Bioplastic and Its Applications in the Sporting Goods Industry

Total Page:16

File Type:pdf, Size:1020Kb

Bioplastic and Its Applications in the Sporting Goods Industry Bioplastic and its Applications in the Sporting Goods Industry Yusuf Jihad Environmental/Green Science Team Baseball, football and basketball are three of the most popular sports in America. In soccer, which is one of the country's most popular youth sports, more than 650,000 players are involved. In Pop Warner Football, participation has more than tripled in the last 15 years, from about 130,000 players to 425,000 players, while more than 2.2 million American kids are involved in playing baseball. In each sport a piece of equipment is used ranging from baseballs to bats to soccer balls and cleats. To make sporting goods requires a lot of petroleum based plastic, which contributes to global warming, increases landfill usage and maintains our dependency on oil. I think it would be better if we used bioplastic to make sporting goods rather than using petroleum. Bioplastics are a form of plastics made from renewable biomass sources, such as vegetable fats, oils, and corn starch, rather than fossil fuel. They are used for making items such as food packaging and garbage bags, just to name a few. The manufacturing process of bioplastic is complex. To make starch based bioplastic the starch is extracted from corn, wheat, or peas and then is washed and dried. Afterwards, the starch is combined with a secondary polymer ingredient. During the extrusion process, a chemical reaction binds the starch with the polymer making a biodegradable polymer resin. Page 1 of 4 © 2011. ECOTEK. All Rights Reserved The production and use of bioplastics is generally regarded as a more sustainable activity when compared with plastic production from petroleum, because it relies less on fossil fuel as a carbon source and also introduces fewer greenhouse emissions. According to Italian bioplastic manufacturer, Nova Mont, producing one kilogram of its starch-based product uses 500g of petroleum and consumes twenty percent (20%) less energy required that what is needed to produce a traditional polyethylene polymer. According to Nature-Works, the only commercial manufacturer of PLA (polylactic acid) bioplastic, says that making its plastic material delivers a fossil fuel saving of between twenty five (25%) and sixty-eight percent (68%) compared with polyethylene. The sporting goods industry is a $40 billion dollar market. Sporting goods stores retail new sporting goods, including bicycles, camping goods, exercise and fitness goods, apparel, footwear and other accessories. In many of these products petroleum is the base feedstock used. For example, in the game of hockey, the puck, stick, skates, player’s helmet, and goalie’s mask are all made from plastic. In the game of football, nearly 75% of the goods, ranging from player mouth pieces to shoulder pads to cleats are made of petroleum based plastic. What if these items were made from biodegradable plastic? There are a number of benefits to using biodegradable plastic to make sporting goods. First, it will increase recycling opportunities. In a survey I conducted with 50 student athletes at schools across Metro Detroit, over 98% of the respondents indicated that they do not recycle their sporting goods. They just throw used equipment in the garbage when they no longer need it. Secondly, it will make athletes more aware of green science. In my survey, over 85% respondents had no idea about green science. Page 2 of 4 © 2011. ECOTEK. All Rights Reserved Thirdly, using bioplastic to make sporting goods will also reduce the number of safety risks involved with plastics. For example, many helmets have a plastic shell, EPS foam liner, nylon or polyethelene straps and a plastic buckle. Helmet shells may be made of the type of plastics are suspected of leaching out the chemical Bisphenol A (BPA). Innovation and invention is an important outcome of scientific research. To help me better understand the benefits of bioplastic. I have spent several weeks working at Ecotek Lab creating prototypes of various sporting items using biobased feedstocks. To date, I have created a biodegradable baseball, football and hockey puck. My research partners and I have had fun testing out our innovations. Some of the tests we performed included tensile strength and impact strength. A tensile test, also known as tension test, is used to measure how a material responds to being pulled. The stronger the material, the more force needed to cause it to break. A value called "yield strength" of a material is defined as the stress applied to the material at which plastic deformation starts to occur while the material is loaded. The impact strength of a material is determined by measuring the energy absorbed in the fracture of the specimen. It can be determined with a Charpy or Izod test using a pendulum system. This is determined by noting the height at which the pendulum is released and the height to which the pendulum swings after it has struck the specimen. The height of the pendulum times the weight of the pendulum produces the potential energy and the difference in potential energy of the pendulum at the start and the end of the test is equal to the absorbed energy. Page 3 of 4 © 2011. ECOTEK. All Rights Reserved In conclusion, the sporting goods industry uses a lot of plastic. Most of the plastic used is made from petroleum based feedstocks. A possible solution is bioplastic. With the increase in popularity of sporting activities such as soccer, this is the perfect time to discuss the concept of green sports. In addition to the environmental benefits, using bioplastic in making sporting goods will reduce some of the health risks associated with petroleum based plastic as well. I believe that green science will change the landscape of athletics, one sport at a time. References 1. Stevens, E.S. 2002. Green Plastics: An Introduction to the New Science of Biodegradable Plastics. Princeton University Press. Princeton, New Jersey 2. Pop Warner Youth Football, http://www.popwarner.com 3. American Youth Soccer Organization, http://www.ayso.org 4. National Sporting Goods Association, http://www.nsga.org Page 4 of 4 © 2011. ECOTEK. All Rights Reserved.
Recommended publications
  • A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds
    polymers Review A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds M. Sai Bhargava Reddy 1 , Deepalekshmi Ponnamma 2 , Rajan Choudhary 3,4,5 and Kishor Kumar Sadasivuni 2,* 1 Center for Nanoscience and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad 500085, India; [email protected] 2 Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; [email protected] 3 Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia; [email protected] 4 Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia 5 Center for Composite Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia * Correspondence: [email protected] Abstract: Tissue engineering (TE) and regenerative medicine integrate information and technology from various fields to restore/replace tissues and damaged organs for medical treatments. To achieve this, scaffolds act as delivery vectors or as cellular systems for drugs and cells; thereby, cellular material is able to colonize host cells sufficiently to meet up the requirements of regeneration and repair. This process is multi-stage and requires the development of various components to create the desired neo-tissue or organ. In several current TE strategies, biomaterials are essential compo- nents. While several polymers are established for their use as biomaterials, careful consideration of the cellular environment and interactions needed is required in selecting a polymer for a given Citation: Reddy, M.S.B.; Ponnamma, application.
    [Show full text]
  • Biodegradation of Polymers
    Indian Journal of Biotechnology Vol. 4, April 2005, pp 186-193 Biodegradation of polymers Premraj R1 and Mukesh Doble2* 1Centre for Biotechnology, Anna University, Chennai 600 025, India 2Departmemt of Biotechnology, Indian Institute of Technology, Chennai 600 036, India Received 9 January 2004; revised 14 May 2004; accepted 25 May 2004 Exhaustive studies on the degradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. Recent work has included studies of the distribution of synthetic polymer-degrading microorganisms in the environment, the isolation of new microorganisms for biodegradation, the discovery of new degra- dation enzymes, and the cloning of genes for synthetic polymer-degrading enzymes. Under ambient conditions, polymers are known to undergo degradation, which results in the deterioration of polymer properties, characterized by change in its molecular weight and other physical properties. In this paper mainly the biodegradation of synthetic polymers such as polyethers, polyesters, polycaprolactones, polylactides, polylactic acid, polyurethane, PVA, nylon, polycarbonate, polyimide, polyacrylamide, polyamide, PTFE and ABS have been reviewed. Pseudomonas species degrade polyethers, polyesters, PVA, polyimides and PUR effectively. No microorganism has been found to degrade polyethylene without additives such as starch. None of the biodegradable techniques has become mature enough to become a technology yet. Keywords: biodegradation, polymer, biodegradable polymers IPC Code: Int. Cl.7 A01N63/04; C08C; C08F10/02, 12/08, 18/08, 114/26, 120/56; C08G18/00, 63/00, 64/00, 65/00, 69/00, 69/14, 73/10 Introduction Some types of plastics have been shown to be Approximately 140 million tonnes of synthetic biodegradable, and their degradation mechanisms polymers are produced worldwide every year.
    [Show full text]
  • Polymer Biodegradation and Biodegradable Polymers – a Review
    Polish J. of Environ. Stud. Vol. 19, No. 2 (2010), 255-266 Review Polymer Biodegradation and Biodegradable Polymers – a Review Katarzyna Leja*, Grażyna Lewandowicz Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland Received: 3 June 2009 Accepted: 2 November 2009 Abstract Synthetic polymers are important in many branches of industry, for example in the packaging industry. However, they have an undesirable influence on the environment and cause problems with waste deposition and utilization. Thus, there is a tendency to substitute such polymers with polymers that undergo biodegrad- able processes. Increasing interest in applying polymers based on natural materials such as starch has been observed. This review describes biodegradation processes of xenobiotics such as aromatic compounds, plastics (PVA, polyesters, polyethylene, and nylon), and polymer blends (Starch/Polyethylene, Starch/Polyester, and Starch/PVA). Moreover, this review includes information about biodegradable polymers such as mixtures of synthetic polymers and substances that are easy digestible by microorganisms (chemically modified starch, starch-polymer composites, thermoplastic starch, and biodegradable packing materials), synthetic materials with groups susceptible to hydrolytic microbial attack (polycaprolactone), and biopolyesters (poly-β-hydrox- yalkanoates). Production of this kind of material and introducing it to the market is important for the natural environmental. It may result in decreasing the volume of waste dumps. Keywords: biodegradation, biodegradable polymers, xenobiotics Introduction pollution of groundwater and surface water. Synthetic poly- mers are recognized as major solid waste environmental Developments in science and technology, especially pollutants. Another problem is disposal of agricultural plas- over the last two decades, have increased the amount of tic wastes.
    [Show full text]
  • Compostable Polymer Materials This Page Intentionally Left Blank Compostable Polymer Materials
    Compostable Polymer Materials This page intentionally left blank Compostable Polymer Materials Ewa Rudnik Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands First edition 2008 Copyright © 2008 Elsevier Ltd. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (ϩ44) (0) 1865 843830; fax (ϩ44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress ISBN: 978-0-08-045371-2 For information on all elsevier publications visit our website at www.books.elsevier.com Typeset by Charon Tec Ltd (A Macmillan Company), Chennai, India www.charontec.com Printed and bound in Hungary 08 09 10 10 9 8 7 6 5 4 3 2 1 Contents Preface vii
    [Show full text]
  • Environmental Biodegradability of Recombinant Structural Protein
    www.nature.com/scientificreports OPEN Environmental biodegradability of recombinant structural protein Yuya Tachibana1,2*, Sunita Darbe3, Senri Hayashi1, Alina Kudasheva3, Haruna Misawa1, Yuka Shibata1 & Ken‑ichi Kasuya1,2* Next generation polymers needs to be produced from renewable sources and to be converted into inorganic compounds in the natural environment at the end of life. Recombinant structural protein is a promising alternative to conventional engineering plastics due to its good thermal and mechanical properties, its production from biomass, and its potential for biodegradability. Herein, we measured the thermal and mechanical properties of the recombinant structural protein BP1 and evaluated its biodegradability. Because the thermal degradation occurs above 250 °C and the glass transition temperature is 185 °C, BP1 can be molded into sheets by a manual hot press at 150 °C and 83 MPa. The fexural strength and modulus of BP1 were 115 ± 6 MPa and 7.38 ± 0.03 GPa. These properties are superior to those of commercially available biodegradable polymers. The biodegradability of BP1 was carefully evaluated. BP1 was shown to be efciently hydrolyzed by some isolated bacterial strains in a dispersed state. Furthermore, it was readily hydrolyzed from the solid state by three isolated proteases. The mineralization was evaluated by the biochemical oxygen demand (BOD)‑ biodegradation testing with soil inocula. The BOD biodegradability of BP1 was 70.2 ± 6.0 after 33 days. Many commercially available polymers have some associated environmental problems1,2. Te increase in the production and subsequent disposal of synthetic polymers causes serious environmental pollution because these polymers do not degrade in the natural environment.
    [Show full text]
  • Biodegradable Polymers
    Chapter 6 Biodegradable Polymers Babak Ghanbarzadeh and Hadi Almasi Additional information is available at the end of the chapter http://dx.doi.org/10.5772/56230 1. Introduction In developing countries, environmental pollution by synthetic polymers has assumed dangerous proportions. Petroleum-derived plastics are not readily biodegradable and because of their resistance to microbial degradation, they accumulate in the environment. In addition in recent times oil prices have increased markedly. These facts have helped to stimulate interest in biodegradable polymers. Biodegradable plastics and polymers were first introduced in 1980s. Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons: firstly environmental concerns, and secondly the realization that our petroleum resources are finite. There are many sources of biodegradable plastics, from synthetic to natural polymers. Natural polymers are available in large quantities from renewable sources, while synthetic polymers are produced from non-renewable petroleum resources. Biodegradation of polymeric biomaterials involves cleavage of hydrolytically or enzymatically sensitive bonds in the polymer leading to polymer erosion. A vast number of biodegradable polymers have been synthesized recently and some microorganisms and enzymes capable of degrading them have been identified. The objective of this chapter is to classification of biodegradable polymers. The chemical structure, sources, production and synthesis methods, physical properties (mechanical, barrier and thermal properties) and applications of most important biodegradable polymers would be discussed. 2. Classification and properties of biodegradable polymers The biodegradable polymers can be classified according to their chemical composition, origin and synthesis method, processing method, economic importance, application, etc.
    [Show full text]
  • Functionalized Synthetic Biodegradable Polymer Scaffolds for Tissue Engineering
    Review Functionalized Synthetic Biodegradable Polymer Scaffolds for Tissue Engineering Xiaohua Liu, Jeremy M. Holzwarth, Peter X. Ma* Scaffolds (artificial ECMs) play a pivotal role in the process of regenerating tissues in 3D. Biodegradable synthetic polymers are the most widely used scaffolding materials. However, synthetic polymers usually lack the biological cues found in the natural extracellular matrix. Significant efforts have been made to synthesize biode- gradable polymers with functional groups that are used to couple bioactive agents. Presenting bioactive agents on scaffolding surfaces is the most efficient way to elicit desired cell/material interactions. This paper reviews recent advancements in the development of functionalized biodegradable polymer scaffolds for tissue engineering, emphasizing the syntheses of functional biodegradable polymers, and surface modification of polymeric scaffolds. 1. Introduction scaffold serves as a template for tissue regeneration and plays a pivotal role in cell adhesion, proliferation, As a multi-disciplinary field, tissue engineering integrates differentiation, and new tissue formation in three dimen- materials science with regenerative medicine by applying sions (3D). Ideally, a scaffold should be designed to possess the principles of engineering and biology to clinical the following characteristics: (i) a biocompatible and issues.[1] A typical tissue engineering strategy can be biodegradable substrate with controllable degradation separated into three components: a scaffold [an artificial rates;
    [Show full text]
  • Biodegradable Polymer Nanocomposites Applied to Technical Textiles: a Review
    DYNA ISSN: 0012-7353 ISSN: 2346-2183 Universidad Nacional de Colombia Biodegradable polymer nanocomposites applied to technical textiles: a review Caicedo, Carolina; Melo-López, Leticia; Cabello-Alvarado, Christian; Cruz-Delgado, Víctor J.; Ávila-Orta, Carlos A. Biodegradable polymer nanocomposites applied to technical textiles: a review DYNA, vol. 86, no. 211, 2019 Universidad Nacional de Colombia Available in: http://www.redalyc.org/articulo.oa?id=49663345033 DOI: 10.15446/dyna.v86n211.80230 PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Artículos Biodegradable polymer nanocomposites applied to technical textiles: a review Nanocompuestos poliméricos biodegradables aplicados a textiles técnicos: una revisión Carolina Caicedo a [email protected] Universidad Santiago de Cali, Colombia Leticia Melo-López b [email protected] CONACYT-Centro de Investigación en Química Aplicada, Mexico Christian Cabello-Alvarado b [email protected] CONACYT-Centro de Investigación en Química Aplicada, Mexico Víctor J. Cruz-Delgado c [email protected] CONACYT-Unidad de Materiales, Mexico Carlos A. Ávila-Orta b [email protected] CONACYT-Centro de Investigación en Química Aplicada, Mexico DYNA, vol. 86, no. 211, 2019 Universidad Nacional de Colombia Received: 08 June 2019 Revised document received: 24 October Abstract: Based on the results of research papers reflected in the scientific literature, 2019 the main examples, methods and perspectives for the development of technical textiles Accepted: 15 November 2019 are considered. e focus of this work is to concentrate the results obtained for different DOI: 10.15446/dyna.v86n211.80230 textile applications (technical textiles) through the use of biodegradable polymers modified and improved with nanoparticles.
    [Show full text]
  • Modern Biodegradable Plastics—Processing and Properties Part II
    materials Article Modern Biodegradable Plastics—Processing and Properties Part II Janusz W. Sikora 1,*, Łukasz Majewski 1 and Andrzej Puszka 2 1 Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland; [email protected] 2 Department of Polymer Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, ul. Gliniana 33, 20-614 Lublin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-8153-84-222 Abstract: Four different plastics were tested: potato starch based plastic (TPS-P)–BIOPLAST GF 106/02; corn starch based plastic (TPS-C)–BioComp BF 01HP; polylactic acid (polylactide) plastic (PLA)—BioComp BF 7210 and low density polyethylene, trade name Malen E FABS 23-D022; as a petrochemical reference sample. Using the blown film extrusion method and various screw rotational speeds, films were obtained and tested, as a result of which the following were determined: breaking stress, strain at break, static and dynamic friction coefficient of film in longitudinal and transverse direction, puncture resistance and strain at break, color, brightness and gloss of film, surface roughness, barrier properties and microstructure. The biodegradable plastics tested are characterized by comparable or even better mechanical strength than petrochemical polyethylene for the range of film blowing processing parameters used here. The effect of the screw rotational speed on the mechanical characteristics of the films obtained was also demonstrated. With the increase in the screw rotational speed, the decrease of barrier properties was also observed. No correlation between roughness and permeability of gases and water vapor was shown.
    [Show full text]
  • Table of Contents
    Table of Contents PAGE POC 2012 Organizing, Scientific 6 and International Advisory Committees Message from the Conference Chair 7 Message from our Premier Sponsor 9 Welcome to Qatar 11 Discover Qatar! 12 Our Proud Sponsors 14 Our Keynote Lecturer: Dr. Robert H Grubbs 19 POC 2012 Session Chairs 20 Schedule of Events 24 Oral Presentation 32 Poster Presentations 114 Index 197 POLYOLEFINS (32-41) Olefin polymerization with metallocene and “post metallocene” derivatives of zirconium. J. Bercaw Single site catalysis for olefin polymerisation, polyolefin depolymerisation and related reactions. J. Basset Approaching olefin polymerization from first principle. T. Ziegler Stereoselective (co)polymerizations of styrene with single-site mono-component and binary lanthanidocene catalysts. J. Carpentier Influence of combination of fillers and fibers on the morphological, thermal and mechanical properties of recycled polymers. M. Al-Maadeed New polymers by metallocene catalysed ofefin polymerization. W. Kaminsky The activation of soluble olefin polymerization catalysts. M. Bochmann Comprehensive approach from active sites to particle for the next generation Ziegler-Natta catalysts. M. Terano Single site catalyst molecular design and multicomponenet catalyst engineering for production of non-commodity polyolefins; case study. A. Razavi ORTHOGONAL CHEMISTRY: ORGANIC AND POLYMER SYNTHESIS (43-52) Efficient and catalyst free polymer functionalization and coupling. R. K. O’Reilly Functionalized polymers for functional materials. R. B. Grubbs Synthesis of new functionalized polythiophenes for organic biosensors. C. Suspène Metal-catalyzed multicomponent polymerization – a new method for the construction of conjugated materials. D. C. Leitch Phase transfer activation of Grubbs’ ROMP catalyst systems. R. Tuba Macromolecular material design via modular synthetic strategies. C. Barner -Kowollik Starch-derived 1,4-3,6:dianhydrohexitol stereoisomers: Versatile platform for the design of original polymers using robust, efficient and orthogonal chemistries.
    [Show full text]
  • Effect of Homochirality of Dipeptide to Polymers' Degradation
    polymers Article Effect of Homochirality of Dipeptide to Polymers’ Degradation Xinqiang Xu 1,2, Fuyan He 1,2, Wenke Yang 1,2 and Jinshui Yao 1,2,* 1 School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; [email protected] (X.X.); [email protected] (F.H.); [email protected] (W.Y.) 2 Shandong Provincial Key Laboratory of Processing & Testing Technology of Glass and Functional Ceramics, Jinan 250353, China * Correspondence: [email protected] Received: 31 August 2020; Accepted: 18 September 2020; Published: 22 September 2020 Abstract: As natural polymer materials, proteins are readily biodegradable, interestingly, the synthetic polyamides (PAs) that are based on the same amide bonds (also called peptide bonds in proteins) are barely degradable. Whether did the chirality and configuration of the amino acids play an important role. By using different configuration of amino acids, 4 types of polyamide-imides (PAIs) containing dipeptides of LL, DL, LD, and DD configurations, respectively, were synthesized. It was found that the PAIs based on natural LL configuration of dipeptide structure are much more readily biodegradable than those based on non-natural LD, DL, and DD configuration of dipeptides. It was confirmed that the natural L-configuration of amino acids play a critical role in degradability of proteins. And it also suggested that different type and amount of peptide fragments can be introduced in polymer to create series of polymer materials that can be biodegraded at controllable speed. Keywords: chiral amino acids; dipeptide; polyamide-imides; biodegradability 1. Introduction With the growing problem of white pollution, degradable polymer materials are attracting more and more attention because polymer materials that can be degraded at controllable speed could be used in every kind of fields [1–6].
    [Show full text]
  • Degradable Materials with Biological Recognition
    Lecture 3: Degradable Materials with Biological Recognition Last time: Theory of hydrolytic polymer erosion Enzymatic degradation of polymers Designing Biodegradable Macromolecules Today: Biological recognition in vivo Engineering biological recognition of biomaterials: cell adhesion/migration Reading: S.E. Sakiyama-Elbert and J.A. Hubbell, ‘Functional Biomaterials: Design of Novel biomaterials,’ Annu. Rev. Mater. Sci. 31, 183-201 (2001) J.C. Schense et al., ‘Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension,’ Nat. Biotech. 18, 415-419 (2000) Supplementary Reading: ‘The Extracellular Matrix,’ pp. 1124-1150, Molecular Biology of the Cell, Lodish et al. Biological Recognition in vivo Interactions of cells with their environment at the molecular level ECM = extracellular matrix Motivation: • Cell interactions with simple synthetic materials are governed by nonspecific interactions: o e.g. surface energies; hydrophobic interactions, charge-charge interactions o DRAW OXIDE SURFACE, POLYMER SURFACE • …but this is not how cells interact with ECM • Cells use receptor-receptor/receptor-ligand interactions to guide their functions, including: o Adhesion, migration o Growth o Differentiation Secretion of molecules Binding of molecules Specialized functions Functions of ECM: • Mechanical Support • cues for cell survival/function o anchorage-dependent cell growth o differentiation cues • organization of tissue o control of tissue morphology, localization of cell types Lecture 3 – Biological Recognition 1
    [Show full text]