Cephalopoda: Octopoda), in the South Aegean Sea (Eastern Mediterranean)

Total Page:16

File Type:pdf, Size:1020Kb

Cephalopoda: Octopoda), in the South Aegean Sea (Eastern Mediterranean) , " Not to be cited without prior reference to the author International Council for the CM 1998/M:44 Exploration of the Sea Cephalopods Committee Seasonal and spatial changes in the abundance and distribution of Eledone moshata (Cephalopoda: Octopoda), in the South Aegean Sea (Eastern Mediterranean) E. Lefkaditou, A. Siapatis & C. Papaconstantinou National Centre for Marine Research, Agbios Kosmas, Heiliniko, 16604 Athens, Greece ABSTRACT Seasonal and spatial variations in the abundance, distribution and size composition of Eledone moschata , Lamarck (1799) are studied in the insular area of the South Aegean Sea. Samples were collected during four trawl surveys carried out between September 1995 and October 1996, over a total of 51 stations between 30 and 635 m of depth. Eledone moschata was caught up to150 m of depth around the Kyklades islands (western zone), where as, over the wider shelf region of Dodekanisos islands (eastern zone) up to 90 m of depth. Size frequency analysis indicated a series of microcohorts entering the exploited stock in sequence, during almost the whole year. At least three sub-populations have been shown to occur respectively in Dodekanisos, North and South Kyklades areas, by application of Kolmogorov-Smirnov test on length frequency distributions of the specimens, corresponding to different topographic and hydrological characteristics. The greater species abundance and recruitment intensity observed in Dodekanisos are probably related to the seasonal upwelling, generated by Etesian winds during summer in the eastern Aegean Sea. In the western zone, a series of individual spawning areas seem to occur, in the abrupt coastal waters around Kyklades islands, where slight diversification in periods of spawning and recruitment may result a greater number of sub-cohorts. Similar suggestions made for Todarodes pacificus distributed around Japanese islands, indicate that this is probably a common adaptive strategy of cephalopod populations in insular areas. Keywords: Cephalopods, recruitment, Aegean Sea INTRODUCTION Southern Aegean Sea is one of the most oligotrophic areas in the Mediterranean (Stergiou et al.,1997). Upwelling occur during the warm period of the year, specially along the coasts of the Eastern islands and the coast of Asia Minor under the influence of strong Etesian winds. Although not comparable to the great upwelling ecosystems occurring in the major oceans, the seasonal wind-driven upwelling and the standing gyres consist a significant source of nutrients in this area (FAO/GFCM, 1992; Christou et al.,1998). The populations of cephalopod species consist of one or at most two year­ classes, so that temporal fluctuations of productivity could have serious effects on their survival, spawning, recruitment and overall abundance. Several sub-annual cohorts in a year and pelagic larvae widely dispersed by currents, seem to be an evolutionary mechanism for many squid species, to face local recruitment failure (Caddy, 1983). Benthic cephalopods and specially those lacking a pelagic phase during early development, like Eledone moschata (Boletzky, 1975), to assure optimal conditions to spawn and grow, take advantage of upwelling events in coastal regions (Coelho, 1985; Costa & Fernandes, 1993). The musky octopus Eledone moschata (Lamarck, 1799) is a primarily Mediterranean species (Mangold, 1983), found particularly abundant in the Aegean Sea (Bertrand et al., 1998). The scope of the present investigation is to detect the probable relation of the variation in the abundance and distribution of Eledone moschata with the topographic and hydrological characteristics in the study area. MATERIALS AND METHODS South Aegean basin presents a quite complex morphology due to the high number of islands. Moreover, the different water masses entering the Aegean from the adjacent Levantine and Marmara Seas and the weather conditions affect the hydrology and circulation. Thus the study area can be divided in three sub-areas (Fignre 1) with distinctive characteristics: a) Dodekanisos islands located at the eastern zone and characterized by a wider continental shelf. This sub-area is typically under the domination of the high salinity (38.9*10'3 <S< 39.25*10'\ northerly-flowing Levantine surface waters, which fonn a thermohaline front to the Black sea waters flowing down the eastern coastline of the mainland of Greece. The relatively lower temperature values during the warm period are attributed to the extended upwelling generated by Etesian winds (Georgopoulos 1984). b) North Kyklades islands are affected by the less saline waters coming from the Black Sea. The halocline as well as the seasonal thermocline is very well developed under the less saline. surface waters (Theocharis et al.,1990). The coasts around the North Kyklades islands are very abrupt so that isolated small shelf regions are formed. c) South Kyklades islands are located nearest to each other. The water masses which occupy the surface layers are characterized by high temperature and salinity values. These waters coming from the Eastern Mediterranean loose heat and become less saline moving westward through the cyclonic eddies prevailing in this zone (Theocharis et al.,1993). 2349E 38 ,g N 36 '"N 274SE Figure 1. Map of the Southern Aegean Sea showing the position of the hauls in the study area and the considered sub-areas. The stations where Eledone moschata was caught are marked by full rectangles. 12 •Dodekanisos 0 North Kyklades 9 ~..c: ~ South Kyklades Cl ..>:: -~ w ::J 6 D.. U 3 o III IV Cruises Figure 2. Seasonal variation of Eledone moschata CPUE (kg/h) by area September 1995 n =1876 15 10 5 o~~~~~+-~~~--*-~~ o 2 4 6 8 10 12 14 Mantle length (mm) , December 1995 20 1\ / \ n=270 / \ I \ 15 / \, I 0~ I \ / " \ 10 / "\ / \ I 5 / I / / 0 ,---+= ~ 0 2 4 6 8 10 12 14 Mantle length (mm) 20 May 1996 n=692 North Kyklades 15 <f!- South Kyklades 10 Dodekanisos 5 o 2 4 6 8 10 12 14 Mantle length (mm) September 1996 20 n =2246 15 * 10 5 0 0 2 4 6 8 10 12 14 Mantle length (mm) Figure 3. Seasonal length frequency distribution of Eledone moschata by area Four seasonal trawl surveys were carried out in 1995-1996, over a bottom area 2 of 24349 lan , in the southern Aegean Sea (Figure 1). Two depth strata: 0-150 m, > 150 m, were considered and the sampling was based on random-stratified design. The minimum and the maximum depths trawled were 30 m and 635 m respectively. Average CPUE was calculated only for the first depth stratum, where Eledone moschata was caught, separately for each one of the sub-areas. The mantle length (ML) of all specimens was measured to the nearest 0.1 cm. The length frequency distributions of the specimens in the three sub-areas were compared by application of the Kolmogorov-Smimov test. The mean values of surface temperatnre over each one of the sub-areas were derived by image analysis of monthly processed satellite thermal images from May to October of 1995 and 1996. The satellite information came from the A VHRR sensor aboard NOAA 11,12 and 14, supplied by the DLR (Deutsche forchungsanstalt fuer Luft und Raumfahrt e.V.) RESULTS and DISCUSSION Eledone moschata was the most abundant cephalopod, at least in terms of biomass, in the South Aegean Sea. It was caught up to150 m of depth around the Kyklades islands (western zone), whereas, over the wider shelf region of Dodekanisos islands (eastern zone) up to 90 m of depth. An average of 54 individuals per fishing hour was recorded for the whole period, attaining 118 individuals per fishing hour, in Dodekanisos islands, during autnrnn 1996. Recruitment accounts for most of this increase. Similar increase in the species CPUE, has been observed in Adriatic during late autumn when the new year class was supposed to be fully recruited (Manfrin­ Piccinetti & Rizzoli, 1983) In September 1995, CPUE values were higher in the North Kyklades, as compared to those in Dodekanisos and S. Kyklades (Figure 2). This was the result of the higher proportion of adults (ML>6 cm) in the catches at North Kyklades (Figure 3). The low representation of these sizes in the rest sub-areas, is probably due to earlier spawning and decrease of the adults due to post-spawning mortality. However, the size frequency of Eledone moschata caught along the Turkish coasts during September-October 1992 (Salman et al., 1997), peaked at 9 cm ofML. So it could be supposed that, at least in Dodekanisos area, matnre individuals have migrated for spawning towards shallower waters, where no sampling was carried out. Mandic & Sijepcevic (1983) also report that Eledone moschata migrates in very shallow waters during summer in the south-eastern Adriatic. The size composition in North and South Kyklades, especially that of May, indicates a series of microcohorts entering the exploited stock in sequence, during almost the whole year. On the other hand, CPUE values are lower in comparison to those in Dodekanisos. The wide diversity of identifiable cohorts in the population of Todarodes distributed around Japanese islands, were attributed to the existence of individual breeding areas, each one associated with a particular featnre of the continental slope. Spawning and hatching period may differ depending on the circumstances in each site and result diversification in growth rate and timing between sub-cohorts (Osako & Mudara, 1983). Similar suggestions might be reasonable for the population of Eledone moschata distributed in the narrow continental shelf around the Kyklades islands. This is probably a common adaptive strategy of cephalopod populations in complex ecosystems like insular areas. 27 1995 26 25 o o 24 e 23 .aro iii 22 0. ~ 21 I- 20 19 18 May June July Aug. Sep. Oct. 27 1996 26 () 25 o 24 ~ 23 .aro iii 22 0. ~ 21 I- 20 19 18 May June July Aug. Sep. Oct. - Dodekanisos - North Kyklades '-- South Kyklades 4-. Figure l Mean mothly sea surface temperatures over the three sub-areas of Southern Aegean Sea.
Recommended publications
  • Demersal and Epibenthic Assemblages of Trawlable Grounds in the Northern Alboran Sea (Western Mediterranean)
    SCIENTIA MARINA 71(3) September 2007, 513-524, Barcelona (Spain) ISSN: 0214-8358 Demersal and epibenthic assemblages of trawlable grounds in the northern Alboran Sea (western Mediterranean) ESTHER ABAD 1, IZASKUN PRECIADO 1, ALBERTO SERRANO 1 and JORGE BARO 2 1 Centro Oceanográfico de Santander, Instituto Español de Oceanografía, Promontorio de San Martín, s/n, P.O. Box 240, 39080 Santander, Spain. E-mail: [email protected] 2 Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Puerto Pesquero s/n, P.O. Box 285, 29640 Fuengirola, Málaga, Spain SUMMARY: The composition and abundance of megabenthic fauna caught by the commercial trawl fleet in the Alboran Sea were studied. A total of 28 hauls were carried out at depths ranging from 50 to 640 m. As a result of a hierarchical clas- sification analysis four assemblages were detected: (1) the outer shelf group (50-150 m), characterised by Octopus vulgaris and Cepola macrophthalma; (2) the upper slope group (151-350 m), characterised by Micromesistius poutassou, with Plesionika heterocarpus and Parapenaeus longirostris as secondary species; (3) the middle slope group (351-640 m), char- acterised by M. poutassou, Nephrops norvegicus and Caelorhincus caelorhincus, and (4) the small seamount Seco de los Olivos (310-360 m), characterised by M. poutassou, Helicolenus dactylopterus and Gadiculus argenteus, together with Chlorophthalmus agassizi, Stichopus regalis and Palinurus mauritanicus. The results also revealed significantly higher abundances in the Seco de los Olivos seamount, probably related to a higher food availability caused by strong localised cur- rents and upwellings that enhanced primary production. Although depth proved to be the main structuring factor, others such as sediment type and food availability also appeared to be important.
    [Show full text]
  • (Eledone Cirrhosa) in Atlantic Iberian Waters
    Manuscript + Figure captions Click here to download Manuscript Eledone cirrhosa diet.docx Click here to view linked References 1 Factors affecting the feeding patterns of the horned octopus ( Eledone 2 cirrhosa ) in Atlantic Iberian waters 3 4 M. Regueira 1,2* , Á.Guerra 1, C.M. Fernández-Jardón 3,Á.F. González 1 5 6 1Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain. 7 2Departamento de Biologia, Universidade de Aveiro. 3810-193 Aveiro, Portugal. 8 3Facultad de Ciencias Económicas y Empresariales, Departamento de Economía Aplicada, Universidad 9 de Vigo, Campus de Vigo. 36310, Vigo, Spain. 10 11 12 *Corresponding author: [email protected] 13 Tel. (+34) 986 23 19 30 14 Fax. (+34) 986 29 27 62 15 16 17 RUNNING TITLE: Feeding patterns of Eledone cirrhosa 18 KEY WORDS: Cephalopods, Eledone cirrhosa , diet, feeding patterns, Atlantic Iberian waters, 19 Multinomial Logistic Regression. 1 20 Abstract The present study combines morphological and molecular analysis of stomach contents 21 (n=2,355) and Multinomial Logistic Regression (MLR) to understand the diet and feeding patterns of the 22 horned octopus Eledone cirrhosa inhabiting Atlantic Iberian waters. Specimens were collected monthly 23 from commercial bottom trawl fisheries between February 2009 and February 2011 in three fishing 24 grounds (North Galicia, West Galicia and North Portugal), located between 40.6 -43. 6°N and 8.6 -7.36°W. 25 Based on stomach analysis, horned octopuses in the region consumed mainly crustaceans, followed by 26 teleost fish, echinoderms, molluscs and polychaetes. Molecular analysis of 14 stomach contents 27 confirmed the visual identification of pre y items as well as cannibalistic events.
    [Show full text]
  • Female Description of the Hydrothermal Vent Cephalopod Vulcanoctopus Hydrothermalis A.F
    Journal of the Marine Biological Association of the United Kingdom, 2008, 88(2), 375–379. #2008 Marine Biological Association of the United Kingdom doi:10.1017/S0025315408000647 Printed in the United Kingdom Female description of the hydrothermal vent cephalopod Vulcanoctopus hydrothermalis a.f. gonzÆlez1, a. guerra1, s. pascual1 and m. segonzac2 1ECOBIOMAR, Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain, 2IFREMER, Centre de Brest, Laboratoire Environnement Profond, BP 70, 29280-Plouzane´, France During biological sampling of hydrothermal vents on the East Pacific Rise, the manned submersible ‘Nautile’ caught the first female of the endemic cephalopod Vulcanoctopus hydrothermalis. The specimen caught at the vent site Gromit (21833 660S, 114817 980W at 2832 m depth) is described here in detail and an amended diagnosis of the species proposed. The external morphology, measurements and internal structure resemble that of males of this species. One of the most remarkable char- acters is the lack of spermathecae and the absence of apical filaments in the oocytes to provide a site for sperm storage. It is suggested that some species of the genera Benthoctopus and Bathypolypus would be the most suitable octopod ancestor of V. hydrothermalis. Keywords: hydrothermal vent, cephalopods, Vulcanoctopus hydrothermalis, female description Submitted 20 April 2007; accepted 29 November 2007 INTRODUCTION et al., 2006). It inhabits an isolated extreme environment very close to the base of the chimneys and is also observed The study of chemosynthetic ecosystems in the deep sea rep- on the pillow lava at several metres from the active areas. resents a challenging issue due to the difficulty of sampling, This benthic species has characters that represent adaptations which involves the use of modern technologies such as either to the deep-sea or to a hydrothermal vent habitat manned submersibles.
    [Show full text]
  • On the Cephalopod Phosphagen by Ernest Baldwin, B.A
    222 ON THE CEPHALOPOD PHOSPHAGEN BY ERNEST BALDWIN, B.A. (From the Biochemical Laboratory, Cambridge, and the Marine Biological Station, Tamaris, Var, France.) (Received 8th November, 1932.) (With Four Text-figures.) INTRODUCTION. THE comparative researches of Eggleton & Eggleton(s) on the distribution of phosphagen made it clear that while creatine phosphate is very widely distributed amongst the vertebrates, it is not present in the invertebrates. Shortly afterwards, a new phosphagenic substance was isolated from crab muscle by Meyerhof & Lohmann(n, 12) and shown to be arginine phosphate, while the later work of Lundsgaard (9) has made it certain that this compound plays in these tissues a part exactly analogous to that played by the creatine compound in vertebrate muscles. Later, Meyerhof (10) examined a number of invertebrates, representative of several phyla, and came to the conclusion that arginine phosphate is present in Holothuria, Pecten and Sipunculus. Cephalopod muscle contained no phosphagen. The case of the cephalopods was further examined by Needham, Needham, Baldwin & Yudkin (13), who not only found that the muscles of Sepia and of Octopus do contain phosphagen, but were also able to investigate its ontogeny in the former (14). There seemed no reason to think that the compound present was any- thing other than the arginine compound (8). Ackermann, Holtz & Kutscherw claim to have isolated the copper nitrate salt of arginine from extracts of the cephalopod Eledone moschata, while Okuda(is) has made a similar claim in the case of Loligo breekert, whereas Iseki (7) has been able to isolate no arginine from extracts of Octopus, finding in its place a compound which he isolated in the form of its picrate, and which he thinks may be a methyl agmatine.
    [Show full text]
  • Concluding Remarks
    Concluding Remarks The bulk of secretory material necessary for the encapsulation of spermatozoa into a spermatophore is commonly derived from the male accessory organs of re­ production. Not surprisingly, the extraordinary diversity in size, shape, and struc­ ture of the spermatophores in different phyla is frequently a reflection of the equally spectacular variations in the anatomy and secretory performance of male reproductive tracts. Less obvious are the reasons why even within a given class or order of animals, only some species employ spermatophores, while others de­ pend on liquid semen as the vehicle for spermatozoa. The most plausible expla­ nation is that the development of methods for sperm transfer must have been in­ fluenced by the environment in which the animals breed, and that adaptation to habitat, rather than phylogeny, has played a decisive role. Reproduction in the giant octopus of the North Pacific, on which our attention has been focussed, pro­ vides an interesting example. During copulation in seawater, which may last 2 h, the sperm mass has to be pushed over the distance of 1 m separating the male and female genital orifices. The metre-long tubular spermatophore inside which the spermatozoa are conveyed offers an obvious advantage over liquid semen, which could hardly be hauled over such a long distance. Apart from acting as a convenient transport vehicle, the spermatophore serves other purposes. Its gustatory and aphrodisiac attributes, the provision of an ef­ fective barrier to reinsemination, and stimulation of oogenesis and oviposition are all of great importance. Absolutely essential is its function as storage organ for spermatozoa, at least as effective as that of the epididymis for mammalian spermatozoa.
    [Show full text]
  • Marine Invertebrate Diversity in Aristotle's Zoology
    Contributions to Zoology, 76 (2) 103-120 (2007) Marine invertebrate diversity in Aristotle’s zoology Eleni Voultsiadou1, Dimitris Vafi dis2 1 Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR - 54124 Thessaloniki, Greece, [email protected]; 2 Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, Uni- versity of Thessaly, 38446 Nea Ionia, Magnesia, Greece, dvafi [email protected] Key words: Animals in antiquity, Greece, Aegean Sea Abstract Introduction The aim of this paper is to bring to light Aristotle’s knowledge Aristotle was the one who created the idea of a general of marine invertebrate diversity as this has been recorded in his scientifi c investigation of living things. Moreover he works 25 centuries ago, and set it against current knowledge. The created the science of biology and the philosophy of analysis of information derived from a thorough study of his biology, while his animal studies profoundly infl uenced zoological writings revealed 866 records related to animals cur- rently classifi ed as marine invertebrates. These records corre- the origins of modern biology (Lennox, 2001a). His sponded to 94 different animal names or descriptive phrases which biological writings, constituting over 25% of the surviv- were assigned to 85 current marine invertebrate taxa, mostly ing Aristotelian corpus, have happily been the subject (58%) at the species level. A detailed, annotated catalogue of all of an increasing amount of attention lately, since both marine anhaima (a = without, haima = blood) appearing in Ar- philosophers and biologists believe that they might help istotle’s zoological works was constructed and several older in the understanding of other important issues of his confusions were clarifi ed.
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • What's On? What's Out?
    CCIIAACC NNeewwsslleetttteerr Issue 2, September 2010 would like to thank everyone the cephalopod community. So EEddiittoorriiaall Ifor their contributions to this if you find yourself appearing Louise Allcock newsletter. To those who there, don't take it as a slur on responded rapidly back in June your age - but as a compliment to my request for copy I must to your contribution!! apologise. A few articles didn't One idea that I haven't had a make the deadline of 'before my chance to action is a suggestion summer holiday'... Other from Eric Hochberg that we deadlines then had to take compile a list of cephalopod precedence. PhD and Masters theses. I'll Thanks to Clyde Roper for attempt to start this from next suggesting a new section on year. If you have further 'Old Faces' to complement the suggestions, please let me have 'New Faces' section and to them and I'll do my best to Sigurd von Boletzky for writing incorporate them. the first 'Old Faces' piece on Pio And finally, the change in Fioroni. You don't have to be colour scheme was prompted dead to appear in 'Old Faces': in by the death of my laptop and fact you don't actually have to all the Newsletter templates be old - but you do have to have that I had so lovingly created. contributed years of service to Back up? What back up... WWhhaatt''ssoonn?? 9tth - 15tth October 2010 5th International Symposium on Pacific Squid La Paz, BCS, Mexico. 12tth - 17tth June 2011 8th CLAMA (Latin American Congress of Malacology) Puerto Madryn, Argentina See Page 13 for more details 18tth - 22nd June 2011 6th European Malacology Congress Vitoria, Spain 2012 CIAC 2012 Brazil WWhhaatt''ssoouutt?? Two special volumes of cephalopod papers are in nearing completion.
    [Show full text]
  • Volume 16 - Résultats Des Campagnes Musorsidm, Volume 16 - Résultats Des ' 7
    ÉSULTATS DES CAMPAGNES MUSORSIDM, VOLUME 16 - RÉSULTATS DES CAMPAGNES MUSORSIDM, VOLUME 16 - RÉSULTATS DES ' 7 Mollusca Cephalopoda: Mid-depth octopuses (200-1000 m) of the Banda and Arafura Seas (Octopodidae and Alloposidae) Mark D. NORMAN*, F.G. HOCHBERG** & c.c. LU*** *Department of Zoology, University of Melbourne Parkville, VIC 3052, Australia **Invertebrate Zoology, Santa Barbara Museum of Natural History 2559 Puesta deI Sol Road., Santa Barbara, CA 93105, USA ***Invertebrate Zoology, Museum of Victoria, 328 Swanston Walk Melbourne, VIC 3000, Australia ABSTRACT Six mid-depth octopuses of the Order Octopoda are reported from the Banda and Arafura Seas off Indonesia and northern Australia, based on material collected through the collaborative French-Indonesian KARuBAR cmise of 1991. Octopod material was collected through benthic trawls at 18 of 91 stations, at depths between 199 and 869 metres. Two new species are described here, Benthoctopus karubar sp. nov. and Octopus pyrum sp. nov. An additional species of the genus Octopus is reported as indeterminate but distinct from O. pyrum. The genus Pteroctopus is reported from Indo- Pacifie waters for the first time, based on female material collected through the KARuBAR cmise and linked with additional male material collected off New Caledonia and Vanuatu. Eledone palari is recorded as a northerly extension to the Australian distribution reported in the original description for this species. A single submature female of the pelagie octopod, Haliphron atlanticus (previously treated under the name Alloposus mollis), is also reported from the region. The depth distributions and phylogenetic affinities of this fauna are discussed. RÉSUMÉ Mollusca Cephalopoda : Pieuvres bathyales (200-1000 m) des mers de Banda et d'Ararura (Octopodidae et Alloposidae).
    [Show full text]
  • Phospholipids in Mediterranean Cephalopods Vassilia J
    Phospholipids in Mediterranean Cephalopods Vassilia J. Sinanoglou and Sofia Miniadis-Meimaroglou* Food Chemistry Laboratory, Department of Chemistry, University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece. Fax: (301) 7228815; (301) 7483415. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 55c, 245-255 (2000); received September 29/November 2, 1999 Cephalopods, Octopus Lipids, Phospholipids Polar lipids of the cephalopods Eledone moschata, Sepia officinalis and Todarodes sagittatus mantle, represent 50.5%, 66.1% and 74.2% of wet tissue respectively. On the other hand the polar lipids of these three species of cephalopods constitute of 80.8%, 94.8% and 93.7% of phospholipids, respectively. The main phospholipids identified were phosphatidylcholine (52.2, 51.3 and 58.4% of total phospholipids respectively in the above mentioned species), phosphatidylethanolamine (18.1, 19.7 and 23.9%), sphingomyelin (10.7, 15.2 and 6.7%), lyso- phosphatidylcholine (3.1, 3.8 and 1.8%) and the unusual lipid ceramide aminoethylphospho- nic acid (15.9, 10 and 9.2%). The 56.8% of phosphatidylcholine in Eledone moschata, the 46% in Sepia officinalis and the 74.1% in Todarodes sagittatus refer to the structure of 1,2-diacyl-glycerocholine and the remaining percentage refer to the structure of l-oalkyl-2-acyl-glycerocholine or l-o-alkyl-l- enyl-2-acyl-glycerocholine. The 87.2% of phosphatidylethanolamine in Eledone moschata , the 81% in Sepia officinalis and the 90.7% in Todarodes sagittatus refer to the structure of 1,2-diacyl-glyceroethanolamine and the remaining percentage refer to the structure of l-o-alkyl-2-acyl-glyceroethanolamine or l-oalkyl-l-enyl-2-acyl-glyceroethanolamine.
    [Show full text]
  • Fish, Crustaceans, Molluscs, Etc Capture Production by Species
    465 Fish, crustaceans, molluscs, etc Capture production by species items Atlantic, Northeast C-27 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Atlantique, nord-est (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Atlántico, nordeste English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 2005 2006 2007 2008 2009 2010 2011 Nombre inglés Nombre científico Grupo de especies t t t t t t t Freshwater bream Abramis brama 11 1 322 1 240 1 271 1 386 1 691 1 608 1 657 Freshwater breams nei Abramis spp 11 1 420 1 643 1 624 1 617 1 705 1 628 1 869 Common carp Cyprinus carpio 11 - 0 - 1 0 2 2 Tench Tinca tinca 11 5 10 9 13 14 11 14 Crucian carp Carassius carassius 11 45 24 38 30 43 36 33 Roach Rutilus rutilus 11 3 334 3 409 3 571 2 935 2 957 2 420 2 662 Rudd Scardinius erythrophthalmus 11 - - - - - - 3 Orfe(=Ide) Leuciscus idus 11 152 220 220 268 262 71 83 Vimba bream Vimba vimba 11 129 84 99 97 93 91 116 Sichel Pelecus cultratus 11 393 254 380 372 417 312 423 Asp Aspius aspius 11 17 27 26 4 31 3 2 White bream Blicca bjoerkna 11 - - 0 1 1 23 70 Cyprinids nei Cyprinidae 11 80 132 91 121 162 45 94 Northern pike Esox lucius 13 2 049 3 125 3 077 1 915 1 902 1 753 1 838 Wels(=Som) catfish Silurus glanis 13 0 1 1 1 2 3 2 Burbot Lota lota 13 185 257 247 121 134 127 128 European perch Perca fluviatilis 13 5 460 6 737 6 563 5 286 5 145 5 072 5 149 Ruffe Gymnocephalus cernuus 13 1 2 2 1 1 33 61 Pike-perch Sander lucioperca 13 1 698 2 017 2 117 1 730 1 768 1 404 1 653 Freshwater
    [Show full text]
  • Influence of Tow Duration on Catch Performance of Trawl Survey in the Mediterranean Sea
    RESEARCH ARTICLE Influence of tow duration on catch performance of trawl survey in the Mediterranean Sea Antonello Sala* Italian National Research Council (CNR), Institute of Marine Sciences (ISMAR), Ancona, Italy * [email protected] Abstract The aim of this study was to assess the effect of tow duration on catch per unit of swept area a1111111111 (CPUE), trawl catch performance, and the proportion of the species caught in a trawl survey. a1111111111 Longer tows are expected to have a greater probability of catching species. An average of a1111111111 26 species were caught in the first 30 minutes, whereas only about one additional species a1111111111 was caught in the next 30 minutes in longer tows. The shorter tows involved a decrement in a1111111111 catch weight for 11 of the 12 target species sampled, demonstrating that tow duration did affect catch per unit of swept area CPUE. The shorter tows were associated with a signifi- cant reduction of the overall CPUE in terms of weight of the main target species and of the total catch (circa 60%). The same strong reduction of around 70% was found in particular for OPEN ACCESS European hake (Merluccius merluccius) and surmullet (Mullus spp) and 50% for Nephrops Citation: Sala A (2018) Influence of tow duration (Nephrops norvegicus). The shorter tows were less efficient in catching large-sized hake, on catch performance of trawl survey in the Mediterranean Sea. PLoS ONE 13(1): e0191662. surmullet, Nephrops, Atlantic horse mackerel (Trachurus trachurus), and poor cod (Trisop- https://doi.org/10.1371/journal.pone.0191662 terus minutus), even though the difference was significant only for Nephrops.
    [Show full text]