Magnetic Properties of Nanostructured Thin Films of Transition Metal Obtained by Low Energy Cluster Beam Deposition V

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Properties of Nanostructured Thin Films of Transition Metal Obtained by Low Energy Cluster Beam Deposition V Magnetic properties of nanostructured thin films of transition metal obtained by low energy cluster beam deposition V. Dupuis, J. P. Perez, J. Tuaillon, Vincent Paillard, P. Mélinon, A. Perez, B. Barbara, L. Thomas, S. Fayeulle, J. M. Gay To cite this version: V. Dupuis, J. P. Perez, J. Tuaillon, Vincent Paillard, P. Mélinon, et al.. Magnetic properties of nanostructured thin films of transition metal obtained by low energy cluster beam deposition. Journal of Applied Physics, American Institute of Physics, 1994, 76 (10), pp.6676 - 6678. 10.1063/1.358165. hal-01660437 HAL Id: hal-01660437 https://hal.archives-ouvertes.fr/hal-01660437 Submitted on 10 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Magnetic properties of nanostructured thin films of transition metal obtained by low energy cluster beam deposition V. Dupuis, J. P. Perez, J. Tuaillon, V. Paillard, P. Mélinon et al. Citation: J. Appl. Phys. 76, 6676 (1994); doi: 10.1063/1.358165 View online: http://dx.doi.org/10.1063/1.358165 View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v76/i10 Published by the American Institute of Physics. Additional information on J. Appl. Phys. Journal Homepage: http://jap.aip.org/ Journal Information: http://jap.aip.org/about/about_the_journal Top downloads: http://jap.aip.org/features/most_downloaded Information for Authors: http://jap.aip.org/authors Downloaded 27 Apr 2013 to 130.113.111.210. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions Magnetic properties of nanostructured thin films of transition metal obtained by low energy cluster beam deposition V. Dupuis, J. P. Perez, J. Tuaillon, V. Paillard, P. MGlinon, and A. Perez Dgpartement de Physique des Matiriaux, Universitg Lyon, 1-69622 Weurbanne C&dex, France B. Barbara and L. Thomas Laboratoire de Magndtisme Louis Nt?el, CNRS BP166X-38042 Grenoble Cgdex, France S. Fayeulle Dgpartement Mat&aux Mkanique Physique, Ecole Centrale de Lyon, BP 16369131 Ecu&, France J. M. Gay CRh4C2, Campus de Luminy, CNRS-13397, Marseille Ct?dex 13, France Clustersof iron, cobalt, andnickel areproduced in a laservaporization source. The size distributions of the incident clusters are checkedby time-of-flight mass spectrometrybefore deposition at low energy.Studying the near threshold photoionization,Co, and Ni, clusters exhibit an icosahedral structure while for iron, no clear structure emerges.Neutral clusters were depositedon different substratesat room temperaturewith thicknessesup to 100 nm in view to determinetheir structure and magnetic properties.A limited coalescenceof the clusters is observedfrom high-resolution transmission electron microscopy. No icosahedron has been observed but cuboctahedronand interfacetwins betweenadjacent particles have been clearly identified in Ni films. Grazingincidence x-ray diffraction experimentsreveal a classicalphase with grain size around6 and 4 mn for Fe and Ni fYms, respectivelybut an anomalousfee phasefor Co fdms and a very low grain size of 2 nm. The density of films determinedby x-ray reflectivity was estimatedto representonly 60%-65% of the bulk density.Magnetic behaviors studied by ferromagneticresonance and SQUID magnetization measurementshave been interpreted using the correlated spin glass model. Miissbauer spectra performed on Fe films at zero field revealed the presenceof 20% of iron in the form of thin nonmagneticoxide skin surroundingFe grains which allow to fmd 2.2 ,LLBper magneticiron atom in agreementwith macroscopic magnetic measurements.Nevertheless we found an anomalous reducedatomic moment for Ni film. INTRODUCTION Our challengein depositingtransition metal clustersis to synthesizenew phaseswhere the anomalouscrystallographic Recently,magnetic properties such as exchangecoupling structures of free clusters would be kept and to study the or giant magnetoresistancemainly observedin metallic mul- specific magnetic behavior of these weakly correlated enti- tilayers have been detectedin other nanostructuredsystems. ties on a substrate.Once more, we show that our technique For example,Berkowitz et a1.l and Xiao et al.’ observedgi- leads to a random compact cluster stacking (RCCS).3Thus ant magnetoresistancesin ultrafine Co-rich precipitate par- magnetic results could be interpretedby random anisotropy ticles in a Cu-rich matrix. These sampleswere preparedby model with a scale law and in terms of localization of spin coevaporationtaking advantageof the low solubility of Cu in waves. Co. However, though this techniqueis limited to nonmiscible components,the adjustablecluster diameteris a new param- eter in addition to the distancebetween particles as in thin EXPERIMENT film layers. Thus, studies on clusters and cluster assembled Our cluster source is based on the technique of laser materialsare of increasinginterest. vaporization.3-5Roughly, a plasma is created in a vacuum The laser vaporization source of the laboratory3allows cavity by Nd-YAG laser light. Synchronizedwith the laser, a the obtentionof an intensecluster beamof any size distribu- high pressure(5 bars) helium pulse, injected in the cavity by tion (from few to a thousandatoms per cluster) and the syn- a nozzle, thermalizesthe plasma and cluster growth occurs. thesis of cluster assembledmaterials, even of the most re- The nascentclusters are then rapidly quenchedduring the fractory and of the most complex ones. The cluster size following isentropic expansioninto vacuum (lo-’ Torr). distribution is checked by time-of-flight mass spectrometry Cluster size distributions are analyzedin a time-of-flight before deposition. Our source producing cold clusters with mass spectrometer.Studying the near threshold photoioniza- low kinetic energy,incident clusters do not fragment on the tion (performedwith a frequency-doubledtunable dye laser substrateand may conserve their intrinsic structures.Thus pumpedby a XeCl excimer laser), mass spectraof Co, and we succeeded in the stabilization of very small size Ni, clusters exhibit oscillations and a series of magic num- fullerenes (C&L&J, never previously observedexperimen- bers in=13,55,147,309,561,...) corresponding to an tally. We clearly evidenced that deposited carbon clusters icosahedralor cuboctahedralatomic shell structurein the ob- presentedthe in flight-clusters fingerprint? tained massrange (50-800 atomsper cluster). A finer analy- 6676 J. Appt. Phys. 76 (lo), 15 November 1994 0021-8979/94/76(10)/6676/3/$6.00 0 1994 American Institute of Physics Downloaded 27 Apr 2013 to 130.113.111.210. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions sis allows us to conclude for the icosahedralstructnre.6 For iron clusters, the results are not so simple, indicating a com- r/ petition between different regimes.6 --, I,, I...I, .I Then, free neutral clusters are deposited with a kinetic energy in the lo-20 eV range on different substratesat room temperaturewith thicknessesup to 100 nm in view to deter- mine their structure and magnetic properties. SAMPLE CHARACTERIZATION The typical size of supported clusters obtained from high-resolution transmissionelectron microscopy (HRTEZM) was about 2-6 nm for an initial size distribution centered around 150 atoms for Fe and 300 atoms for Co and Ni clus- ters, respectively. No icosahedronwas observedbut cuboc- tahedra and interface twins between adjacent particles was clearly identified in Ni films. Quasisphericalgrain morphol- ogy existed in Fe film which could correspond to a bee rhombic dodecahedron Cl101 according to the Wulff’s theorem.7 Grazing incidence x-ray diffraction (GIXD) ex- periments exhibit a classicalbee phasefor Fe fI.lms but a fee phasefor both Co and Ni with a grain size extractedfrom the -12 -8 -4 0 4 8 12 peak width of about 6, 4, and 1.5 nm, respectively,in agree- VELOCITY mm/s ment with electronic diffractions and TEM observations.The classical structure of cobalt being hcp, the fee phase ob- FIG. 1. Mkbauer spectra obtained on a Fe,,, film at 300 K. served in Co films might be related to the icosahedralstrut- ture of the incident cluster beam. In fact, the icosahedronis expected to be the precursor of the fee crystal. The small The macroscopic magnetic behavior of our films has grain size and the reminiscence of a free cluster structure been studiedusing ferromagneticresonance (FMR) and mag- confirm the limited coalescenceprocess due to a weak diffu- netization measurements(SQUID). FMR curves roughly tra- sion of metallic clusters on the substrateeven at room tem- duced a thin film behaviorrl but revealed several resonance perature. magnetic fields due to anchorageof spin waves at the surface Rutherford backscattering spectroscopy showed that (when the applied field is perpendicularto the surface of the theseporous films are composedof 2070~30%of oxygen for film). The coercive field at 300 K is about 100 Oe for cobalt, 70%-80% of metals. The density of the films, determinedby
Recommended publications
  • Few Electron Paramagnetic Resonances Detection On
    FEW ELECTRON PARAMAGNETIC RESONANCES DETECTION TECHNIQUES ON THE RUBY SURFACE By Xiying Li Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Dr. Massood Tabib-Azar Co-Adviser: Dr. J. Adin Mann, Jr. Department of Electrical Engineering and Computer Science CASE WESTERN RESERVE UNIVERSITY August, 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents TABLE OF CONTENTS ................................................................................................................................. II LIST OF FIGURES ...................................................................................................................................... IV ABSTRACT............................................................................................................................................... VII CHAPTER 1 INTRODUCTION .................................................................................................................1
    [Show full text]
  • Localized Ferromagnetic Resonance Using Magnetic Resonance Force Microscopy
    LOCALIZED FERROMAGNETIC RESONANCE USING MAGNETIC RESONANCE FORCE MICROSCOPY DISSERTATION Presented in Partial Ful¯llment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jongjoo Kim, B.S.,M.S. ***** The Ohio State University 2008 Dissertation Committee: Approved by P.C. Hammel, Adviser D. Stroud Adviser F. Yang Graduate Program in K. Honscheid Physics ABSTRACT Magnetic Resonance Force Microscopy (MRFM) is a novel approach to scanned probe imaging, combining the advantages of Magnetic Resonance Imaging (MRI) with Scanning Probe Microscopy (SPM) [1]. It has extremely high sensitivity that has demonstrated detection of individual electron spins [2] and small numbers of nuclear spins [3]. Here we describe our MRFM experiments on Ferromagnetic thin ¯lm structures. Unlike ESR and NMR, Ferromagnetic Resonance (FMR) is de¯ned not only by local probe ¯eld and the sample structures, but also by strong spin-spin dipole and exchange interactions in the sample. Thus, imaging and spatially localized study using FMR requires an entirely new approach. In MRFM, a probe magnet is used to detect the force response from the sample magnetization and it provides local magnetic ¯eld gradient that enables mapping of spatial location into resonance ¯eld. The probe ¯eld influences on the FMR modes in a sample, thus enabling local measurements of properties of ferromagnets. When su±ciently intense, the inhomogeneous probe ¯eld de¯nes the region in which FMR modes are stable, thus producing localized modes. This feature enables FMRFM to be important tool for the local study of continuous ferromagnetic samples and structures.
    [Show full text]
  • Ultrafast Acoustics in Hybrid and Magnetic Structures Viktor Shalagatskyi
    Ultrafast acoustics in hybrid and magnetic structures Viktor Shalagatskyi To cite this version: Viktor Shalagatskyi. Ultrafast acoustics in hybrid and magnetic structures. Physics [physics]. Uni- versité du Maine, 2015. English. NNT : 2015LEMA1012. tel-01261609 HAL Id: tel-01261609 https://tel.archives-ouvertes.fr/tel-01261609 Submitted on 25 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Viktor SHALAGATSKYI Mémoire présenté en vue de l’obtention du grade de Docteur de l’Université du Maine sous le label de L’Université Nantes Angers Le Mans École doctorale : 3MPL Discipline : Milieux denses et matériaux Spécialité : Physique Unité de recherche : IMMM Soutenue le 30.10.2015 Ultrafast Acoustics in Hybrid and Magnetic Structures JURY Rapporteurs : Andreas HUETTEN, Professeur, Bielefeld University Ra’anan TOBEY, Professeur associé, University of Groningen Examinateurs : Florent CALVAYRAC, Professeur, Université du Maine Alexey MELNIKOV, Professeur associé, Fritz-Haber-Institut der MPG Directeur de Thèse : Vasily TEMNOV, Chargé de recherches, CNRS, HDR, Université du Maine Co-directeur de Thèse : Thomas PEZERIL, Chargé de recherches, CNRS, HDR, Université du Maine Co-Encadrante de Thèse : Gwenaëlle VAUDEL, Ingénieur de recherche, CNRS, Université du Maine Contents 0 Introduction 9 1 Ultrafast carrier transport at the nanoscale 13 1.1 Two Temperature Model for bimetallic structure .
    [Show full text]
  • Hybrid Perfect Metamaterial Absorber for Microwave Spin Rectification
    www.nature.com/scientificreports OPEN Hybrid perfect metamaterial absorber for microwave spin rectifcation applications Jie Qian1,2, Peng Gou1, Hong Pan1, Liping Zhu1, Y. S. Gui2, C.‑M. Hu2 & Zhenghua An1,3,4* Metamaterials provide compelling capabilities to manipulate electromagnetic waves beyond the natural materials and can dramatically enhance both their electric and magnetic felds. The enhanced magnetic felds, however, are far less utilized than the electric counterparts, despite their great potential in spintronics. In this work, we propose and experimentally demonstrate a hybrid perfect metamaterial absorbers which combine the artifcial metal/insulator/metal (MIM) metamaterial with the natural ferromagnetic material permalloy (Py) and realize remarkably larger spin rectifcation efect. Magnetic hot spot of the MIM metamaterial improves considerably electromagnetic coupling with spins in the embedded Py stripes. With the whole hybridized structure being optimized based on coupled‑mode theory, perfect absorption condition is approached and an approximately 190‑fold enhancement of spin‑rectifying photovoltage is experimentally demonstrated at the ferromagnetic resonance at 7.1 GHz. Our work provides an innovative solution to harvest microwave energy for spintronic applications, and opens the door to hybridized magnetism from artifcial and natural magnetic materials for emergent applications such as efcient optospintronics, magnonic metamaterials and wireless energy transfer. Metamaterials ofer a great avenue to control the absorption,
    [Show full text]
  • Instrumentation for Ferromagnetic Resonance Spectrometer
    Chapter 2 Instrumentation for Ferromagnetic Resonance Spectrometer Chi-Kuen Lo Additional information is available at the end of the chapter http://dx.doi.org/10.5772/56069 1. Introduction Even FMR is an antique technique, it is still regarded as a powerful probe for one of the modern sciences, the spintronics. Since materials used for spintronics are either ferromagnetic or spin correlated, and FMR is not only employed to study their magneto static behaviors, for instances, anisotropies [1,2], exchange coupling [3,4,5,6], but also the spin dynamics; such as the damping constant [7,8,9], g factor [8,9], spin relaxation [9], etc. In this chapter a brief description about the key components and techniques of FMR will be given. For those who have already owned a commercial FMR spectrometer could find very helpful and detail information of their system from the instruction and operation manuals. The purpose of this text is for the one who want to understand a little more detail about commercial system, and for researchers who want to build their own spectrometers based on vector network analyzer (VNA) would gain useful information as well. FMR spectrometer is a tool to record electromagnetic (EM) wave absorbed by sample of interest under the influence of external DC or Quasi DC magnetic field. Simply speaking, the spectrometer should consist of at least an EM wave excitation source, detector, and transmission line which bridges sample and EM source. The precession frequency of ferromagnetics lies at the regime of microwave (-wave) ranged from 0.1 to about 100 GHz, therefore, FMR absorption occurs at -wave range.
    [Show full text]
  • Chapter 1 Magnetism and Magnetic Resonance
    Chapter 1 Magnetism and Magnetic Resonance The Bell System's interest in magnetic materials dates back to the very beginning of the telephone. It was recognized early that understanding the physics of magnetism would be crucial to progress in the technology using magnetic materials-whether for finding magnetic metals or allays having high permeability or low ac lass for transformers and loading coils, or for designing permanent magnets with large remanent magnetization. The research activities an ferromagnetic metals and alloys, an the physics of mag­ netic domains, and on magnetic oxides-ferrites and garnets-extended the application of magnetic devices to the higher frequencies needed for larger carrier capacity. The techniques of magnetic resonance were introduced in solid state physics in the mid-1940s. They probe the internal fields of magnetic materials on the atomic level and deepen our understanding of the fundamentals of magnetism-the interaction between elemental atomic magnets and the much weaker nuclear magnetic moments. The techniques of Miissbauer spectros­ copy make use of the very narrow gamma rays emitted by the nuclei of cer­ tain magnetic materials and provide complementary information an funda­ mental magnetic interactions. Magnetic fields are involved in many physics experiments discussed in ather chapters of this volume-in magnetaresistance (Chapter 4), plasma physics (Chapter 6), superfluidity in 3 He (Chapter 9), and magnetospheric physics (Chapter 7). I. THE PHYSICS OF MAGNETIC SOLIDS G. W. Elmen's discovery of Permalloy, Perminvar, and other materi­ als has already been described in Chapter 8, section 2, of the first volume of this series, The Early Years (1875-1925).
    [Show full text]
  • Ferromagnetic Resonance
    Chapter 1 Ferromagnetic Resonance Orhan Yalçın Additional information is available at the end of the chapter http://dx.doi.org/10.5772/56134 1. Introduction Ferromagnetism is used to characterize magnetic behavior of a material, such as the strong attraction to a permanent magnet. The origin of this strong magnetism is the presence of a spontaneous magnetization which is produced by a parallel alignment of spins. Instead of a parallel alignment of all the spins, there can be an anti-parallel alignment of unequal spins. This results in a spontaneous magnetization which is called ferrimagnetism. The resonance arises when the energy levels of a quantized system of electronic or nuclear moments are Zeeman split by a uniform magnetic field and the system absorbs energy from an oscillating magnetic field at sharply defined frequencies corresponding to the transitions between the levels. Classically, the resonance event occurs when a transverse ac field is applied at the Larmor frequency. The resonance behaviour usually called magnetic resonance (MR) and nuclear magnetic resonance (NMR). Main types of resonance phenomenon can be listed as nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), electron paramagnetic/spin resonance (EPR, ESR), spin wave resonance (SWR), ferromagnetic resonance (FMR), antiferromagnetic resonance (AFMR) and conductor electron spin resonance (CESR). The resonant may be an isolated ionic spin as in electron paramagnetic resonance (EPR) or a nuclear magnetic resonance (NMR). Also, resonance effects are associated with the spin waves and the domain walls. The resonance methods are important for investigating the structure and magnetic properties of solids and other materials. These methods are used for imaging and other applications.
    [Show full text]
  • Magnetism As Seen with X Rays Elke Arenholz
    Magnetism as seen with X Rays Elke Arenholz Lawrence Berkeley National Laboratory and Department of Material Science and Engineering, UC Berkeley 1 What to expect: + Magnetic Materials Today + Magnetic Materials Characterization Wish List + Soft X-ray Absorption Spectroscopy – Basic concept and examples + X-ray magnetic circular dichroism (XMCD) - Basic concepts - Applications and examples - Dynamics: X-Ray Ferromagnetic Resonance (XFMR) + X-Ray Linear Dichroism and X-ray Magnetic Linear Dichroism (XLD and XMLD) + Magnetic Imaging using soft X-rays + Ultrafast dynamics 2 Magnetic Materials Today Magnetic materials for energy applications Magnetic nanoparticles for biomedical and environmental applications Magnetic thin films for information storage and processing 3 Permanent and Hard Magnetic Materials Controlling grain and domain structure on the micro- and nanoscale Engineering magnetic anisotropy on the atomic scale 4 Magnetic Nanoparticles Optimizing magnetic nanoparticles for biomedical Tailoring magnetic applications nanoparticles for environmental applications 5 Magnetic Thin Films Magnetic domain structure on the nanometer scale Magnetic coupling at interfaces Unique Ultrafast magnetic magnetization phases at reversal interfaces dynamics GMR Read Head Sensor 6 Magnetic Materials Characterization Wish List + Sensitivity to ferromagnetic and antiferromagnetic order + Element specificity = distinguishing Fe, Co, Ni, … + Sensitivity to oxidation state = distinguishing Fe2+, Fe3+, … + Sensitivity to site symmetry, e.g. tetrahedral,
    [Show full text]
  • Magnetically Tunable Mie Resonance-Based Dielectric Metamaterials
    OPEN Magnetically tunable Mie SUBJECT AREAS: resonance-based dielectric MATERIALS FOR OPTICS OPTICAL MATERIALS AND metamaterials STRUCTURES Ke Bi1, Yunsheng Guo2, Xiaoming Liu2, Qian Zhao2, Jinghua Xiao1, Ming Lei1 & Ji Zhou2 OPTICAL PHYSICS 1State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Received Telecommunications, Beijing 100876, China, 2State Key Laboratory of New Ceramics and Fine Processing, School of Materials 14 September 2014 Science and Engineering, Tsinghua University, Beijing 100084, China. Accepted 23 October 2014 Electromagnetic materials with tunable permeability and permittivity are highly desirable for wireless Published communication and radar technology. However, the tunability of electromagnetic parameters is an 11 November 2014 immense challenge for conventional materials and metamaterials. Here, we demonstrate a magnetically tunable Mie resonance-based dielectric metamaterials. The magnetically tunable property is derived from the coupling of the Mie resonance of dielectric cube and ferromagnetic precession of ferrite cuboid. Both the simulated and experimental results indicate that the effective permeability and permittivity of the Correspondence and metamaterial can be tuned by modifying the applied magnetic field. This mechanism offers a promising requests for materials means of constructing microwave devices with large tunable ranges and considerable potential for tailoring via a metamaterial route. should be addressed to J.H.X. (jhxiao@bupt.
    [Show full text]
  • Ferromagnetische Resonanz (FMR)
    Anleitung zu Versuch 23 Ferromagnetische Resonanz (FMR) erstellt von Dr. Thomas Meier Fortgeschrittenenpraktikum (FOPRA) Physik-Department Technische Universität München Anleitung zuletzt aktualisiert am: December 18, 2020 Contents 1 Introduction3 2 Theoretical Basics4 2.1 Ferromagnetism - a brief introduction . .4 2.2 Magnetic Energy and Anisotropy . .5 2.2.1 Demagnetizing Energy . .5 2.2.2 Magnetocristalline Anisotropy . .7 2.2.3 Zeeman Energy . .8 2.2.4 Total energy density and effective field . .8 2.2.5 Finding the equilibrium position of the magnetization . .8 2.3 Landau-Lifshitz-Gilbert equation . .9 2.4 Ferromagnetic resonance - resonance condition . 11 2.4.1 Principles of FMR . 11 2.4.2 Definition of a suitable coordinate system . 11 2.4.3 Calculation of the effective field . 12 2.4.4 Solution of the linearized LLG . 14 2.4.5 Resonance condition . 14 2.4.5.1 In-plane configuration . 15 2.4.5.2 Out-of-plane configuration . 15 2.4.6 Dynamic susceptibilities and line shape of the FMR . 15 2.5 Ferromagnetic resonance - damping . 18 3 Experimental basics and evaluation 19 3.1 General structure of an FMR-spectrometer . 19 3.2 Microwave technology . 21 3.3 Evaluation of the resonance spectra . 22 4 Available samples 22 5 Experimental procedure 23 5.1 Influence of the measurement parameters . 23 5.2 Frequency dependence in the in-plane configuration on permalloy 24 5.3 Examination of an ytrium-iron-garnet sample . 24 5.3.1 In-plane configuration . 24 5.3.2 Perpendicular configuration . 25 6 Protocol requirements 25 7 Further literature 27 1 Introduction Ferromagnetic resonance (FMR) is a widely used method for characterization of ferromagnetic samples.
    [Show full text]
  • MAGNETIC RESONANCE and RELATED PHENOMENA Magnetic Resonance and Related Phenomena
    MAGNETIC RESONANCE AND RELATED PHENOMENA Magnetic Resonance and Related Phenomena Proceedings of the XXth Congress AMPERE Tallinn, August 21-26, 1978 Edited by E.KUNDLA, E.LIPPMAA AND T.SALUVERE Springer-Verlag Berlin Heidelberg GmbH ~979 E. KUNDLA E. LIPPMAA T. SALUVERE .Departrnent of Physics Institute of Cybernetics of the Acaderny of Sciences of the Estonian SSR USSR Sole distribution for all non-socialist countries by Springer-Verlag Berlin Heidelberg New York. ISBN 978-3-642-81346-7 ISBN 978-3-642-81344-3 (eBook) DOI 10.1007/978-3-642-81344-3 © 1979, Springer-Verlag Berlin Heidelberg Softcover repr int of the hardcover 1st edition 1 9 7 9 Published by A ademy of Sciences of th Estonian SSR PREFACE The Proceedings contain the 21 invited papers and 501 con­ tributed papers presented at the XXth Congress AMPERE on Magnetic Resonance and Related Phenomena held in Tallinn, USSR, on August 21-26, 1978. The scientific program of the Congress included pa­ pers on original research and covered the full range of magnetic resonance and relaxation, with applications in physics, chemical physics and biophysics. The XXth Congress AMPERE was organized by the Department of Physics of the Institute of Cybernetics oi the Estonian Academy of Sciences together with the Scientific Council on Radiospectros­ copy of Condensed Matter of the USSR Academy of Sciences, in coop­ eration with the AMPERE Group. The support given by the sponsors, the Academy of Sciences of the Estonian SSR, the Academy of Sciences of the USSR, the In­ ternational Union of Pure and Applied Physics, and the European Physical Society is greatly appreciated.
    [Show full text]
  • Surface Effects on Ferromagnetic Resonance in Magnetic Nanocubes
    Surface effects on ferromagnetic resonance in magnetic nanocubes R. Bastardis1, F. Vernay1, D.-A. Garanin2 and H. Kachkachi1 1Laboratoire PROMES CNRS (UPR-8521), Université de Perpignan Via Domitia, Rambla de la thermodynamique, Tecnosud, F-66100 Perpignan, France 2Physics Department, Lehman College, City University of New York 250 Bedford Park Boulevard West, Bronx, New York 10468-1589, USA E-mail: [email protected] Abstract. We study the effect of surface anisotropy on the spectrum of spin-wave excitations in a magnetic nanocluster and compute the corresponding absorbed power. For this, we develop a general numerical method based on the (undamped) Landau-Lifshitz equation, either linearized around the equilibrium state leading to an eigenvalue problem or solved using a symplectic technique. For box-shaped clusters, the numerical results are favorably compared to those of the finite-size linear spin-wave theory. Our numerical method allows us to disentangle the contributions of the core and surface spins to the spectral weight and absorbed power. In regard to the recent developments in synthesis and characterization of assemblies of well defined nano-elements, we study the effects of free boundaries and surface anisotropy on the spin-wave spectrum in iron nanocubes and give orders of magnitude of the expected spin-wave resonances. For an 8 nm iron nanocube, we show that the absorbed power spectrum should exhibit a low-energy peak around 10 GHz, typical of the uniform mode, followed by other low-energy features that couple to the uniform mode but with a stronger contribution from the surface. There are also high-frequency exchange-mode peaks around 60 GHz.
    [Show full text]