An Interplay of Microglia and Matrix Metalloproteinase MMP9 Under

Total Page:16

File Type:pdf, Size:1020Kb

An Interplay of Microglia and Matrix Metalloproteinase MMP9 Under www.nature.com/scientificreports OPEN An interplay of microglia and matrix metalloproteinase MMP9 under hypoxic stress regulates the opticin expression in retina Satish Patnaik1,2,6, Meenakshi Rai1,6, Subhadra Jalali3, Komal Agarwal3, Akshay Badakere4, Lavanya Puppala1, Sushma Vishwakarma1, Divya Balakrishnan3, Padmaja K. Rani3, Ramesh Kekunnaya4, Preeti Patil Chhablani4,5, Subhabrata Chakrabarti1 & Inderjeet Kaur1* Infammation plays a key role in the pathogenesis of retinal vascular diseases. We have shown earlier an increase in the activity of matrix metalloproteinases in the vitreous and tears of preterm born babies with retinopathy of prematurity (ROP) compared to those with no-ROP leading to a shift in the balance of angiogenic (vascular endothelial growth factor [VEGF], matrix metalloproteinase [MMPs], complement component [C3]) and anti-angiogenic (opticin, thrombospondin) in ROP eyes. We now confrmed that tear MMP levels in premature infants perfectly correlates with disease severity. Next, we demonstrated that a reduced opticin levels in ROP vitreous are regulated by MMPs secreted by activated microglia. Upon exposing the human microglia cell line (CHME3) to hypoxia, an increased expression of infammatory proteins (MMP9, VEGF) was noticed while opticin reduced signifcantly (p = 0.005). Further, the reduced opticin’s expression by microglial cells under hypoxia could be rescued by inhibiting the MMP activity using doxycycline and EDTA. The inhibition of MMP activity altered the expression of other key signaling molecules under hypoxia. Our study clearly explains that increased activity of MMPs under hypoxia regulates the expression of opticin as seen in the vitreous humor of ROP and could serve as a potential target for ROP management. Abbreviations ROP Retinopathy of prematurity MMP9 Matrix metalloproteinase 9 MMP2 Matrix metalloproteinase 2 OPTC Opticin VEGF Vascular endothelial growth factor BRB Blood-retinal barrier ECM Extracellular matrix TIMP1 Tissue inhibitory metalloproteases 1 TIMP2 Tissue inhibitory metalloproteases 2 C3 Complement component 3 SLRPs Small leucine rich proteins EDTA Ethylene diamine tetraacetic acid dNTPs Deoxy nucleotide triphosphates bp Base pair IgG Immunoglobulin G 1Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India. 2Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India. 3Smt. Kannuri Santhamma Centre for Vitreo Retinal Diseases, Hyderabad, India. 4Jasti V Ramanamma Children’s Eye Care Centre, LV Prasad Eye Institute, Hyderabad, India. 5University of Pittsburgh Medical Center, Pittsburgh, USA. 6These authors contributed equally: Satish Patnaik and Meenakshi Rai. *email: [email protected] Scientifc Reports | (2021) 11:7444 | https://doi.org/10.1038/s41598-021-86302-2 1 Vol.:(0123456789) www.nature.com/scientificreports/ IHC Immunohistochemistry IF Immunofuorescence FnII Fibronectin type II PDB Protein data bank CoCl2 Cobalt chloride ERK1 Extracellular signal-regulated kinases 1 ERK2 Extracellular signal-regulated kinases 2 DKK1 Dickkopf WNT signaling pathway inhibitor 1 NOTCH1 Notch receptor 1 CHME3 Microglia cell line RPE Retinal pigment epithelium EC Endothelial cells ml Millilitre M Molar μl Microliter mM Millimolar ng Nanogram μg Microgram μM Micromolar GA Gestational age BW Birth weight OIR Oxygen induced retinopathy PAGE Polyacrylamide gel electrophoresis NPE Non-pigmented epithelial RGH Retinal growth hormone OS Outer segment IL Inner nuclear layer IPL Inner plexiform layer NFL Nerve fber layer TNF Tumor necrosis factor TGF beta1 Transforming growth factor beta 1 ROS Reactive oxygen species NO Nitric oxide Retinopathy of prematurity (ROP) is one of the most common causes of childhood blindness 1. It is a vaso- proliferative eye disease in premature babies characterized by abnormal blood vessel growth in the retina that can cause retinal detachment and eventually lead to blindness 2. Annually in India, nearly 1.2 million babies are prone to develop ROP 3. Te reported risk factors for ROP include low birth weight, low gestational age, gender, eth- nicity, light exposure, blood transfusion and other maternal risk factors. However, gestational age, birth-weight and oxygen supplementation (to some extent) have been found to be the key defning factors across multiple studies worldwide4. ROP is an exceedingly complex disease, as in some set of premature infants, it regresses spontaneously while in others, it progresses from mild form (ROP-stage I, II) to severe form (ROP-stage III, IV,V) eventually leading to total vision loss if not treated timely. While ROP is considered to be a hypoxia driven neo- vascular condition, till date the underlying molecular mechanisms contributing to pathogenesis of ROP remain unclear. Probably, various pathological disease-causing risk factors together lead to the progression of ROP. Most commonly proposed mechanism for the pathogenesis of ROP are hypoxia induced vaso-attenuation and vaso- proliferation leading to oxidative stress 5 that further induces the release of pro-infammatory and pro-angiogenic molecules in ROP patients6. All these factors together play a crucial role in the progression of the disease. ROP being a vitreoretinal condition, alters the homeostatic balance of anti- and angiogenic proteins in the vitreous6. Vitreous gel is optically transparent and is composed of diverse proteins (collagens, albumin, IgG, oxidative stress enzymes and cytokines), proteoglycans (hyaluronan and chondroitin sulfate proteoglycans) and small molecules7. Due to proximity of vitreous with retina, especially when the blood-retinal barrier (BRB) is damaged, the secretory product of retina gets accumulated in the vitreous 8. Moreover, in vitreoretinal diseases, the vitreous composition also changes due to diferential expression of proteins under various disease conditions 7. Terefore, studying diferential protein profling in the vitreous gel may help in understanding the underlying mechanisms of ROP. Immunohistochemistry of the ridge membrane formed at stage II showed by the presence of endothelial cells, macroglial cells, microglia and few proliferating cells9. However, the exact role of microglia in ROP pathogen- esis is not completely understood. Findings from our recent study on ROP suggested that activated microglia secretes elevated levels of matrix metalloproteinase (MMPs) and pro-infammatory molecules into the vitreous and the retina10. Te elevated levels of activated MMPs might cause extracellular matrix (ECM) degradation, in turn, promoting angiogenesis. Te signifcant increase in MMP9, tissue inhibitory metalloproteases (TIMP1), and α2 macroglobulin in the ROP vitreous further confrmed it. Dysregulation of MMP2, and MMP9 were also detected reproducibly in stage dependent manner in ROP tear samples10. A pilot vitreous proteome profling study (unpublished data) by our group revealed a lower expression of opticin, an anti-angiogenic protein in ROP patients. Opticin is present abundantly in human vitreous, and secreted into the vitreous cavity by non-pigmented epithelial cells constantly to maintain its balanced levels 11. Opticin is an extra cellular matrix (ECM) glycoprotein associated with the collagen fbrils and the retinal growth Scientifc Reports | (2021) 11:7444 | https://doi.org/10.1038/s41598-021-86302-2 2 Vol:.(1234567890) www.nature.com/scientificreports/ Figure 1. Representative image of (A) western blot of opticin levels in ROP patients and controls (B) representative gelatin zymography of vitreous from ROP and congenital cataract (controls) (C) quantifcation of opticin (45 K Da) levels in vitreous samples of ROP (n = 30) and control (n = 30) and MMPs in ROP (n = 11) and control (n = 11) (D) MMPs levels estimated in ROP tears samples by zymography in extended cohort, quantifcation of MMP9 and MMP2 estimated for severe ROP (n = 16), mild progressed to progressed ROP (n = 12), mild ROP to regressed ROP (n = 12), and no ROP premature controls (n = 18), **p = 0.001, *p = 0.05; data represented as mean ± SEM, C, control vitreous; R, ROP vitreous; L, protein ladder. hormone12 in the vitreous cavity. It is also identifed in the other tissues like cartilage, brain and heart 11,13. Te 332 amino acid protein has a sequence that is homologous to class III small leucine rich proteins (SLRPs), epiphycan and osteoglycan, with a consensus sequence of LXXLXLXXNXL. Tese SLRP’s confned by conserved cysteine residues interact with ECM. Te role of opticin in angiogenesis has been previously identifed in murine oxygen mouse model and cell culture model14,15. Te opticin knockout model showed increased neovascularization compared to wild type mice 14. Based on this background, we hypothesized that the abnormal activity of MMPs under hypoxic conditions afects the opticin levels and thereby contributes to increased infammation in the retina causing ROP progression. Results Role of ECM proteins in ROP. Te western blotting and zymography for ECM proteins including opticin and MMPs (MMP2, and MMP9) respectively showed a downregulation of opticin (45 k Da) with an increase in MMPs activity in the vitreous samples of ROP patients (Fig. 1A and B; Supplementary Fig. 1). Te diferen- tial expression of MMP2 (p-value = 0.00001), MMP9 (p-value = 0.000003) and opticin (p-value = 0.0009) was found to be statistically signifcant thereby indicating an important role of these proteins in ROP pathogenesis (Fig. 1C). Next, we performed validation of MMPs levels in tear samples collected at the
Recommended publications
  • Datasheet: MCA2736GA Product Details
    Datasheet: MCA2736GA Description: MOUSE ANTI HUMAN MMP-9 ACTIVATED Specificity: MMP-9 ACTIVATED Other names: GELATINASE B Format: Purified Product Type: Monoclonal Antibody Clone: 4A3 Isotype: IgG1 Quantity: 0.1 mg Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Flow Cytometry Immunohistology - Frozen Immunohistology - Paraffin 1/25 - 1/100 ELISA Immunoprecipitation Western Blotting Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls. Target Species Human Product Form Purified IgG - liquid Preparation Purified IgG prepared by affinity chromatography on Protein G Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers Approx. Protein IgG concentration 0.5mg/ml Concentrations Immunogen Ovalbumin conjugated synthetic peptide corresponding to a region within the N-terminus of human MMP-9. Page 1 of 3 External Database Links UniProt: P14780 Related reagents Entrez Gene: 4318 MMP9 Related reagents Synonyms CLG4B Fusion Partners Spleen cells from immunised Balb/c mice were fused with cells of the Ag8563 myeloma cell line. Specificity Mouse anti Human MMP-9 Activated antibody, clone 4A3 recognizes the active form of human matrix metalloproteinase 9 (MMP­9).
    [Show full text]
  • A Single-Cell Transcriptional Atlas Identifies Extensive Heterogeneity in the Cellular Composition of Tendons
    bioRxiv preprint doi: https://doi.org/10.1101/801266; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A single-cell transcriptional atlas identifies extensive heterogeneity in the cellular composition of tendons Jacob B Swanson1, Andrea J De Micheli2, Nathaniel P Disser1, Leandro M Martinez1, Nicholas R Walker1,3, Benjamin D Cosgrove2, Christopher L Mendias1,3,* 1Hospital for Special Surgery, New York, NY, USA 2Meining School of Biomedical Engineering, Cornell University, Ithaca, NY, USA 3Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA *Corresponding Author Christopher Mendias, PhD Hospital for Special Surgery 535 E 70th St New York, NY 10021 USA +1 212-606-1785 [email protected] Keywords: tenocyte; tendon fibroblast; pericyte; single-cell RNA sequencing bioRxiv preprint doi: https://doi.org/10.1101/801266; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Tendon is a dense, hypocellular connective tissue that transmits forces between muscles and bones. Cellular heterogeneity is increasingly recognized as an important factor in the biological basis of tissue homeostasis and disease, but little is known about the diversity of cells that populate tendon. Our objective was to explore the heterogeneity of cells in mouse Achilles tendons using single-cell RNA sequencing. We identified 13 unique cell types in tendons, including 4 previously undescribed populations of fibroblasts.
    [Show full text]
  • Pathophysiology of Thrombotic Thrombocytopenic Purpura and Hemolytic Uremic Syndrome
    Pathophysiology of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome Johanna A. Kremer Hovinga*†, Silvan R. Heeb *†, Magdalena Skowronska*† and Monica Schaller *† *Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, and †Department for BioMedical Research, University of Bern, Bern, Switzerland Abstract: 120 Text: 4997 References: 100 Tables: 1 Figures: 1 Correspondence to: Johanna A. Kremer Hovinga, MD Department of Hematology and Central Hematology Laboratory Inselspital, Bern University Hospital CH-3010 Bern, Switzerland Phone: +41 31 632 02 65 Fax: +41 31 632 18 82 e-mail: [email protected] 1 Summary Thrombotic microangiopathies are rare disorders characterized by the concomitant occurrence of severe thrombocytopenia, microangiopathic hemolytic anemia, and a variable degree of ischemic end organ damage. The latter particularly affects the brain, the heart and the kidneys. The primary forms, thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS), although in their clinical presentation often overlapping, have distinctive pathophysiologies. TTP is the consequence of a severe ADAMTS13 deficiency, immune- mediated due to circulating autoantibodies (iTTP), or caused by mutations in the ADAMTS13 gene (cTTP). HUS develops following an infection with Shiga-toxin producing bacteria (STEC-HUS), or as the result of excessive activation of the alternative pathway of the complement system because of mutations in genes of complement system proteins in atypical HUS (aHUS). Key words Thrombotic Thrombocytopenic Purpura; Hemolytic Uremic Syndrome; ADAMTS13; Alternative Complement Pathway; Shiga Toxin 2 Introduction Thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS) are acute thrombotic microangiopathies (TMA), characterized by acute episodes of intravascular hemolysis, thrombocytopenia and microvascular thrombosis leading to end organ damage becoming apparent as acute kidney injury, cerebrovascular accidents or seizures, and myocardial infarction [1, 2].
    [Show full text]
  • MMP-2 and MMP-9 Are Prominent Matrix Metalloproteinases During Atherosclerosis Development in the Ldlr-/-Apob100/100 Mouse
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 28: 247-253, 2011 MMP-2 and MMP-9 are prominent matrix metalloproteinases during atherosclerosis development in the Ldlr-/-Apob100/100 mouse DICK WÅGSÄTER1, CHAOYONG ZHU1, JOHAN BJÖRKEGREN2, JOSEFIN SKOGSBERG2 and PER ERIKSSON1 1Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine and 2The Cardiovascular Genomics Group, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Stockholm, Sweden Received February 9, 2011; Accepted March 23, 2011 DOI: 10.3892/ijmm.2011.693 Abstract. Matrix-degrading proteases capable of degrading atherosclerotic plaque formation. Matrix metalloproteinases components of the extracellular matrix may play an important (MMPs) are a large family of proteases that can degrade all role in development and progression of atherosclerotic lesions. components of the ECM. MMPs are highly expressed in In the present study, we used the Ldlr-/-Apob100/100 mouse atherosclerotic plaques and perturbed proteolytic activity has model, which has a plasma lipoprotein profile similar to that been implicated in atherogenesis and the precipitation of acute of humans with atherosclerosis, to study the expression of coronary syndromes. matrix metalloproteinases (MMPs) during early stages of Studies in mice have suggested that different members of atherosclerosis development. We analyzed the expression of the MMP family may exert divergent effects during the 11 proteases and three protease inhibitors in 5- to 40-week-old atherosclerotic process (2). MMPs are proposed to enhance Ldlr-/-Apob100/100 mice. Expression and activity of MMP-2 and migration and proliferation of smooth muscle and inflammatory MMP-9 was increased in advanced atherosclerotic lesions cells during early stages of the atherosclerotic process.
    [Show full text]
  • Microglial Dysfunction and Defectiveя-Amyloid Clearance Pathways In
    8354 • The Journal of Neuroscience, August 13, 2008 • 28(33):8354–8360 Neurobiology of Disease Microglial Dysfunction and Defective ␤-Amyloid Clearance Pathways in Aging Alzheimer’s Disease Mice Suzanne E. Hickman,1 Elizabeth K. Allison,1 and Joseph El Khoury1,2 1Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, and 2Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129 Early microglial accumulation in Alzheimer’s disease (AD) delays disease progression by promoting clearance of ␤-amyloid (A␤) before formation of senile plaques. However, persistent A␤ accumulation despite increasing microglial numbers suggests that the ability of microglia to clear A␤ may decrease with age and progression of AD pathology. To determine the effects of aging and A␤ deposition on microglial ability to clear A␤, we used quantitative PCR to analyze gene expression in freshly isolated adult microglia from 1.5-, 3-, 8-, and 14-month-old transgenic PS1-APP mice, an established mouse model of AD, and from their nontransgenic littermates. We found that microglia from old PS1-APP mice, but not from younger mice, have a twofold to fivefold decrease in expression of the A␤-binding scavenger receptors scavenger receptor A (SRA), CD36, and RAGE (receptor for advanced-glycosylation endproducts), and the A␤- degrading enzymes insulysin, neprilysin, and MMP9, compared with their littermate controls. In contrast, PS1-APP microglia had a 2.5-fold increase in the proinflammatory cytokines IL-1␤ (interleukin-1␤) and tumor necrosis factor ␣ (TNF␣), suggesting that there is an inverse correlation between cytokine production and A␤ clearance. In support of this possibility, we found that incubation of cultured N9 mouse microglia with TNF␣ decreased the expression of SRA and CD36 and reduced A␤ uptake.
    [Show full text]
  • Suramin Inhibits Osteoarthritic Cartilage Degradation by Increasing Extracellular Levels
    Molecular Pharmacology Fast Forward. Published on August 10, 2017 as DOI: 10.1124/mol.117.109397 This article has not been copyedited and formatted. The final version may differ from this version. MOL #109397 Suramin inhibits osteoarthritic cartilage degradation by increasing extracellular levels of chondroprotective tissue inhibitor of metalloproteinases 3 (TIMP-3). Anastasios Chanalaris, Christine Doherty, Brian D. Marsden, Gabriel Bambridge, Stephen P. Wren, Hideaki Nagase, Linda Troeberg Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Downloaded from Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK (A.C., C.D., G.B., H.N., L.T.); Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK (S.P.W.); Structural Genomics Consortium, molpharm.aspetjournals.org University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Headington, Oxford, OX3 7DQ (BDM). at ASPET Journals on September 29, 2021 1 Molecular Pharmacology Fast Forward. Published on August 10, 2017 as DOI: 10.1124/mol.117.109397 This article has not been copyedited and formatted. The final version may differ from this version. MOL #109397 Running title: Repurposing suramin to inhibit osteoarthritic cartilage loss. Corresponding author: Linda Troeberg Address: Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK Phone number: +44 (0)1865 612600 E-mail: [email protected] Downloaded
    [Show full text]
  • Investigation of COVID-19 Comorbidities Reveals Genes and Pathways Coincident with the SARS-Cov-2 Viral Disease
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.21.306720; this version posted September 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Title: Investigation of COVID-19 comorbidities reveals genes and pathways coincident with the SARS-CoV-2 viral disease. Authors: Mary E. Dolan1*,2, David P. Hill1,2, Gaurab Mukherjee2, Monica S. McAndrews2, Elissa J. Chesler2, Judith A. Blake2 1 These authors contributed equally and should be considered co-first authors * Corresponding author [email protected] 2 The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, USA Abstract: The emergence of the SARS-CoV-2 virus and subsequent COVID-19 pandemic initiated intense research into the mechanisms of action for this virus. It was quickly noted that COVID-19 presents more seriously in conjunction with other human disease conditions such as hypertension, diabetes, and lung diseases. We conducted a bioinformatics analysis of COVID-19 comorbidity-associated gene sets, identifying genes and pathways shared among the comorbidities, and evaluated current knowledge about these genes and pathways as related to current information about SARS-CoV-2 infection. We performed our analysis using GeneWeaver (GW), Reactome, and several biomedical ontologies to represent and compare common COVID- 19 comorbidities. Phenotypic analysis of shared genes revealed significant enrichment for immune system phenotypes and for cardiovascular-related phenotypes, which might point to alleles and phenotypes in mouse models that could be evaluated for clues to COVID-19 severity.
    [Show full text]
  • Plasma Kallikrein-Kinin System As a VEGF-Independent Mediator of Diabetic
    Page 1 of 52 Diabetes Plasma Kallikrein-Kinin System as a VEGF-Independent Mediator of Diabetic Macular Edema Takeshi Kita1, Allen C. Clermont1, Nivetha Murugesan1 Qunfang Zhou1, Kimihiko 2 2 1,3 1,4 Fujisawa , Tatsuro Ishibashi , Lloyd Paul Aiello , Edward P. Feener 1 Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA 2 Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan. 3 Beetham Eye Institute, Department of Ophthalmology, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA 4 Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA Corresponding Author: Edward P. Feener, Ph.D., Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA. Phone: 617-307-2599, Fax:617-307-2637. e-mail: [email protected] 1 Diabetes Publish Ahead of Print, published online May 15, 2015 Diabetes Page 2 of 52 Abstract: This study characterizes the kallikrein kinin system in vitreous from individuals with diabetic macular edema (DME) and examines mechanisms contributing to retinal thickening and retinal vascular permeability (RVP). Plasma prekallikrein (PPK) and plasma kallikrein (PKal) were increased 2 and 11.0-fold (both p<0.0001), respectively, in vitreous from subjects with DME compared to those with macular hole (MH). While vascular endothelial growth factor (VEGF) was also increased in DME vitreous, PKal and VEGF concentrations do not correlate (r=0.266, p=0.112). Using mass spectrometry-based proteomics we identified 167 vitreous proteins, including 30 that were increased in DME (> 4-fold, p< 0.001 vs.
    [Show full text]
  • MMP9 / Gelatinase B Antibody (Internal) Rabbit Polyclonal Antibody Catalog # ALS12805
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 MMP9 / Gelatinase B Antibody (Internal) Rabbit Polyclonal Antibody Catalog # ALS12805 Specification MMP9 / Gelatinase B Antibody (Internal) - Product Information Application IHC Primary Accession P14780 Reactivity Human, Guinea Pig Host Rabbit Clonality Polyclonal Calculated MW 78kDa KDa MMP9 / Gelatinase B Antibody (Internal) - Additional Information Gene ID 4318 Anti-MMP-9 antibody IHC of human spleen. Other Names Matrix metalloproteinase-9, MMP-9, MMP9 / Gelatinase B Antibody (Internal) - 3.4.24.35, 92 kDa gelatinase, 92 kDa type Background IV collagenase, Gelatinase B, GELB, 67 kDa matrix metalloproteinase-9, 82 kDa matrix May play an essential role in local proteolysis metalloproteinase-9, MMP9, CLG4B of the extracellular matrix and in leukocyte migration. Could play a role in bone Target/Specificity osteoclastic resorption. Cleaves KiSS1 at a Recognizes pro (latent) and activated forms Gly-|-Leu bond. Cleaves type IV and type V of human MMP-9 at 92kD and ~86kD, collagen into large C-terminal three quarter respectively. Shows no cross-reaction with fragments and shorter N-terminal one quarter pro and active forms of other MMPs. fragments. Degrades fibronectin but not laminin or Pz-peptide. Reconstitution & Storage Long term: Add glycerol (40-50%) -20°C; MMP9 / Gelatinase B Antibody (Internal) - Short term: +4°C References Precautions MMP9 / Gelatinase B Antibody (Internal) is Wilhelm S.M.,et al.J. Biol. Chem. for research use only and not for use in 264:17213-17221(1989). diagnostic or therapeutic procedures. Huhtala P.,et al.J. Biol. Chem. 266:16485-16490(1991).
    [Show full text]
  • An Evaluation of OPTC and EPYC As Candidate Genes for High Myopia
    Molecular Vision 2009; 15:2045-2049 <http://www.molvis.org/molvis/v15/a219> © 2009 Molecular Vision Received 19 July 2009 | Accepted 12 October 2009 | Published 15 October 2009 An evaluation of OPTC and EPYC as candidate genes for high myopia Panfeng Wang, Shiqiang Li, Xueshan Xiao, Xiangming Guo, Qingjiong Zhang State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China Purpose: The small leucine-rich repeat proteins (SLRPs) are involved in organizing the collagen fibrils of the sclera and vitreous. The shape of the eyeball is determined by the sclera and vitreous, so defects in SLRP family members may contribute to myopia. The purpose of this study was to test whether mutations in the two members of the class III SLRPs, opticin (OPTC) and dermatan sulfate proteoglycan 3 (EPYC), are responsible for high myopia. Methods: DNA was prepared from venous leukocytes of 93 patients with high myopia (refraction of spherical equivalent ≤-6.00D) and 96 controls (refraction of spherical equivalent between -0.50D and +1.00D). The coding regions and adjacent intronic sequences of OPTC and EPYC were amplified by the polymerase chain reaction (PCR), and the products were then analyzed by cycle sequencing. The detected variations were further evaluated in normal controls and available family members by a heteroduplex-single strand conformation polymorphism (heteroduplex-SSCP) analysis or sequencing. Results: Two substitutions in OPTC, including c.491G>T and c.803T>C, were identified. The c.491G>T mutation (p.Arg164Leu), a novel heterozygous variation, was detected in one of the 93 patients but in none of the 96 controls.
    [Show full text]
  • Proteomic Identification of in Vivo Substrates for Matrix
    Proteomic Identification of In Vivo Substrates for Matrix Metalloproteinases 2 and 9 Reveals a Mechanism for Resolution of Inflammation This information is current as of September 23, 2021. Kendra J. Greenlee, David B. Corry, David A. Engler, Risë K. Matsunami, Philippe Tessier, Richard G. Cook, Zena Werb and Farrah Kheradmand J Immunol 2006; 177:7312-7321; ; doi: 10.4049/jimmunol.177.10.7312 Downloaded from http://www.jimmunol.org/content/177/10/7312 References This article cites 48 articles, 14 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/177/10/7312.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 23, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Proteomic Identification of In Vivo Substrates for Matrix Metalloproteinases 2 and 9 Reveals a Mechanism for Resolution of Inflammation1 Kendra J. Greenlee,* David B.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7.873,482 B2 Stefanon Et Al
    US007873482B2 (12) United States Patent (10) Patent No.: US 7.873,482 B2 Stefanon et al. (45) Date of Patent: Jan. 18, 2011 (54) DIAGNOSTIC SYSTEM FOR SELECTING 6,358,546 B1 3/2002 Bebiak et al. NUTRITION AND PHARMACOLOGICAL 6,493,641 B1 12/2002 Singh et al. PRODUCTS FOR ANIMALS 6,537,213 B2 3/2003 Dodds (76) Inventors: Bruno Stefanon, via Zilli, 51/A/3, Martignacco (IT) 33035: W. Jean Dodds, 938 Stanford St., Santa Monica, (Continued) CA (US) 90403 FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 WO WO99-67642 A2 12/1999 U.S.C. 154(b) by 158 days. (21)21) Appl. NoNo.: 12/316,8249 (Continued) (65) Prior Publication Data Swanson, et al., “Nutritional Genomics: Implication for Companion Animals'. The American Society for Nutritional Sciences, (2003).J. US 2010/O15301.6 A1 Jun. 17, 2010 Nutr. 133:3033-3040 (18 pages). (51) Int. Cl. (Continued) G06F 9/00 (2006.01) (52) U.S. Cl. ........................................................ 702/19 Primary Examiner—Edward Raymond (58) Field of Classification Search ................... 702/19 (74) Attorney, Agent, or Firm Greenberg Traurig, LLP 702/23, 182–185 See application file for complete search history. (57) ABSTRACT (56) References Cited An analysis of the profile of a non-human animal comprises: U.S. PATENT DOCUMENTS a) providing a genotypic database to the species of the non 3,995,019 A 1 1/1976 Jerome human animal Subject or a selected group of the species; b) 5,691,157 A 1 1/1997 Gong et al.
    [Show full text]