Downloaded 10/04/21 11:09 AM UTC 914 JOURNAL of HYDROMETEOROLOGY VOLUME 13 Which Can Then Be Combined with a Hydrological Model

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded 10/04/21 11:09 AM UTC 914 JOURNAL of HYDROMETEOROLOGY VOLUME 13 Which Can Then Be Combined with a Hydrological Model JUNE 2012 C HADWICK AND GRIMES 913 An Artificial Neural Network Approach to Multispectral Rainfall Estimation over Africa ROBIN CHADWICK Met Office Hadley Centre, Exeter, United Kingdom DAVID GRIMES* Department of Meteorology, University of Reading, United Kingdom (Manuscript received 22 June 2011, in final form 8 December 2011) ABSTRACT Multispectral Spinning Enhanced Visible and IR Interferometer (SEVIRI) data, calibrated with daily rain gauge estimates, were used to produce daily high-resolution rainfall estimates over Africa. An artificial neural network (ANN) approach was used, producing an output of satellite pixel–scale daily rainfall totals. This product, known as the Rainfall Intensity Artificial Neural Network African Algorithm (RIANNAA), was calibrated and validated using gauge data from the highland Oromiya region of Ethiopia. Validation was performed at a variety of spatial and temporal scales, and results were also compared against Tropical Ap- plications of Meteorology Using Satellite Data (TAMSAT) single-channel IR-based rainfall estimates. Several versions of RIANNAA, with different combinations of SEVIRI channels as inputs, were developed. RIANNAA was an improvement over TAMSAT at all validation scales, for all versions of RIANNAA. However, the addition of multispectral data to RIANNAA only provided a statistically significant im- provement over the single-channel RIANNAA at the highest spatial and temporal-resolution validation scale. It appears that multispectral data add more value to rainfall estimates at high-resolution scales than at averaged time scales, where the cloud microphysical information that they provide may be less important for determining rainfall totals than larger-scale processes such as total moisture advection aloft. 1. Introduction provided a high enough temporal resolution to monitor the availability of water for crops during the growing The African continent spans a vast array of different season. Recently there has been interest in providing landscapes and climates, but factors common to the daily rainfall estimates, as it is not only the total dekadal whole region are the huge importance and frequent rainfall that affects crop growth, but also the daily dis- unreliability of rainfall. Because of the scarcity of rain tribution of rainfall within a dekad (Teo and Grimes gauge data available in real time over Africa, rainfall 2007). However, this requires satellite RFEs to be ac- estimates are usually taken from satellite-based algo- curate at a daily scale. rithms or from a combination of gauge and satellite es- As well as being used for famine early warning systems, timates (e.g., Grimes et al. 1999). rainfall estimates have more general potential applica- For drought monitoring, 10-day (dekadal) rainfall tions in agriculture in the region. Numerical crop-yield accumulations have traditionally been used. This is be- models such as the General Large-Area Model (GLAM; cause satellite rainfall estimates (RFEs) are more ac- Challinor et al. 2004) require rainfall inputs at a daily curate when averaged over longer time scales, and scale over a growing season. In this case a seasonal because it was considered that 10-day rainfall estimates rainfall forecast updated throughout the season with daily satellite rainfall observations would seem to provide one possible method of producing accurate crop-yield fore- * Deceased. casts. Short-term river flow and flood forecasting is another Corresponding author address: Robin Chadwick, Met Office potential application of rainfall estimates (Grimes and Hadley Centre, Fitzroy Rd., Devon EX1 3PB, United Kingdom. Diop 2003). The requirement here is for short timescale E-mail: robin.chadwick@metoffice.gov.uk (daily or shorter) rainfall estimates over a river basin, DOI: 10.1175/JHM-D-11-081.1 Unauthenticated | Downloaded 10/04/21 11:09 AM UTC 914 JOURNAL OF HYDROMETEOROLOGY VOLUME 13 which can then be combined with a hydrological model. with historical gauge data has the potential to be used This technique has so far proved impractical for opera- over much more of Africa (with regional calibration) tional purposes because of the limited accuracy of avail- than one calibrated with radar. able rainfall estimates at short time scales over Africa. The relationship between multispectral SEVIRI data Various satellite RFE products are commonly used to and surface rainfall is complex, nonlinear, and not well provide rainfall estimates over Africa, and these nor- understood. Therefore, any algorithm relating the two mally use infrared (IR) and/or microwave data from must currently be largely empirical in nature. TAMORA a variety of satellite platforms, often combined with uses a contingency table method to establish a probabi- available gauge data (see Kidd et al. 2009 or Kidd 2001 listic relationship between the SEVIRI data and rainfall for a review of satellite RFE methods). However, esti- rain rate. The alternative method chosen here is to em- mates from the current generation of satellite RFEs show ploy an artificial neural network (ANN) to find the pat- relatively low accuracy when validated at a daily time tern between satellite data and rainfall. Neural networks scale over Africa (Dinku et al. 2008; Laws et al. 2004). have previously been used on many occasions in the field This paper investigates whether the use of multi- of satellite rainfall estimation (Sorooshian et al. 2000; spectral visible and IR data from the Spinning Enhanced Bellerby et al. 2000; Hong et al. 2004) with the Estima- Visible and IR Interferometer (SEVIRI) instrument can tion of Precipitation by Satellites-Second Generation lead to improved satellite rainfall estimates over Africa (EPSAT-SG) method of Berge`s et al. (2010) using an compared to a single-channel IR product, particularly at ANN to produce rainfall estimates over Africa from daily time scales. No current operational satellite RFE multispectral SEVIRI data. However, rain gauges have uses geostationary multispectral data to produce rainfall rarely been used for calibration (the exception being the estimates over Africa for use in food-security applica- TAMANN algorithm of Coppola et al. 2006), and as far tions. The advantage of using only SEVIRI data, as op- as the authors are aware this paper describes the first posed to a multisatellite product, is that many African instance of gauge calibration combined with multispec- Met services are equipped to receive SEVIRI data, and tral input data. The ANN used here will be referred could therefore apply and adapt rainfall estimates pro- to as the Rainfall Intensity Artificial Neural Network duced from SEVIRI themselves. Estimates were pro- African Algorithm (RIANNAA). duced and validated at several spatial and temporal scales, as applications of RFEs over Africa require products at 2. Data a variety of different scales. a. Ethiopian rain gauge dataset The Tropical Applications of Meteorology Using Sat- ellite Data (TAMSAT) Met Office Rainfall for Africa A relatively dense rain gauge dataset for the Oromiya (TAMORA) algorithm (Chadwick et al. 2010) used data region of Ethiopia was provided by the National Mete- from a mobile precipitation radar to calibrate SEVIRI orological Agency of Ethiopia, comprising 278 stations data and produce precipitation estimates over West Af- with daily data from 2002 to 2006. After quality control rica. A validation against gridded dekadal gauge data procedures, this number was reduced to 215 as a number showed that TAMORA produced accurate estimates in of stations containing large amounts of missing, dupli- the region close to the calibration radar, but that this cated, or questionable data were excluded. Oromiya accuracy was reduced for other areas of West Africa. This gauge locations are shown in Fig. 1. suggests the need for local calibration of multispectral To calibrate and assess satellite rainfall estimates over satellite rainfall products, which is a result also found by Africa, it is usually necessary to compare them with rain Ba and Gruber (2001) when using a multispectral satellite gauge data. Satellite rainfall products produce pixel RFE over North America. rainfall estimates with a resolution of 3 km at the equator Because of the lack of precipitation radar networks for SEVIRI-based algorithms (Schmetz et al. 2002). over most of Africa, regional calibration of satellite However, rain gauge data by their nature consist of RFEs by radar is currently impractical. One alternative point estimates, which in Africa are often sparse and is to use rain gauge data for calibration of a satellite RFE unevenly distributed. A comparison of SEVIRI pixel- algorithm. Although gauges are comparatively sparse in scale radiances with gauge point rainfall estimates would Africa compared with other continents, there is far not be comparing like with like. Therefore, it is neces- greater gauge coverage than radar coverage. This is sary to interpolate the gauge data to satellite pixel scale. particularly true if real-time gauge data are not needed, The interpolation method used here is kriging, which as relatively dense rain gauge data are often collected by has been shown to perform better than other inter- African Met agencies but not distributed internationally polation methods (e.g., Thiessen polygons and spline in real time. Therefore an algorithm that is calibrated surface fitting) for medium- and low-density gauge Unauthenticated | Downloaded 10/04/21 11:09 AM UTC JUNE 2012 C HADWICK AND GRIMES 915 FIG. 1. (a) Elevation of Oromiya region of Ethiopia. Gauges used
Recommended publications
  • Exercise 10: Cumulus Cloud with Bulk Cloud Physics
    Exercise Hints Tasks Results Exercise 10: Cumulus Cloud With Bulk Cloud Physics PALM group Institute of Meteorology and Climatology, Leibniz Universität Hannover last update: 21st September 2015 PALM group PALM Seminar 1 / 16 I Initialize the simulation with a marine, cumulus-topped, trade-wind region boundary layer. I Trigger the cloud by a bubble of rising warm air. I Parameterize condensation using a simple bulk cloud physics scheme. I Learn how to carry out conditional averages. Exercise Hints Tasks Results Exercise Exercise 10: Cumulus Cloud With Bulk Cloud Physics Simulate a cumulus cloud: PALM group PALM Seminar 2 / 16 I Trigger the cloud by a bubble of rising warm air. I Parameterize condensation using a simple bulk cloud physics scheme. I Learn how to carry out conditional averages. Exercise Hints Tasks Results Exercise Exercise 10: Cumulus Cloud With Bulk Cloud Physics Simulate a cumulus cloud: I Initialize the simulation with a marine, cumulus-topped, trade-wind region boundary layer. PALM group PALM Seminar 2 / 16 I Parameterize condensation using a simple bulk cloud physics scheme. I Learn how to carry out conditional averages. Exercise Hints Tasks Results Exercise Exercise 10: Cumulus Cloud With Bulk Cloud Physics Simulate a cumulus cloud: I Initialize the simulation with a marine, cumulus-topped, trade-wind region boundary layer. I Trigger the cloud by a bubble of rising warm air. PALM group PALM Seminar 2 / 16 I Learn how to carry out conditional averages. Exercise Hints Tasks Results Exercise Exercise 10: Cumulus Cloud With Bulk Cloud Physics Simulate a cumulus cloud: I Initialize the simulation with a marine, cumulus-topped, trade-wind region boundary layer.
    [Show full text]
  • Exam 2: Cloud Physics April 16, 2008 Physical Meteorology 3440
    Name ____________________________ Exam 2: Cloud Physics April 16, 2008 Physical Meteorology 3440 Questions 1-10 are worth 5 points each. Questions 11-15 are worth 10 points each. 1. Rank the concentrations of the following from lowest (1) to highest (3): cloud condensation nuclei (3) cloud droplets (2) raindrops (1) 2. Match the following particles with their typical size cloud condensation nuclei 10 μm cloud droplets 0.1 μm raindrops 1000 μm 3. Why do ice crystals grow at the expense of supercooled water droplets? The saturation vapor pressure over liquid is higher than the saturation vapor pressure over ice. Therefore, the environment will be more supersaturated with respect to ice than with respect to liquid, and the ice crystals will grow more quickly. At some point, the ice crystals may bring S (with respect to ice) down to 1, in which case Sl (with respect to liquid) is less than 1, causing the liquid drops to evaporate. 4. Match the following particles with their most likely means of growth 5 μm cloud drop accretion 5 μm ice crystal aggregation 100 μm dendritic ice crystals in ice cloud depositional growth 500 μm ice crystal in mixed-phase cloud condensational growth 100 μm cloud drop collision-coalescence 5. Fill in the blanks: Not all clouds with temperatures below the freezing point of water contain ice, because of the scarcity of ice nuclei in the atmosphere, and the temperature at which they nucleate ice. As the cloud temperature decreases, the probability of ice increases to the 1 temperature of -40 °C, at which point homogeneous freezing occurs.
    [Show full text]
  • Twelve Lectures on Cloud Physics
    Twelve Lectures on Cloud Physics Bjorn Stevens Winter Semester 2010-2011 Contents 1 Lecture 1: Clouds–An Overview3 1.1 Organization...........................................3 1.2 What is a cloud?.........................................3 1.3 Why are we interested in clouds?................................4 1.4 Cloud classification schemes..................................5 2 Lecture 2: Thermodynamic Basics6 2.1 Thermodynamics: A brief review................................6 2.2 Variables............................................8 2.3 Intensive, Extensive, and specific variables...........................8 2.3.1 Thermodynamic Coordinates..............................8 2.3.2 Composite Systems...................................8 2.3.3 The many variables of atmospheric thermodynamics.................8 2.4 Processes............................................ 10 2.5 Saturation............................................ 10 3 Lecture 3: Droplet Activation 11 3.1 Supersaturation over curved surfaces.............................. 12 3.2 Solute effects.......................................... 14 3.3 The Kohler¨ equation and its properties............................. 15 4 Lecture 4: Further Properties of an Isolated Drop 16 4.1 Diffusional growth....................................... 16 4.1.1 Temperature corrections................................ 18 4.1.2 Drop size effects on droplet growth.......................... 20 4.2 Terminal fall speeds of drops and droplets........................... 20 5 Lecture 5: Populations of Particles 22 5.1
    [Show full text]
  • Lightning Dr
    ESCI 340 - Cloud Physics and Precipitation Processes Lesson 12 - Lightning Dr. DeCaria References: The Lightning Discharge, Uman The Electrical Nature of Storms, MacGorman and Rust Fundamentals of Lightning, Rakov `Runaway Breakdown and the Mysteries of Lightning', Gurevich and Zybin, Physics Today, 2005 Mechanisms of Charge Separation • The top of a thunderstorm (cumulonimbus) cloud becomes positively charged, while the middle-to-lower portions of the cloud becomes negatively charged. • Often there is also a smaller pocket of positive charge near the bottom of the cloud. • The reason for this charge separation is not completely understood, but some of the more prominent theories are described below. • Those mechanisms requiring a preexisting electric field are called inductive charging mechanisms, while those not requiring a preexisting electric field are called nonin- ductive charging mechanisms. Inductive ion capture: In a preexisting electrical field, there will be a separation of charge across a hydrometeor. As the hydrometeor falls, gaseous ions will either be attracted or repelled from the underside of the hydrometeor, depending on their sign. Thus, the hydrometeor will gain an increasing charge of whatever sign it has on its topside. In Fig. 1 the positive ions are repelled as the hydrometeor falls, but the negative ions are attracted. Thus, the hydrometeor gains a net negative charge as it falls. Figure 1: Inductive ion capture. 1 Ion capture may play a role in weakly electrified storms, but cannot be used to explain the amount of charge separation seen in a thunderstorm without the presence of other mechanisms. Inductive particle rebound: Two hydrometeors in a preexisting electric field, falling at different speeds, will exchange charge during collision as shown in Fig.
    [Show full text]
  • Cloud Microphysics
    Cloud microphysics Claudia Emde Meteorological Institute, LMU, Munich, Germany WS 2011/2012 Overview of cloud physics lecture Atmospheric thermodynamics gas laws, hydrostatic equation 1st law of thermodynamics moisture parameters adiabatic / pseudoadiabatic processes stability criteria / cloud formation Microphysics of warm clouds nucleation of water vapor by condensation growth of cloud droplets in warm clouds (condensation, fall speed of droplets, collection, coalescence) formation of rain, stochastical coalescence Microphysics of cold clouds homogeneous nucleation heterogeneous nucleation contact nucleation crystal growth (from water phase, riming, aggregation) formation of precipitation Observation of cloud microphysical properties Parameterization of clouds in climate and NWP models Cloud microphysics November 24, 2011 2 / 35 Growth rate and size distribution growing droplets consume water vapor faster than it is made available by cooling and supersaturation decreases haze droplets evaporate, activated droplets continue to grow by condensation growth rate of water droplet dr 1 = G S dt l r smaller droplets grow faster than larger droplets sizes of droplets in cloud become increasingly uniform, approach monodisperse distribution Figure from Wallace and Hobbs Cloud microphysics November 24, 2011 3 / 35 Size distribution evolution q 2 r = r0 + 2Gl St 0.8 1.4 t=0 t=0 0.7 t=10 t=10 1.2 t=30 t=30 0.6 t=50 t=50 1.0 0.5 0.8 0.4 0.6 0.3 n [normalized] n [normalized] 0.4 0.2 0.2 0.1 0.0 0.0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 radius [arbitrary units] radius [arbitrary units] Cloud microphysics November 24, 2011 4 / 35 Growth by collection growth by condensation alone does not explain formation of larger drops other mechanism: growth by collection Cloud microphysics November 24, 2011 5 / 35 Terminal fall speed r 40µ .
    [Show full text]
  • Thunderstorm Anatomy and Dynamics
    THUNDERSTORM ANATOMY AND DYNAMICS An Overview Prepared by LCDR Bill Nisley MR 3421 • Cloud Physics Naval Postgraduate School • Monterey, California [email protected] Photo credits: Thunderstorm Cell and Mammatus Clouds by: Michael Bath; Tornado by Daphne Zaras / NSSL; Supercell Thunderstorm by: AMOS; Wall Cloud by: Greg Michels 1. Introduction The purpose of this paper is to present a broad overview of the various cloud structures displayed during the life cycle of a thunderstorm and the atmospheric dynamics associated with each. Knowledge of atmospheric dynamics provides for a keener understanding of the physical processes related to the “why and how” certain cloud features form. Accordingly, observation of cloud features presents visual queuing of changes in the atmosphere. 2. Thunderstorm Formation and Stages of Development Thunderstorm development is dependent on three basic components: moisture, instability, and some form of lifting mechanism. 2.1 Moisture – As air near the surface is lifted higher in the atmosphere and cooled, available water vapor condenses into small water droplets which form clouds. As condensation of water vapor occurs, latent heat is released making the rising air warmer and less dense than its surroundings (figure 1). The added heat allows the air (parcel) to continue to rise and form an updraft within the developing cloud structure. 2.1.1 In general1, low level moisture increases instability simply by making more latent heat available to the lower atmosphere. Increasing mid level moisture can decrease instability in the atmosphere because moist air is less dense than dry air and therefor is unable to evaporate • Figure 1 – Positive buoyancy / instability as a result of precipitation and cloud droplets as condensation and release of latent heat.
    [Show full text]
  • Charge Accumulation in Thunderstorm Clouds: Fractal Dynamic Model
    E3S Web of Conferences 127, 01001 (2019) https://doi.org/10.1051/e3sconf /201912701001 Solar-Terrestrial Relations and Physics of Earthquake Precursors Charge accumulation in thunderstorm clouds: fractal dynamic model Tembulat Kumykov* Institute of Applied Mathematics and Automation KBSC RAS, 360004 st. Shortanova, 89-а Nalchik, Russia Abstract. The paper considers a fractal dynamic charge accumulation model in thunderstorm clouds in view of the fractal dimension. Analytic solution to the model equation has been found. Using numerical calculations we have shown the relationship between the charge accumulation and the medium with the fractal structure. A comparative study of thunderstorm electrification mechanisms have been performed. 1 Introduction Convective clouds inside which thunderstorm processes mainly develop are natural objects with nontrivial fractal structure [1]. One of the most important thunderstorm parameters is the electric field intensity. Once a lightning strike have occurred, the electric field weakens and then recovers. The process of restoring neutralized charges and respectively the electric field after the thunderstorm discharge is the matter of animated debate among scientists. As is known, a central place in thunderstorm electricity occupies charge generation and separation processes inside convective clouds. About two dozen current mechanisms are known that result in charges generation inside the thunderclouds [2]. They can be divided into two groups. The first group is associated with elementary processes in the clouds:, the electrification within the ionic environment, the electrification caused by frictional contact between two icicles, the electrification accompanying the freezing of water and its solutions, the electrification upon destruction of crystallizing droplets, etc., The second group includes the induction electrification mechanism stipulated by the electric field, whose origin is not yet clear.
    [Show full text]
  • Evaluation of ISKA Forecast Performance
    Evaluation of ISKA forecast performance An investigation on binary and probabilistic forecast skill scores Björn Claremar, PhD Department of Earth Sciences Uppsala University Villavägen 16 SE-75236 Uppsala Sweden Uppsala, 12 March 2019 ii Evaluation of ISKA forecast performance Abstract The company Ignitia provides rainfall forecasts through SMS to subscribers in Ghana, Mali and some other countries in the West African region south of Sahara. Their ensemble-based probabilistic forecast product iska, based on the high-resolution weather model WRF with modifications, has been developed to better simulate tropical conditions where rainfall is driven by convection. This external investigation determined the forecast skill of iska by validating against NOAA satellite rainfall product. As comparison, rainfall probability forecasts from the global model GFS and from Weather Underground were evaluated. The iska forecasts outperformed the GFS forecasts and the Weather Underground forecasts in terms of accuracy. The statistical skill decreased towards the Sahel region and also towards the coast, the latter probably an artefact of the NOAA product having problems in identifying local warm-cloud rain, meaning that the forecast skill by the coast might be better than indicated. Keywords: West Africa, Ghana, Mali, Tropical weather, Weather forecast, Meteorology, WRF, rainfall, forecast skill, probabilistic, statistics, iska iii Executive summary Background Ignitia was seeking to evaluate the performance of its daily probabilistic rainfall forecasts through external party. The validation included making a comparison against baseline forecasts from NCEP (GFS), which is the most widely used source due to its free and public availability for commercial use, as well as data from a common online provider; forecasts from Weather Underground which is a subsidiary of The Weather Company, owned by IBM.
    [Show full text]
  • A Physically Based Parameter for Lightning Prediction and Its Calibration in Ensemble Forecasts
    4.3 A Physically Based Parameter for Lightning Prediction and its Calibration in Ensemble Forecasts David R. Bright* NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma Matthew S. Wandishin CIMMS/University of Oklahoma, Norman, Oklahoma Ryan E. Jewell and Steven J. Weiss NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma 1. INTRODUCTION that explicitly predict moist convection do not predict the occurrence of lightning. Thus, after The Storm Prediction Center (SPC) issues determining where moist convection is plausible, forecasts for the contiguous United States related the potential for thunderstorms must be deduced to hazardous convective weather including through further interrogation of the data. In thunderstorms, severe thunderstorms, tornadoes, addition to deterministic NWP output, the and elements critical to fire weather such as dry NCEP/EMC Short Range Ensemble Forecast lightning. In addition to severe weather products (SREF) is available to the SPC and attempts to such as watches and outlooks, the SPC also account for initial condition, model, and convective issues “general” thunderstorm outlooks for the physics uncertainty (Du et al. 2004). The SPC contiguous United States and adjacent coastal post-processes the NCEP SREF to create a suite waters. These outlooks delineate a > 10% chance of customized ensemble products specifically for of cloud-to-ground (CG) lightning within thunderstorm and severe thunderstorm prediction approximately 15 miles of a point. (For the (Bright et al. 2004). A subset of these products is purposes of this paper, a thunderstorm is defined available in real-time on the SPC web site at as deep convection producing at least one CG http://www.spc.noaa.gov/exper/sref/.
    [Show full text]
  • Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Fall 2016, Second Half Instructor: Professor Steven K
    Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Fall 2016, Second Half Instructor: Professor Steven K. Krueger Office: 725 WBB, Phone: 581-3903 e-mail: [email protected] http://www.inscc.utah.edu/∼krueger/5200 Description: The emphasis in this course will be on developing a better understanding of cloud formation and precipitation, including the microstructure of clouds and precipitation the growth of cloud droplets in warm clouds the microphysics of cold clouds, and turbulence and mixing in clouds. Prerequisites: ATMOS 5000 Classroom: WBB 820 Class Hours: M W 11:50 to 1:10 HELP! MW 2:15 to 3:00, or by appointment. Email works well. Holidays: (none) Classes that may be rescheduled: (none) Last day of class: Dec 7 Final exam: Tuesday, December 13, 10:30 am – 12:30 pm Format: Primarily lecture and weekly assigned problem sets. The students will use MAT- LAB programming skills to solve problems and to present results in graphical form. Grading: The course grade will be determined from problem sets (70%) and a final exam (30%). The grading scale will be A: ≥ 90, B: 80-89, C: 70-79, D: 60-69, F: < 60. Class policies: Students must take every exam with exceptions governed by University Policy. Plagiarizing, copying, cheating, or otherwise misrepresenting one’s work will not be tolerated. Missing class will not be penalized directly, but usually results in poor problem set and exam performance. Some course material that you are responsible for will only be presented during lectures (i.e., will not be found in the text or online notes).
    [Show full text]
  • Members of Commissions; Boards, and Committees1
    members of commissions; boards, and committees1 EXECUTIVE COMMITTEE2 Warren M. Washington David D. Houghton Robert T. Ryan Donald R. Johnson Margaret A. LeMone Alexander E. MacDonald Richard E. Hallgren Kenneth C. Spengler 1The Executive Director is an ex officio member of all commissions, boards, and committees. 2Addresses listed on page 1396. COMMITTEES OF THE Franco Einaudi, Goddard Space Flight Center, NASA, Code EXECUTIVE COMMITTEE 910, Greenbelt, MD 20771 Awards James R. Mahoney, International Technology Corp., 23456 Hawthorne Blvd., Torrance, CA 90505 Chairperson: William R. Cotton, Dept. of Atmospheric Sciences, Colorado State University, Fort Collins, CO Edward J. Zipser, Dept. of Meteorology, Texas A&M Univer- 80523 sity, College of Geosciences & Maritime Studies, College Station, TX 77843-3150 Lance F. Bosart, Dept. of Atmospheric Science ES227, SUNY at Albany, Albany, NY 12222 Bulletin of the American Meteorological Society 1397 Unauthenticated | Downloaded 10/10/21 01:56 AM UTC Executive Executive Committees Director Committee Fellows Sverdrup Committees Gold Medal Secretary- Headquarters Awards Henry Stommel Treasurer Staff Nominating Research Award Admissions Public Policy Meetings and Local Chapters Workshops History Investment Interactive Information and Processing Systems Scientific and Education and Commission on Technological Human Resources Publications Professional Affairs Activities Commission Commission Commission Board of Board of Board of the Committees Meteorological Journal of the Certified Consulting and Oceanographic
    [Show full text]
  • Explicitly-Coupled Cloud Physics and Radiation Parameterizations and Subsequent Evaluation in WRF High-Resolution Convective Forecasts
    Atmospheric Research 168 (2016) 92–104 Contents lists available at ScienceDirect Atmospheric Research journal homepage: www.elsevier.com/locate/atmos Explicitly-coupled cloud physics and radiation parameterizations and subsequent evaluation in WRF high-resolution convective forecasts Gregory Thompson a,⁎,MukulTewaria, Kyoko Ikeda a,SarahTessendorfa, Courtney Weeks a, Jason Otkin b,FanyouKongc a Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, USA b Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, Madison, WI, USA c Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, OK, USA article info abstract Article history: The impacts of various assumptions of cloud properties represented within a numerical weather prediction Received 1 July 2015 model's radiation scheme are demonstrated. In one approach, the model assumed the radiative effective radii Received in revised form 8 September 2015 of cloud water, cloud ice, and snow were represented by values assigned a priori, whereas a second, “coupled” Accepted 8 September 2015 approach utilized known cloud particle assumptions in the microphysics scheme that evolved during the simu- Available online 18 September 2015 lations to diagnose the radii explicitly. This led to differences in simulated infrared (IR) brightness temperatures, radiative fluxes through clouds, and resulting surface temperatures that ultimately affect model-predicted Keywords: Cloud physics diurnally-driven convection.
    [Show full text]