Open-Source Point-Of-Care Electronic Medical Records for Use in Resource- Limited Settings: Systematic Review and Questionnaire Surveys

Total Page:16

File Type:pdf, Size:1020Kb

Open-Source Point-Of-Care Electronic Medical Records for Use in Resource- Limited Settings: Systematic Review and Questionnaire Surveys Open Access Research BMJ Open: first published as 10.1136/bmjopen-2011-000690 on 4 July 2012. Downloaded from Open-source point-of-care electronic medical records for use in resource- limited settings: systematic review and questionnaire surveys Peter S Millard,1 Juan Bru,2 Christopher A Berger1 To cite: Millard PS, Bru J, ABSTRACT ARTICLE SUMMARY Berger CA. Open-source Background: Point-of-care electronic medical records point-of-care electronic (EMRs) are a key tool to manage chronic illness. medical records for use in Article focus Several EMRs have been developed for use in treating - resource-limited settings: Evaluation of all open-source point-of-care EMRs HIV and tuberculosis, but their applicability to primary systematic review and for use in resource-limited settings without questionnaire surveys. BMJ care, technical requirements and clinical functionalities reliable internet access. Open 2012;2:e000690. are largely unknown. doi:10.1136/ Objectives: This study aimed to address the needs of Key messages bmjopen-2011-000690 clinicians from resource-limited settings without - We found six open-source EMRs, but none reliable internet access who are considering adopting meets the minimum requirements for a fully < Prepublication history for an open-source EMR. functioning EMR suitable for use in resource- this paper is available online. Open-source point-of-care limited settings. To view these files please Study eligibility criteria: EMRs suitable for use in areas without reliable internet - Safe medication prescribing presents the biggest visit the journal online (http:// challenge for the development of an EMR dx.doi.org/10.1136/ access. suitable for use in resource-limited settings. bmjopen-2011-000690). Study appraisal and synthesis methods: The - authors conducted a comprehensive search of all It is imperative that an international body directly Contact information: The open-source EMRs suitable for sites without reliable test these products to determine their clinical following developers were internet access. The authors surveyed clinician users functionalities and limitations. willing to share their contact and technical implementers from a single site and http://bmjopen.bmj.com/ information with readers: Strengths and limitations of this study technical developers of each software product. The DREAM: ict@ - We identified all open-source EMRs suitable for dreamsantegidio.net; PHIS: authors evaluated availability, cost and technical use in resource-limited settings. paul.fi[email protected] and requirements. - Our study relied on self-report of a survey among OSCAR: phuttenczapski@ Results: The hardware and software for all six systems developers, technical implementers and clinical gmail.com is easily available, but they vary considerably in implementers. proprietary components, installation requirements and Received 3 December 2011 customisability. Accepted 29 May 2012 diseases. They allow clinicians to evaluate and Limitations: This study relied solely on self-report on October 2, 2021 by guest. Protected copyright. follow-up patients, prescribe medications This final article is available from informants who developed and who actively use for use under the terms of the included products. safely, monitor laboratory and imaging the Creative Commons Conclusions and implications of key results, allow for programme evaluation and Attribution Non-Commercial findings: Clinical functionalities vary greatly among the provide ongoing data for quality improve- 2.0 Licence; see systems, and none of the systems yet meet minimum ment. The HIV pandemic and increases in http://bmjopen.bmj.com requirements for effective implementation in a primary multidrug-resistant tuberculosis have care resource-limited setting. The safe prescribing of provided much of the impetus for funders to medications is a particular concern with current tools. support the development of point-of-care The dearth of fully functional EMR systems indicates EMRs in resource-limited settings. Non- a need for a greater emphasis by global funding infectious chronic diseases are also major agencies to move beyond disease-specific EMR systems and develop a universal open-source health causes of worldwide morbidity and mortality, 1Catholic University of informatics platform. but they have not received the emphasis Mozambique, Beira, afforded HIV/AIDS and TB, either in the 1 Mozambique Millenium Development Goals nor in the 2Polytechnic University of development of EMRs for delivering primary Valencia, Valencia, Spain care for patients. Correspondence to INTRODUCTION Case studies and periodic reviews have Dr Peter S Millard; Electronic medical records (EMRs) are provided potential users with information [email protected] important tools for safely managing chronic about various EMR implementations in Millard PS, Bru J, Berger CA. BMJ Open 2012;2:e000690. doi:10.1136/bmjopen-2011-000690 1 Systematic review and survey of open-source electronic medical records BMJ Open: first published as 10.1136/bmjopen-2011-000690 on 4 July 2012. Downloaded from resource-limited settings, but Mitchell’s characterisation studies and software products with the objective of of the landscape as ‘a descriptive feast but an evaluative finding reports on specific outpatient point-of-care famine’ in 2001 continues unchanged.2 Authors of EMRs. We contacted key informants whom we identified reports concerning individual EMRs often emphasise the through publications (OpenMRS,16 DREAM,11 iSante5), strengths and potentialities of the system they have been user groups (OSCAR,17 WorldVista18) or personal developing, but fail to delineate actual functionalities contact (GHIS). We contacted the key informants about e and limitations.3 11 Reviews often mention a selection of each product via email. EMRs under development but have not indicated why they chose to evaluate particular systems and to exclude Inclusion criteria e others.12 14 Open source Potential adopters of a point-of-care EMR have a crit- Recognising that most EMRs use a combination of ical need to know the functionalities and limitations of propriety and non-proprietary components, we aimed existing systems in order to evaluate whether or not to include only products that can credibly be consid- a given EMR is suitable for their clinical setting. Recently, ered open source. Open-source software eliminates Kenya published standards and guidelines for EMR licensing and software upgrade costs, and development systems,15 but it is impossible to determine, based on costs are shared among a community of developers and published reports, which products have the functional- users and reduces the threat that the disappearance of ities necessary to provide full clinical care. a proprietary software vendor will jeopardise the The motivation for this study came from the need to product. Lack of ‘vendor lock-in’ allows the customer to equip a new medical school teaching clinic with an EMR, use alternatives to support and maintain the EMR both to improve medical care and to teach medical application. Finally, the barrier of standards compati- students about medical informatics. The setting has slow bility and system interoperability is lessened by open- unreliable internet access and inconsistent electrical source software.19 supply, but computers are widely used in the area and among the medical students. Computers on and off Outpatient care campus are plagued by viruses, which further degrade Hospitals and outpatient clinics have very different the performance and reliability of computers based on requirements for EMRs. Hospital care emphasises short- the Windows operating system. term care, point-of-care order entry and laboratory This study aims to address the needs of clinicians like monitoring. Outpatient EMRs emphasise ongoing care, us from resource-limited settings who are exploring chronic problems, safe prescribing and quality options for adopting an outpatient point-of-care EMR reporting. but have unreliable internet access and limited financial http://bmjopen.bmj.com/ and human resources. Our emphasis is on EMR avail- Point-of-care data entry ability, cost, simplicity of installation and maintenance, The functionality and decision-support facilitated by an clinical functionality, and reporting for monitoring and EMR is lost if data are collected on paper and subse- quality improvement. We attempted to take into account quently entered in a database for later analysis. For this clinical setting and patient problems, cost of needed reason, we limited our analysis to systems that currently hardware and proprietary software components, tech- function in the field as point-of-care EMRs. nical skill needed for installation and maintenance, Non-internet access required systems scalability, clinical functionalities and ease of reporting. on October 2, 2021 by guest. Protected copyright. While other reviews have emphasised EMRs in the care Given the unreliability of internet access in resource- of HIV and TB, this review also explores the availability limited settings, we limited our study to software appli- of EMRs to support primary care. cations with a local database and other components which do not require ongoing internet access. METHODS Data collection Data sources We developed three written questionnaires directed to We searched Medline (1995e2010), CINAHL key informants concerning each software product. The (1995e2010), Google Scholar (1995e2010) using first questionnaire was directed to a clinician who combinations of the following search terms:
Recommended publications
  • Examples of the Electronic Health Record (EHR)
    Examples of the Electronic Health Record (EHR) What is Biomedical & Health Informatics? William Hersh Copyright 2020 Oregon Health & Science University Examples of the EHR • Using the Veterans Health Information Systems and Technology Architecture (VistA) • Why VistA? – State-of-the-art EHR that has transformed healthcare in the Veteran’s Health Administration (VHA) (Perlin, 2006; Byrne, 2010) – Not that pretty, but has all of the modern features of the EHR, e.g., clinical decision support (CDS), computerized provider order entry (CPOE), etc. – Distributed under open-source model, unlike most other vendors who do not even allow screen shots to be shown outside their customers’ institutions • Fascinating story (Allen, 2017), but VistA now being phased out in favor of Cerner EHR adopted by Department of Defense (VA, 2017) – https://www.ehrm.va.gov/ WhatIs5 2 1 Some details about VistA • Server written in M (formerly called MUMPS), accessed via command-line interface – Runs in commercial Intersystems Cache (on many platforms) or open-source GT.M (Linux only) • Client (called CPRS) written in Delphi and providers graphical user interface – Only runs on Windows (just about all versions) WhatIs5 3 Logging on to CPRS, the front end to VistA WhatIs5 4 2 Choosing a patient WhatIs5 5 Cover sheet – overview WhatIs5 6 3 Drilling down to details of a problem WhatIs5 7 Details of an allergy WhatIs5 8 4 Viewing vital signs over time WhatIs5 9 More details on problems WhatIs5 10 5 List of active orders WhatIs5 11 Viewing the patient’s notes WhatIs5 12
    [Show full text]
  • Open Source As an Alternative for Clinical Information Systems Adoption
    Open Source as an Alternative for Clinical Information Systems Adoption Placide Poba-Nzaou , Université du Québec à Montréal Josianne Marsan , Université Laval Guy Paré , HEC Montréal Louis Raymond , Université du Québec à Trois-Rivières Health Informatics & Technology Conference October 20-22, 2014 - Baltimore, MD, USA Agenda • Context • Research Questions • Conceptual Background • Research Method • Results • Discussion • Conclusion 2 Context • Electronic Health Records (EHR) are at the heart of most health system reforms – “Mission-critical” applications for hospitals • High costs and low level of interoperability of commercial EHR software has led a growing number of hospitals to adopt open source software (OSS) solutions – Examples of OSS EHR: VistA, Oscar, GNU Med, OpenEMR and OpenMRS, etc. 3 Research Questions • What can motivate a Hospital to adopt an Open Source EHR ? • What are the main challenges faced by a hospital adopting an Open Source EHR ? • What can be done to deal with these challenges ? 4 Conceptual Background • Motivations to adopt an Enterprise System by healthcare organizations (Poba-Nzaou et al., 2014) – Strategic (Clinical vs. Managerial) – Operational (Clinical vs. Managerial) – Financial – Technological • Hybrid organization – “Organization that combine different institutional logics in unprecedented ways” (Scott and Meyer 1991) • E.g.: integration of not-for-profit and for-profit logics (Battilana et al., 2012) – Challenges faced by Hybrid Organizations in search of sustainability (Battilana et al., 2012) – #1: Legal Structure – #2: Financing – #3: Customers and Beneficiaries 5 – #4: Organizational Culture and Talent Development Conceptual Background (continued) – OSS governance models • “the means of achieving the direction, control, and coordination of wholly or partially autonomous individuals and organizations on behalf of an OSS development project to which they jointly contribute” (Markus, 2007) – “community managed” vs.
    [Show full text]
  • Mobile Applications for the Health Sector
    Mobile Applications for the Health Sector Christine Zhenwei Qiang, Masatake Yamamichi*, Vicky Hausman and Daniel Altman ICT Sector Unit World Bank December 2011 This report is the product of the staff and consultants of the World Bank. The findings, interpretations, and conclusions do not necessarily reflect the views of the Executive Directors of the World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. * Corresponding author: 1818 H Street NW, MSN MC6-616, Washington DC 20433, USA. [email protected] Contents Abbreviations ................................................................................................................... 3 Acknowledgements ........................................................................................................... 4 Executive Summary ........................................................................................................... 5 1 Introduction ........................................................................................................... 11 1.1 What is mobile health? 11 1.2 Technological context for mobile health 12 1.3 Perceived potential of mobile health 13 1.4 The mobile health ecosystem 16 1.5 Social goals of investments in mobile health 17 1.6 How does mobile health relate to other intersections of health and technology? 19 2 Health Needs in Developing Countries ...................................................................... 21 2.1 Common health burdens 21 2.2 Challenges
    [Show full text]
  • The Open Organization Guide for Educators
    The Open Organization Guide for Educators The Open Organization Guide for Educators Transformative teaching and learning for a rapidly changing world Contributing authors (in alphabetical order) Amarachi Achonu Mukkai Krishnamoorthy Beth Anderson Gina Likins Bryan Behrenshausen Clara May Maxwell Bushong Ian McDermott Carolyn Butler Dan McGuire Curtis A. Carver Christopher McHale Aria F. Chernik Race MoChridhe Susie Choi Steven Ovadia Dipankar Dasgupta Ben Owens Heidi Ellis David Preston Denise Ferebee Rahul Razdan David Goldschmidt Charlie Reisinger Adam Haigler Justin Sherman Jim Hall Wesley Turner Tanner Johnson Shobha Tyagi Marcus Kelly Jim Whitehurst Ryan Williams Copyright Copyright © 2019 Red Hat, Inc. All written content, as well as the cover image, licensed under a Creative Commons Attribu- tion-ShareAlike 4.0 International License.1 Amarachi Achonu's "Making computer science curricula as adaptable as our code" originally appeared at https://opensource.- com/open-organization/19/4/adaptable-curricula-computer-science Beth Anderson's "An open process for discovering our school's core values" originally appeared at https://opensource.- com/open-organization/16/6/opening-discover-education-centers- core-values. Curtis A. Carver's "Crowdsourcing our way to a campus IT plan" originally appeared at https://opensource.com/open-organiza- tion/17/10/uab-100-wins-through-crowdsourcing. Brandon Dixon and Randall Joyce's "The most valuable cy- bersecurity education is an open one" originally appeared at https://opensource.com/open-organization/19/8/open-cybersecu- rity-education. Heidi Ellis' "What happened when I let my students fork the syllabus" originally appeared at https://opensource.com/open-orga- nization/18/11/making-course-syllabus-open.
    [Show full text]
  • Comparison of Open-Source Electronic Health Record Systems Based on Functional and User Performance Criteria
    Original Article Healthc Inform Res. 2019 April;25(2):89-98. https://doi.org/10.4258/hir.2019.25.2.89 pISSN 2093-3681 • eISSN 2093-369X Comparison of Open-Source Electronic Health Record Systems Based on Functional and User Performance Criteria Saptarshi Purkayastha1, Roshini Allam1, Pallavi Maity1, Judy W. Gichoya2 1Department of BioHealth Informatics, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA 2Dotter Institute, Oregon Health and Science University, Portland, OR, USA Objectives: Open-source Electronic Health Record (EHR) systems have gained importance. The main aim of our research is to guide organizational choice by comparing the features, functionality, and user-facing system performance of the five most popular open-source EHR systems. Methods: We performed qualitative content analysis with a directed approach on recently published literature (2012–2017) to develop an integrated set of criteria to compare the EHR systems. The functional criteria are an integration of the literature, meaningful use criteria, and the Institute of Medicine’s functional requirements of EHR, whereas the user-facing system performance is based on the time required to perform basic tasks within the EHR system. Results: Based on the Alexa web ranking and Google Trends, the five most popular EHR systems at the time of our study were OSHERA VistA, GNU Health, the Open Medical Record System (OpenMRS), Open Electronic Medical Record (OpenEMR), and OpenEHR. We also found the trends in popularity of the EHR systems and the locations where they were more popular than others. OpenEMR met all the 32 functional criteria, OSHERA VistA met 28, OpenMRS met 12 fully and 11 partially, OpenEHR-based EHR met 10 fully and 3 partially, and GNU Health met the least with only 10 criteria fully and 2 partially.
    [Show full text]
  • Electronic Health Record Security Guidance for Low-Resource Settings
    Assessment Tool for Electronic Health Record Security Guidance for Low-Resource Settings April 2020 MEASURE Evaluation This publication was produced with the support of the United States Agency for International Development (USAID) under University of North Carolina the terms of MEASURE Evaluation cooperative agreement 123 West Franklin Street, Suite 330 AID-OAA-L-14-00004. MEASURE Evaluation is implemented by the Carolina Population Center, University of North Carolina Chapel Hill, NC 27516 USA at Chapel Hill in partnership with ICF International; John Phone: +1 919-445-9350 Snow, Inc.; Management Sciences for Health; Palladium; [email protected] and Tulane University. Views expressed are not necessarily those of USAID or the United States government. MS-20-195 www.measureevaluation.org ISBN: 978-1-64232-260-6 ACKNOWLEDGMENTS We thank the United States Agency for International Development (USAID) for its support of this work. We’d like to recognize the project management team and the technical support we received from Jason B. Smith, Manish Kumar, and David La’Vell Johnson of MEASURE Evaluation at the University of North Carolina at Chapel Hill (UNC); Herman Tolentino, Steven Yoon, Tadesse Wuhib, Eric-Jan Manders, Daniel Rosen, Carrie Preston, Nathan Volk, and Adebowale Ojo of the United States Centers for Disease Control and Prevention (CDC); Mark DeZalia at the President’s Emergency Plan for AIDS Relief (PEPFAR); and Nega Gebreyesus, Kristen Wares, and Jacob Buehler at USAID. The MEASURE Evaluation project, funded by USAID and PEPFAR, would like to thank the Monitoring and Evaluation Technical Support Program at the Makerere University School of Public Health in Uganda for its cooperation and support in testing this tool and providing valuable feedback and insight.
    [Show full text]
  • Open Source Et Gestion De L'information Médicale : Aperçu Des Projets Existants
    Open source et gestion de l'information médicale : aperçu des projets existants Ateliers CISP Club 2011 – Alexandre BRULET Open Source : bref historique... 1969 : UNIX (Bell Labs°) 1975 : distribué à des universités pour « fins éducatives » avec les codes sources... 1977 : projet BSD 1984 : projet GNU (R. Stallman) (sources partagées) 1985 : Free Software Fondation (cadre légal – licence GPL) 1989 : licence BSD modifiée (open source) 1991 : noyau GNU/Linux ? OS dérivés (NetBSD, FreeBSD, SunOS ...) 1993 : Slackware 1993 : Debian 1994 : Red Hat > 50 OS dérivés > 100 OS dérivés 1998 : MPL (ex : SUSE) > 50 OS dérivés (Knopix, Ubuntu...) (Mandriva, Fedora ...) 1999 : licence Apache UNESCO 2004 : logiciels libres patrimoine de l'humanité (…) > 35 licences libres recensées sur wikipédia (PHP, Cecil, MIT, CPL, W3C, etc.) Open source : un fonctionnement communautaire ● La « pyramide » Linux : développeurs / 'maintainers' / chefs de projet sys USB net (...) L. Torvalds / A. Morton ● Système de «patchs» : publics, signés, discutés, soumis, (approuvés) ● Versions stables régulières et archivées (mirroirs) ● Système de «paquets» permettant la cohérence des OS ● Mode de fonctionnement repris par la plupart des distributions basées sur Linux ainsi que leurs « filles » : Debian → Ubuntu, Slackware → Zenwalk, RedHat → Fedora, etc. ● Idem pour les logiciels (xfce/gnome/kde, OOo, Gimp, Firefox, etc.) Le monde open source : un immense agrégat de communautés... OS OS OS Projets GNU OS OS OS Noyau OS OS OS Noyau OS OS Projets BSD Programme open source Programme propriétaire Système OS d'exploitation Quid des logiciels médicaux ? Petit tour du monde de l'open source médical à partir d'une liste proposée par Wikipédia. 1. Logiciels médicaux francophones : MedinTux ● Petite communauté depuis 2005 (marseille), licence CeCiLL ● DMI cabinet / hôpital - objectif = ergonomie ● Programmes serveurs et clients, consultation web possible.
    [Show full text]
  • Lista Ofrecida Por Mashe De Forobeta. Visita Mi Blog Como Agradecimiento :P Y Pon E Me Gusta En Forobeta!
    Lista ofrecida por mashe de forobeta. Visita mi blog como agradecimiento :P Y pon e Me Gusta en Forobeta! http://mashet.com/ Seguime en Twitter si queres tambien y avisame que sos de Forobeta y voy a evalu ar si te sigo o no.. >>@mashet NO ABUSEN Y SIGAN LOS CONSEJOS DEL THREAD! http://blog.newsarama.com/2009/04/09/supernaturalcrimefightinghasanewname anditssolomonstone/ http://htmlgiant.com/?p=7408 http://mootools.net/blog/2009/04/01/anewnameformootools/ http://freemovement.wordpress.com/2009/02/11/rlctochangename/ http://www.mattheaton.com/?p=14 http://www.webhostingsearch.com/blog/noavailabledomainnames068 http://findportablesolarpower.com/updatesandnews/worldresponsesearthhour2009 / http://www.neuescurriculum.org/nc/?p=12 http://www.ybointeractive.com/blog/2008/09/18/thewrongwaytochooseadomain name/ http://www.marcozehe.de/2008/02/29/easyariatip1usingariarequired/ http://www.universetoday.com/2009/03/16/europesclimatesatellitefailstoleave pad/ http://blogs.sjr.com/editor/index.php/2009/03/27/touchinganerveresponsesto acolumn/ http://blog.privcom.gc.ca/index.php/2008/03/18/yourcreativejuicesrequired/ http://www.taiaiake.com/27 http://www.deadmilkmen.com/2007/08/24/leaveusaloan/ http://www.techgadgets.in/household/2007/06/roboamassagingchairresponsesto yourvoice/ http://blog.swishzone.com/?p=1095 http://www.lorenzogil.com/blog/2009/01/18/mappinginheritancetoardbmswithst ormandlazrdelegates/ http://www.venganza.org/about/openletter/responses/ http://www.middleclassforum.org/?p=405 http://flavio.castelli.name/qjson_qt_json_library http://www.razorit.com/designers_central/howtochooseadomainnameforapree
    [Show full text]
  • Adopting an Open Source Hospital Information System to Manage Healthcare Institutions
    LIFE: International Journal of Health and Life-Sciences ISSN 2454-5872 Bouidi et al., 2017 Volume 3 Issue 3, pp. 38-57 Date of Publication: 18th December 2017 DOI-https://dx.doi.org/10.20319/lijhls.2017.33.3857 This paper can be cited as: Bouidi, Y, Azzouzi Idrissi, M & Rais, N. (2017). Adopting an Open Source Hospital Information System to Manage Healthcare Institutions. LIFE: International Journal of Health and Life-Sciences, 3(3), 38-57. This work is licensed under the Creative Commons Attribution-Non Commercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. ADOPTING AN OPEN SOURCE HOSPITAL INFORMATION SYSTEM TO MANAGE HEALTHCARE INSTITUTIONS Youssef Bouidi Laboratory of Informatics, Modeling and Systems (LIMS), University of Sidi Mohamed Ben Abdallah (USMBA), Fez, Morocco [email protected] Mostafa Azzouzi Idrissi Laboratory of Informatics, Modeling and Systems (LIMS), University of Sidi Mohamed Ben Abdallah (USMBA), Fez, Morocco [email protected] Noureddine Rais Laboratory of Informatics, Modeling and Systems (LIMS), University of Sidi Mohamed Ben Abdallah (USMBA), Fez, Morocco [email protected] Abstract Our paper is a comparative study of different Open Source Hospital Information Systems (OSHISs). We chose open source because of problems in healthcare management like budget, resources and computerization. A literature review did not allow us to find a similar comparison, which explains the great interest of our study. Firstly, we retrieved nine OSHISs: MediBoard, OpenEMR, OpenMRS, OpenHospital, HospitalOS, PatientOS, Care2x, MedinTux and HOSxP.
    [Show full text]
  • Phr) to Electronic Health Record (Ehr
    International Journal of Latest Trends in Engineering and Technology Special Issue SACAIM 2016, pp. 106-114 e-ISSN:2278-621X WELLNESS DATA SHARING FROM PERSONAL HEALTH RECORD (PHR) TO ELECTRONIC HEALTH RECORD (EHR) Sarita Pais1 and Xiaoci Xu2 Abstract- Patients have the option to maintain their health data and medical information in a Personal Health Record (PHR) system. However health professionals use different systems such as Electronic Health Record (EHR) to manage their patients' medical records. PHR systems provide greater benefits when integrated with EHR systems. The data and its format are different in the two systems. Hence this research project looks for solutions for data exchange between PHR and EHR systems. This research project followed design science research methodology to build an ecosystem and evaluate it through experiments using hypothetical data. Existing open source PHR and EHR systems were evaluated and literature related to PHR and EHR were reviewed in this project. HL7 is an international standard which is used for transferring health data between medical systems. This project set up the ecosystem using Microsoft HealthVault and OpenMRS. The ecosystem readthe data file containing blood glucose readings and converted the data into a format which Microsoft HealthVault can accept. Microsoft HealthVault exports the data in CCD/CCR data format. The ecosystem converted CCD/CCR data to CDA data format in OpenMRS. The ecosystem allowed the patient to share self- managed health data with health professionals and provided them with the patient’s background health data enabling better consultation with patients. The findings of this project is a proof of concept which can demonstrate that patient managed health data from PHR system can be integrated into EHR system.
    [Show full text]
  • Recommendations on Electronic Medical Records Standards in India
    Report of Sub-Group Task II (data connectivity) with reports of Sub-Group Task I (standards) and Sub-Group Task III (data ownership) incorporated Recommendations On Electronic Medical Records Standards In India Version 2.0 October 2012 Recommendations of EMR Standards Committee, constituted by an order of Ministry of Health & Family Welfare, Government of India 1 Sub-Group Task I (Standards) Members: 1. Prof. Dr. S.V. Mani, TCS, Group Head, Sub-Group Task I 2. Dr. R.R. Sudhir, Shankar Netralaya 3. Ms. Kala Rao, TCS 4. Dr. Ashok Kumar, CBHI 5. Ms. Jyoti Vij , FICCI 6. Dr. Sameer A. Khan, Fortis Hospital Sub-Group Task II (Data Connectivity) Members: 1. Mr. B S Bedi, Adviser, CDAC, Group Head, Sub-Group Task II 2. Dr. Thanga Prabhu, Clinical Director, GE India, Member 3. Dr. Supten Sarbadhikari: Prof, Health Informatics, Coimbatore, Member 4. Mr. Chayan Kanti Dhar, National Informatics Center 5. Mr. Gaur Sundar, Project Manager, Medical Informatics Group, CDAC (Pune), 6. Dr. S. B. Bhattacharyya, Health Informatics Consultant, Ex-President, IAMI Sub-Group Task III (Data Ownership) Members: 1. Prof. Saroj K. Mishra ,SGPGI , Lucknow , Group Head, Sub-Group Task III 2. Prof. Indrajit Bhattacharya , IIHMR, New Delhi 3. Prof. Sita Naik, MCI 4. Dr. Karanveer Singh, Sir Gangaram Hospital 5. Dr. Naveen Jain, CDAC 6. Dr. Arun Bal 7 . Mr. Madhu Aravind, Healthhiway N. B. This document incorporates the recommendations by the various Sub-Groups and consolidated into one document for easy reference. As there was considerable overlap in the areas of recommendations of sub-group Task I responsible for standards and sub-group Task II responsible for data connectivity, most of the recommendations were made primarily by the members of task group II in close consultation with the chairman of sub-group Task I Prof.
    [Show full text]
  • Implementing an Open Source EMR in a Nursing Informatics Course
    Implementing an Open Source EMR in a Nursing Informatics Course Nina Multak Emad Khazraee Michelle Rogers Prudence Dalrymple [email protected] [email protected] [email protected] [email protected] Drexel University Abstract Electronic medical record (EMR) systems are being implemented widely in hospital and office based settings. This technology is becoming a standard documentation modality for inpatient and outpatient clinical settings. While practicing clinicians have learned to use these systems with the benefit of institutional or practice based training, the educational benefit of providing EMR training to students prior to their exposure to the clinical environment has not been widely explored. This preliminary research evaluated multiple EMR systems for educational use in a nursing school curriculum. EMR training including classroom lectures, computer based training sessions and practice with interdisciplinary medical simulation are incorporated in this educational program, providing students access to an EMR system before using one with actual patients. The ADDIE model of systemic instructional design was utilized for this study. Additionally, deliberate practice, an evidence-based construct grounded in information processing and behavioral theories of skill acquisition and maintenance guided the design of this study. Preliminary results reveal a high level of learner interest and satisfaction with the training methodology. Further exploration of EMR systems and the impact this component has on nursing education and practice are planned. Keywords: education, EMR, simulation, documentation Introduction The Institute of Medicine Committee on Data Standards for Patient Safety reports evidence that improved clinical efficiencies, patient safety, and quality care outcomes can be promoted by having an effectively structured and implemented EMR1.
    [Show full text]