Leatherback Sea Turtle Shell: a Tough and Flexible Biological Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ABSTRACTS 44Th Annual Meeting and Symposium Tucson, Arizona February 21–23, 2019
ABSTRACTS 44th Annual Meeting and Symposium Tucson, Arizona February 21–23, 2019 FORTY-FOURTH ANNUAL MEETING AND SYMPOSIUM THE DESERT TORTOISE COUNCIL TUCSON, AZ February 21–23, 2019 ABSTRACTS OF PAPERS AND POSTERS (Abstracts arranged alphabetically by last name of first author) *Speaker, if not the first author listed Long-term Data Collection and Trends of a 130-Acre High Desert Riparian and Upland Preserve in Northwestern Mohave County, Arizona Julie Alpert and Robert Faught Willow Creek Environmental Consulting, LLC, 15857 E. Silver Springs Road, Kingman, Arizona 86401, USA.Phone: 928-692-6501. Email: [email protected] The Willow Creek Riparian Preserve (Preserve) is a privately owned 130-acre site located 30 miles east of Kingman, Arizona. The Preserve was formally established in 2007 with the purchase of 10-acres and an agreement with the eastern adjoining private landowner to add an additional 120-acres. The Preserve location was unfenced and wholly accessible by livestock, off-road vehicle use, and hunting. In October of 2008 the Preserve was fenced with volunteer efforts from the local Rotary Club and Boy Scout Troop 66. Additional financial assistance came through a large discount in the cost of fencing materials from Kingman Ace Hardware. A total of 0.5-linear mile of new wildlife friendly fencing (barbless top wire and 18-inches above-ground bottom wire) was installed along the south and west sides and connected to existing Arizona State Lands cattle allotment fencing. Baseline and on-going studies and data collection have occurred since 2004. These have included small mammal live trapping; chiropteran surveys with the use of Anabat; migratory, breeding, and winter avian surveys; amphibian and reptile surveys; deployment of game cameras; animal track and sign identification and movement patterns; vegetation and plant surveys; and a wetland delineation. -
Sea Turtle Activity Book
Sea Turtle Adventures II The adventure continues... An Activity Book for All Ages Welcome to Sarasota County! The beautiful beaches and surrounding waters of Sarasota REMOVE OBSTACLES: Turtles can easily become trapped County provide critical habitat for important populations in beach furniture, recreational equipment, tents and of threatened and endangered sea turtles. We are honored toys, or fall into deep holes in the sand. You can provide that many sea turtles make Sarasota County their home a more natural and safe shoreline for the turtles to nest year-round, while other sea turtles migrate to our beaches by removing all items from the beach each night. Also, from hundreds of miles away to find mates and nest. remember to leave the beach as you found it by knocking down sandcastles, filling in holes, and picking up garbage, Each year between May 1 and Oct. 31, adult female sea especially plastics, which can be mistaken for food by turtles crawl out of the Gulf of Mexico to lay approximately sea turtles. 100 eggs in a sandy nest on our beaches. The clutch incubates for almost two months until the hatchlings We hope you enjoy learning more about sea turtles in this emerge one night and make their way to the Gulf. During activity book. Thank you for sharing the shore and helping this special time of year, there are many things you can do to make our beaches more turtle-friendly! to help and protect these magnificent animals. Sincerely, LIMIT LIGHTING: Lights on the beach confuse and disorient Your Friends at Sarasota County sea turtles. -
Loggerhead Sea Turtle
Loggerhead Sea Turtle Description: The Loggerhead Sea Turtle is named for its large head and blunt jaw. This huge sea turtle can grow to 800 pounds (though the average turtle is about 200 pounds) and three and a half feet in length. It is the largest hard-shelled turtle in the world. The carapace (shell) and flippers are reddish brown and the plastron (lower shell) is yellowish. The carapace has five lateral scutes and five central scutes. Scutes are hexagonal sections of the carapace. Underparts are white or whitish. These incredible turtles have powerful flippers that can propel them through the water at speeds of up to 16 miles per hour. The Loggerhead Sea Turtle has a life span of up to 50 years in the wild. Habitat/Range: The seafaring Loggerhead Sea Turtle is found throughout the world's tropical oceans. They are also found in temperate waters in search of food and in migration. Breeding populations exist in many locales including the Atlantic coast of the United States (from North Carolina to Florida), numerous Caribbean islands, Central America, the Mediterranean Sea, and Africa. Diet: Loggerhead Sea Turtles consume fish, crustaceans, mollusks, crabs, and jellyfish, They use their powerful jaws to crush prey. These turtles often ingest stray plastic bags which are mistaken for jellyfish and which cause potentially fatal complications. Nesting: The Female Loggerhead Sea Turtle normally lays her eggs on the same beach in which she was born. It may take up to 30 years before these turtles reach reproductive age. In June or July, females will emerge from the ocean and dig a hole in the sand. -
Pleistocene – Cretaceous One-Two Punch
FOSSIL COLLECTING REPORT September 2008 Daniel A. Woehr and Friends and Family September 1, 2008: Pleistocene – Cretaceous One-Two Punch “It’s the sheriff!” is what I heard when I opened my eyes to blinding lights. It seems that Johnny Law is not used to seeing law abiding grown men sleeping in cars by the roadside. I explained that I was nothing more than a nerdy fossil hunter on a budget and after checking my ID and noting the boat on my roof I suppose he believed me, as did his backup in the second car with headlights in my face. Dawn found me at my second put-in and soon making my way to a distant gravel bar. I wasn’t expecting much but my first find was a worn but very welcome mastodon vertebra. Finds were slow to come but some were rather nice. A good horse tooth, horse tibia, bison astragulus and calcaneum, and a few other things came to hand and put some heft in my catch bag. Still, the ever elusive mammoth tooth evaded me once again. FIG 1: Alligator mississippiensis osteoderm from Site 373 FIGS 2-6: Bison sp. calcaneum above and astragulus below (both ankle bones), 2 more views of same followed by worn Glyptotherium osteoderm next page (Site 373) FIG 7: Unidentified distal radius and distal scapula followed by horse lower molar (Site 373) FIGS 8-9: Worn Mammut americanum (mastodon) vertebra (Site 373) FIGS 10-11: Unidentified proximal rib and vertebrae (Site 373) Switching gears, I began my drive home, learned that the wife and boy wouldn’t be home anytime soon, and opted to drop in once again on some parts of the Corsicana exposure that Weston and I didn’t have time to look over on prior trips. -
Crocodile Farming with Particular Reference to East Africa
British Herpetological Sot 'co, Bulletin, No. 66, 1999 CROCODILE FARMING WITH PARTICULAR REFERENCE TO EAST AFRICA JOHN E. COOPER, DTVM, FRCPath, FIBiol, FRCVS Faculty of Veterinary Medicine, Sokoine University of Agriculture P.O. Box 3021, Morogoro, Tanzania Contact address in UK: Wildlife Health Services P.O. Box 153, Wellingborough, Northants NN8 2ZA INTRODUCTION The Class Crocodilia consists of the crocodiles, alligators, caimans and gharials. There are twenty-three extant species but, in the past, many more existed (Frye, 1994). Crocodiles are reptiles that are well adapted to life in water. While most are freshwater, one species is partly marine. The anatomy of crocodiles is dominated by their tough integument which, on the dorsum, is protected by plates of osteoderm. Internally, crocodiles have a well developed palate, a four chambered heart and a right aortic arch. All crocodilians are oviparous. In many species the female constructs a nest of decaying vegetable matter and as this decomposes, the temperature rises and assists in incubation. Sex determination in crocodilians is temperature-related. Crocodilians are unusual amongst reptiles in that the nests are guarded by the mother (possibly the father) who also protects the young, often for a considerable period of time. The Nile Crocodile (Crocodyhts nitoticits) is the most widespread of the three species of crocodile that are found in Africa. The Nile Crocodile is biologically similar to other crocodilians. It is an ectothermic vertebrate. The free-living crocodile reaches sexual maturity at between 20 and 35 years of age when the male is 3-3.3 m in length and the female is 2.4-2.8 m (Revol, 1995). -
The Armor of FOSSIL GIANT ARMADILLOS (Pa1npatlzeriidae, Xenartlz Ra, Man1malia) A
NUMBER40 PEARCE-SELLARDS SERIES The Armor of FOSSIL GIANT ARMADILLOS (Pa1npatlzeriidae, Xenartlz ra, Man1malia) A. GORDON EDMUND JUNE 1985 TEXAS MEMORIAL MUSEUM, UNIVERSITY OF TEXAS AT AUSTIN Pearce-Sellards Series 40 The Armor of FOSSIL GIANT ARMADILLOS (Pampatheriidae, Xenartlzra, Mammalia) A. GORDON EDMUND JUNE 1985 TEXAS MEMORIAL MUSEUM, UNIVERSITY OF TEXAS AT AUSTIN A. Gordon Edmund is Curator of Vertebrate Paleontology at the Royal Ontario Museum, Toronto, and Associate Professor of Geology at the University of Toronto. The Pearce-Sellards Series is an occasional, miscellaneous series of brief reports of Museum and Museum-associated field investigations and other research. All manuscripts are subjected to extramural peer review before being accepted. The series title commemorates the first two directors of Texas Memorial Museum, both now deceased: Dr. J. E. Pearce, Professor of Anthropology, and Dr. E. H. Sellards, Professor of Geology, The University of Texas at Austin. A portion of the Museum's general ope rating funds for this fiscal year has been provided by a grant from the Institute of Museum Services, a federal agency that offers general operating support to the nation's museums. © 1985 by Texas Memorial Museum The University of Texas at Austin All rights reserved Printed in the United States of America CONTENTS Abstract .... .............................................. I Sumario .................................................... 1 Acknowledgements . 2 Abbreviations ............................................... 2 Introduction . 3 A General Description of the Armor . 5 Types and Numbers of Osteoderms .... .. ........................ 6 Structure of Osteoderms . 7 Detailed Description of each Area ................................ 8 Conclusions. 19 References ............ .. .............. ............. ....... 19 LIST OF FIGURES Fig. 1. Restoration of Holmesina septentrionalis based on composite material from Florida ......... ...... .... facing 5 Fig. -
Manual for the Differentiation of Captive-Produced and Wild-Caught Turtles and Tortoises (Testudines)
Image: Peter Paul van Dijk Image:Henrik Bringsøe Image: Henrik Bringsøe Image: Andrei Daniel Mihalca Image: Beate Pfau MANUAL F O R T H E DIFFERENTIATION OF CAPTIVE-PRODUCED AND WILD-CAUGHT TURTLES AND TORTOISES (TESTUDINES) PREPARED BY SPECIES360 UNDER CONTRACT FOR THE CITES SECRETARIAT Manual for the differentiation of captive-produced and wild-caught turtles and tortoises (Testudines) This document was prepared by Species360 under contract for the CITES Secretariat. Principal Investigators: Prof. Dalia A. Conde, Ph.D. and Johanna Staerk, Ph.D., Species360 Conservation Science Alliance, https://www.species360.orG Authors: Johanna Staerk1,2, A. Rita da Silva1,2, Lionel Jouvet 1,2, Peter Paul van Dijk3,4,5, Beate Pfau5, Ioanna Alexiadou1,2 and Dalia A. Conde 1,2 Affiliations: 1 Species360 Conservation Science Alliance, www.species360.orG,2 Center on Population Dynamics (CPop), Department of Biology, University of Southern Denmark, Denmark, 3 The Turtle Conservancy, www.turtleconservancy.orG , 4 Global Wildlife Conservation, globalwildlife.orG , 5 IUCN SSC Tortoise & Freshwater Turtle Specialist Group, www.iucn-tftsG.org. 6 Deutsche Gesellschaft für HerpetoloGie und Terrarienkunde (DGHT) Images (title page): First row, left: Mixed species shipment (imaGe taken by Peter Paul van Dijk) First row, riGht: Wild Testudo marginata from Greece with damaGe of the plastron (imaGe taken by Henrik BrinGsøe) Second row, left: Wild Testudo marginata from Greece with minor damaGe of the carapace (imaGe taken by Henrik BrinGsøe) Second row, middle: Ticks on tortoise shell (Amblyomma sp. in Geochelone pardalis) (imaGe taken by Andrei Daniel Mihalca) Second row, riGht: Testudo graeca with doG bite marks (imaGe taken by Beate Pfau) Acknowledgements: The development of this manual would not have been possible without the help, support and guidance of many people. -
Unprovoked Mouth Gaping Behavior in Extant Crocodylia
Journal of Herpetology, Vol. 54, No. 4, 418–426, 2020 Copyright 2020 Society for the Study of Amphibians and Reptiles Unprovoked Mouth Gaping Behavior in Extant Crocodylia 1,2 3 4 NOAH J. CARL, HEATHER A. STEWART, AND JENNY S. PAUL 1Reptile Department, St. Augustine Alligator Farm Zoological Park, St. Augustine, Florida, 32080, USA 3Department of Biology, McGill University, Montre´al, Que´bec, Canada H3A 1B1 4Greg A. Vital Center for Natural Resources and Conservation, Cleveland State Community College, Cleveland, Tennessee, 37320, USA ABSTRACT.—Unprovoked mouth gaping behavior is ubiquitous throughout 24 extant members of Crocodylia, yet information on gaping Downloaded from http://meridian.allenpress.com/journal-of-herpetology/article-pdf/54/4/418/2696499/i0022-1511-54-4-418.pdf by guest on 25 September 2021 is limited. Proposed hypotheses for gaping include thermoregulation and the evaluation of potential environmental conditions. To determine temperature effects, we tracked head surface (Tsh), body surface (Tsb), and ambient (Ta) temperatures with insolation utilization and positions. To evaluate potential environmental stimuli, we tested behavioral effects (i.e., open-eye frequency) and recorded conspecific presence, day and night events, and interaction with flies and fish. We included 24 extant species representatives, with detailed assessments of American Alligators (Alligator mississippiensis), Crocodylus siamensis, Crocodylus intermedius, Crocodylus rhombifer, and Crocodylus halli. Observations occurred during a range of Ta (3.89–32.228C) with mean Tsh consistently higher than both Tsb and Ta across all crocodilians. Differences in Tsh and Ta were most pronounced with head in the sun. However, no significant differences in Tsh and Tsb were detected for A. -
The First Challenge Walking with Miskwaadesi the First Challenge THIRTEEN MOONS on a TURTLE’S BACK
1. THIRTEEN MOONS ON A TURTLE’S BACK THE FIRST CHALLENGE WALKING WITH MISKWAADESI THE FIRST CHALLENGE THIRTEEN MOONS ON A TURTLE’S BACK Who is Miskwaadesi and what does she need? How important is the Turtle to the people of the world? Can you describe the year in your language or culture according to the 13 moons? Will you accept Miskwaadesi’s challenges and help to make your community and your wetland world a healthier place for everyone and everything? “..come and walk in my footsteps. Bring your grandchildren and great grandchildren, and learn about me and my clan brothers and sisters. Will you help me find a safe and healthy place for my clan brothers and sisters to live? “ “Will you tell the people that everyone needs to work together to make our space a healthy one again?” Miskwaadesi’s 1st challenge. 23 EXPECTATIONS PRACTICING THE LEARNING | FOLLOWING THE FOOTSTEPS TITLE OF ACTIVITY ONTARIO CURRICULUM EXPECTATION WORKSHEET Introduction to Miskwaadesi’s 4e4, 4e5, 4e26 1a - 13 challenges challenges Turtles of the World 4z47, 4z35 1b - Turtles of the World DEMONSTRATING THE LEARNING | MAKING OUR OWN FOOTSTEPS TITLE OF ACTIVITY ONTARIO CURRICULUM EXPECTATION WORKSHEET A Year of the Turtle - 4a43, 4a44, 4a45 Calendar 13 moons Journal Reflection 4a43 Cover page Reflection no.1 4e56 ONE STEP MORE (individual student optional adventures in learning) 1. Research traditional teachings and stories about turtles 2. Tortoises of the World Miskwaadesi, calendar, challenge, tortoise, teaching, WORD WALL: Pleiades, symbol, emblem, 24 LINKS TO OTHER CURRICULUM 1st CHALLENGE Ways of Knowing Guide -– Relationship – the Sky World pg 75 http://www.torontozoo.com/pdfs/Stewardship_Guide.pdf Turtle Curriculum http://www.torontozoo.com/adoptapond/turtleCurriculum.asp 25 KOKOM ANNIE’S JOURNAL THE STORY BEGINS… “…Ahniin my grandchildren, Are you coming to spend the summer with me and your cousins here at Wasauksing? I need your help with a special project. -
Eastern Snake-Necked Turtle
Husbandry Manual for Eastern Snake-Necked Turtle Chelodina longicollis Reptilia: Chelidae Image Courtesy of Jacki Salkeld Author: Brendan Mark Host Date of Preparation: 04/06/06 Western Sydney Institute of TAFE - Richmond Course Name and Number: 1068 Certificate 3 - Captive Animals Lecturers: Graeme Phipps/Andrew Titmuss/ Jacki Salkeld CONTENTS 1. Introduction 4 2. Taxonomy 5 2.1 Nomenclature 5 2.2 Subspecies 5 2.3 Synonyms 5 2.4 Other Common Names 5 3. Natural History 6 3.1 Morphometrics 6 3.1.1 Mass and Basic Body Measurements 6 3.1.2 Sexual Dimorphism 6 3.1.3 Distinguishing Features 7 3.2 Distribution and Habitat 7 3.3 Conservation Status 8 3.4 Diet in the Wild 8 3.5 Longevity 8 3.5.1 In the Wild 8 3.5.2 In Captivity 8 3.5.3 Techniques Used to Determine Age in Adults 9 4. Housing Requirements 10 4.1 Exhibit/Enclosure Design 10 4.2 Holding Area Design 10 4.3 Spatial Requirements 11 4.4 Position of Enclosures 11 4.5 Weather Protection 11 4.6 Temperature Requirements 12 4.7 Substrate 12 4.8 Nestboxes and/or Bedding Material 12 4.9 Enclosure Furnishings 12 5. General Husbandry 13 5.1 Hygiene and Cleaning 13 5.2 Record Keeping 13 5.3 Methods of Identification 13 5.4 Routine Data Collection 13 6. Feeding Requirements 14 6.1 Captive Diet 14 6.2 Supplements 15 6.3 Presentation of Food 15 1 7. Handling and Transport 16 7.1 Timing of Capture and Handling 16 7.2 Capture and Restraint Techniques 16 7.3 Weighing and Examination 17 7.4 Release 17 7.5 Transport Requirements 18 7.5.1 Box Design 18 7.5.2 Furnishings 19 7.5.3 Water and Food 19 7.5.4 Animals Per Box 19 7.5.5 Timing of Transportation 19 7.5.6 Release from Box 19 8. -
The Respiratory Mechanics of the Yacare Caiman (Caiman Yacare Daudine)
First posted online on 29 November 2018 as 10.1242/jeb.193037 Access the most recent version at http://jeb.biologists.org/lookup/doi/10.1242/jeb.193037 The Respiratory Mechanics of the Yacare Caiman (Caiman yacare Daudine) Michelle N. Reichert1, Paulo R.C. de Oliveira2, 3, George M.P.R. Souza4, Henriette G. Moranza5, Wilmer A.Z. Restan5, Augusto S. Abe6, Wilfried Klein2, William K. Milsom7 1Royal Veterinary College, University of London, London, UK 2Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil 3Instituto Federal do Paraná- Câmpus Avançado Goioerê, Goioerê, PR, Brazil 4School of Medicine of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil 5Clinica Médica Veterinária, Universidade Estadual Paulista, Jaboticabal, SP, Brazil 6Departamento de Zoologia, Universidade Estadual Paulista, Rio Claro, SP, Brazil 7Department of Zoology, University of British Columbia, Vancouver, B.C., Canada Author for correspondence: Michelle N Reichert, [email protected] Key words: respiratory mechanics, static compliance, dynamic compliance, elastic forces, resistive forces, work of breathing Summary Statement: The respiratory system of the caiman stiffens during development as the body wall becomes more muscular and keratinized. Most of the work of breathing is required to overcome elastic forces and increases when animals are submerged. Flow resistance, primarily arising from the lungs, plays a significant role at higher ventilation frequencies. © 2018. Published by The Company of Biologists Ltd. Journal of Experimental Biology • Accepted manuscript Abstract The structure and function of crocodilian lungs are unique compared to other reptiles. We examine the extent to which this, and the semi-aquatic lifestyle of crocodilians affect their respiratory mechanics. -
The Osteoderm Microstructure in Doswelliids and Proterochampsids and Its Implications for Palaeobiology of Stem Archosaurs
The osteoderm microstructure in doswelliids and proterochampsids and its implications for palaeobiology of stem archosaurs DENIS A. PONCE, IGNACIO A. CERDA, JULIA B. DESOJO, and STERLING J. NESBITT Ponce, D.A., Cerda, I.A., Desojo, J.B., and Nesbitt, S.J. 2017. The osteoderm microstructure in doswelliids and proter- ochampsids and its implications for palaeobiology of stem archosaurs. Acta Palaeontologica Polonica 62 (4): 819–831. Osteoderms are common in most archosauriform lineages, including basal forms, such as doswelliids and proterochamp- sids. In this survey, osteoderms of the doswelliids Doswellia kaltenbachi and Vancleavea campi, and proterochampsid Chanaresuchus bonapartei are examined to infer their palaeobiology, such as histogenesis, age estimation at death, development of external sculpturing, and palaeoecology. Doswelliid osteoderms have a trilaminar structure: two corti- ces of compact bone (external and basal) that enclose an internal core of cancellous bone. In contrast, Chanaresuchus bonapartei osteoderms are composed of entirely compact bone. The external ornamentation of Doswellia kaltenbachi is primarily formed and maintained by preferential bone growth. Conversely, a complex pattern of resorption and redepo- sition process is inferred in Archeopelta arborensis and Tarjadia ruthae. Vancleavea campi exhibits the highest degree of variation among doswelliids in its histogenesis (metaplasia), density and arrangement of vascularization and lack of sculpturing. The relatively high degree of compactness in the osteoderms of all the examined taxa is congruent with an aquatic or semi-aquatic lifestyle. In general, the osteoderm histology of doswelliids more closely resembles that of phytosaurs and pseudosuchians than that of proterochampsids. Key words: Archosauria, Doswelliidae, Protero champ sidae, palaeoecology, microanatomy, histology, Triassic, USA.