl-CoA Reductase Deficiency1 Isovaleric Acidemia Carbamoyl Phosphate Synthetase Deficiency1 Medium Chain Acyl-CoA Dehydrogenase Deficiency 2-Methylbutyryl-CoA Dehydrogenase Deficiency Citrullinemia Multiple Acyl-CoA Dehydrogenase Deficiency 3-Methylcrotonyl-CoA Carboxylase Deficiency Homocystinuria Neonatal Carnitine Palmitoyl Transferase Deficiency Type II 3-Methylglutaconyl-CoA Hydratase Deficiency Hypermethioninemia Short Chain Acyl-CoA Dehydrogenase Deficiency Methylmalonic Acidemias Hyperammonemia, Hyperornithinemia, Homocitrullinuria Short Chain Hydroxy Acyl-CoA Dehydrogenase Deficiency Methylmalonyl-CoA Mutase Deficiency Syndrome1 Trifunctional Protein Deficiency Some Adenosylcobalamin
    [Show full text]
  • Practitioner's Manual
    Hawai`i Practitioner’s Manual Northwest Regional Newborn Screening Program Hawai`i Practitioner’s Manual The Northwest Regional Newborn Screening Program Hawai`i Practitioner’s Manual Hawai`i Department of Health Gwen Palmer, RN Janice Y. Kong, MT Oregon Health & Science University Cary Harding, MD Stephen L. LaFranchi, MD Gregory Thomas, MD Michael Wall, MD Oregon Health Authority Public Health Michael R. Skeels, PhD, MPH Cheryl A. Hermerath, MBA, DLM (ASCP), RM (NRM) Lindsey Caudle, RN, BSN Becky J. Whittemore, MN, MPH, FNP 9th Edition, 2011 ii Northwest Regional Newborn Screening Program Hawai`i Practitioner’s Manual Table of contents Hawai`i medical program and follow-up team . 1 Medical program consultants . 2. Oregon State Public Health Laboratory and follow-up team . 3. Introduction . 4. Newborn screening essentials . 6. Conditions included in the screening panel . 7. Table I: Summary of conditions on the screening panel . .8 Table II: Normal values and criteria for requesting follow-up specimens . 11 Screening practices . 13 Definition . 13. Who is responsible for ensuring that the screening test is performed? . 13. Parent refusal to have the infant screened . 13. Screening before discharge . 13. Proper time for specimen collection . 13. Table III - Validity of 1st and 2nd NBS tests........................................ 13 Table IV - Age of infant at specimen collection*................................... 14 Diagnostic laboratories for screening older children and/or adults . 15. Specimen collection before transfer of infant to another facility . 15. Patient demographic information . 15. Specimen transport . 15. Newborn screening for preterm, low birth weight or sick infants . 16 Table V: Maternal conditions affecting the newborn screening results ............... 16 Table VI: Treatments used in special care baby unit and effects on newborn screening results ...................................................
    [Show full text]
  • Fatty Acid Degradation Monounsaturated Fatty Acids
    BI/CH 422/622 OUTLINE: OUTLINE: Lipid Degradation (Catabolism) Protein Degradation (Catabolism) FOUR stages in the catabolism of lipids: Digestion Mobilization from tissues (mostly adipose) Inside of cells hormone regulated Protein turnover specific lipases Ubiquitin glycerol Proteosome Activation of fatty acids Amino-Acid Degradation Fatty-acyl CoA Synthetase Transport into mitochondria carnitine Oxidation rationale Saturated FA 4 steps dehydrogenation hydration oxidation thiolase energetics Unsaturated FA Odd-chain FA Ketone Bodies Other organelles Fatty Acid Degradation Monounsaturated Fatty Acids cis trans During first of five ⦚ ⦚ ⦚ ⦚ ⦚ remaining cycles, acyl- CoA dehydrogenase step is skipped, resulting in 1 fewer FADH2. 1 Fatty Acid Degradation Energy from Fatty Acid Catabolism TABLE 17-1a Yield of ATP during Oxidation of One Molecule of PalmitoylOleoyl--CoA to CO2 and H2O Number of NADH or Number of ATP a Enzyme catalyzing the oxidation step FADH2 formed ultimately formed β Oxidation Acyl-CoA dehydrogenase 7 FADH2 10.5 β-Hydroxyacyl-CoA dehydrogenase 8 NADH 20 Citric acid cycle 35 à87.5 ATP Isocitrate dehydrogenase 9 NADH 22.5 α-Ketoglutarate dehydrogenase 9 NADH 22.5 Succinyl-CoA synthetase 16 9b Succinate dehydrogenase à24 ATP 9 FADH2 13.5 Malate dehydrogenase 9 NADH 22.5 Total 120.5 – 2 = 118.5* aThese calculations assume that mitochondrial oxidative phosphorylation produces 1.5 ATP per FADH2 oxidized and 2.5 ATP per NADH oxidized. bGTP produced directly in this step yields ATP in the reaction catalyzed by nucleoside diphosphate kinase (p. 516). *These 2 ”ATP” equivalents were expended in the activation by Fatty acyl–CoA synthetase. Fatty Acid Degradation Oxidation of Polyunsaturated Fatty Acids Results in 1 fewer FADH2 after isomerization, as the acyl-CoA dehydrogenase step is skipped and goes right to the hydratase.
    [Show full text]
  • Lecture 9: Citric Acid Cycle/Fatty Acid Catabolism
    Metabolism Lecture 9 — CITRIC ACID CYCLE/FATTY ACID CATABOLISM — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Bryan Krantz: University of California, Berkeley MCB 102, Spring 2008, Metabolism Lecture 9 Reading: Ch. 16 & 17 of Principles of Biochemistry, “The Citric Acid Cycle” & “Fatty Acid Catabolism.” Symmetric Citrate. The left and right half are the same, having mirror image acetyl groups (-CH2COOH). Radio-label Experiment. The Krebs Cycle was tested by 14C radio- labeling experiments. In 1941, 14C-Acetyl-CoA was used with normal oxaloacetate, labeling only the right side of drawing. But none of the label was released as CO2. Always the left carboxyl group is instead released as CO2, i.e., that from oxaloacetate. This was interpreted as proof that citrate is not in the 14 cycle at all the labels would have been scrambled, and half of the CO2 would have been C. Prochiral Citrate. In a two-minute thought experiment, Alexander Ogston in 1948 (Nature, 162: 963) argued that citrate has the potential to be treated as chiral. In chemistry, prochiral molecules can be converted from achiral to chiral in a single step. The trick is an asymmetric enzyme surface (i.e. aconitase) can act on citrate as through it were chiral. As a consequence the left and right acetyl groups are not treated equivalently. “On the contrary, it is possible that an asymmetric enzyme which attacks a symmetrical compound can distinguish between its identical groups.” Metabolism Lecture 9 — CITRIC ACID CYCLE/FATTY ACID CATABOLISM — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY [STEP 4] α-Keto Glutarate Dehydrogenase.
    [Show full text]
  • Steroidal Triterpenes of Cholesterol Synthesis
    Molecules 2013, 18, 4002-4017; doi:10.3390/molecules18044002 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Steroidal Triterpenes of Cholesterol Synthesis Jure Ačimovič and Damjana Rozman * Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +386-1-543-7591; Fax: +386-1-543-7588. Received: 18 February 2013; in revised form: 19 March 2013 / Accepted: 27 March 2013 / Published: 4 April 2013 Abstract: Cholesterol synthesis is a ubiquitous and housekeeping metabolic pathway that leads to cholesterol, an essential structural component of mammalian cell membranes, required for proper membrane permeability and fluidity. The last part of the pathway involves steroidal triterpenes with cholestane ring structures. It starts by conversion of acyclic squalene into lanosterol, the first sterol intermediate of the pathway, followed by production of 20 structurally very similar steroidal triterpene molecules in over 11 complex enzyme reactions. Due to the structural similarities of sterol intermediates and the broad substrate specificity of the enzymes involved (especially sterol-Δ24-reductase; DHCR24) the exact sequence of the reactions between lanosterol and cholesterol remains undefined. This article reviews all hitherto known structures of post-squalene steroidal triterpenes of cholesterol synthesis, their biological roles and the enzymes responsible for their synthesis. Furthermore, it summarises kinetic parameters of enzymes (Vmax and Km) and sterol intermediate concentrations from various tissues. Due to the complexity of the post-squalene cholesterol synthesis pathway, future studies will require a comprehensive meta-analysis of the pathway to elucidate the exact reaction sequence in different tissues, physiological or disease conditions.
    [Show full text]
  • The Oxoacyl-Coenzyme a Thiolases of Animal Tissues by B
    Biochem. J. (1973) 132, 717-730 717 Printed in Great Britain The Oxoacyl-Coenzyme A Thiolases of Animal Tissues By B. MIDDLETON* Department ofBiochemistry, University of Cambridge, Cambridge CB2 1 Q W, U.K. (Received 16 October 1972) 1. The activities and relative 3-oxoacyl-CoA substrate specificities of oxoacyl-CoA thiolase were determined in a large number of animal tissues. The relative activities with different 3-oxoacyl-CoA substrates varied widely in different tissues and, in addition, the activity as measured with acetoacetyl-CoA (but not with other longer-carbon-chain acyl-CoA substrates) was activated by K+. 2. These properties were due to the presence, in different proportions in each tissue, of three classes of thiolase, all of which use acetoacetyl-CoA as substrate but which have different intracellular locations and sub- strate specificities and which differ also in kinetic and chromatographic behaviour. 3. Cytoplasmic thiolase activity was found to be widely distributed among different tissues and was due to an acetoacetyl-CoA-specific thiolase. This cytoplasmic activity was found to account for a significant proportion of the total tissue activity towards acetoacetyl-CoA in several tissues, and especially in the brain of newborn rats. 4. Mitochondrial thiolase activity towards acetoacetyl-CoA was due to two different classes of enzyme whose relative amounts varied with the tissue type. An oxoacyl-CoA thiolase of general specificity for the acyl-CoA substrate constituted one class, the other being a specific acetoacetyl-CoA thiolase that differed from its cytoplasmic counterpart in being greatly stimulated by K+. 5. This activation by K+ made it possible to calculate the tissue contents ofmitochondrial acetoacetyl-CoA thiolase and mitochondrial oxoacyl- CoA thiolase from measurements of activity with acetoacetyl-CoA in tissue extracts under defined conditions.
    [Show full text]