Electric Arc Lamps

Total Page:16

File Type:pdf, Size:1020Kb

Electric Arc Lamps 4 UNIVERSITY OF ILLINOIS LIBRARY Class Book Volume m .. ... ...... : mm J0 _^.^:.^2^ ^i^^^'^P' .^^^^-^^;^^ I ... ... ;-W W.-.,.' ... Digitized by the Internet Archive in 2013 http://archive.org/details/electricarclampsOOjone ELECTRIC ARC LAMPS BY EDWARD WALTER JONES THESIS FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING COLLEGE OF ENGINEERING UNIVERSITY OF ILLINOIS 19 11 , UNIVERSITY OF ILLINOIS May 29 19011 THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Sdward Ualte r Jones ENTITLED Slectric Arc Lsrops IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF "Bachelor of S o lence in Elect rical Engineering y'y^-^ Instructor in Charge APPROVED: HEAD OF DEPARTMENT OF Electrical Engineering TABLE OF CONTENTS page History of the Electric Arc 1 General Theory of the Direct Current Open Arc 3 The Direct Current Inclosed Arc 10 The Alternating Current Open Arc 14 The Inclosed Alternating Current Arc Lamp 17 The Flaming Arc Lamp 19 The Regenerative Flame Lamp 23 The Metallic Flame or Magnetite Lamp 25 The Titanium Carbide Arc Lamp 28 The Present Status of the Arc Lamp 30 ELECTRIC ARC LAMPS HISTORY OF THE ELECTRIC ARC In the year 1801 Sir Humphrey Davy, then a young man of 22, told in a lecture before the Royal Institution of a spark of "vivid whiteness" passing between two pieces of well burned car- bon. The spark occured when the carbon rods were touched to- gether and then separated while connected to the opposite poles of a galvanic battery. His source of energy was a battery of 850 pairs of copper and zinc plates placed in an electrolyte con- sisting of a solution of alum with a few drops of nitric acid added. Hence it is evident that simply a spark and not a continuous dis- charge resulted. In fact it was not until seven years later, in 1808 that the first true arc was produced. A huge galvanic bat- tery of 8000 cells had been placed in the laboratory of the Royal Institution. With this source of power at his disposal, Davy pro- duced the first continuous electrical discharge through air, the gap being about three inches long. Davy placed his carbon pen- cils, or rods, in a horizontal position and the upward current of heated air, together with the tendency to enlarge, caused the dis- charge to take the form of an arch, and because of this fact, in the year 1820 he definitely named the electric flame the arc. Until 1844 this phenomenon remained simply a brilliant laboratory experiment. In that year, however, Leon Foucault re- placed the soft charcoal electrodes with sticks of hard gas re- tort carbon and, using the newly invented Bunsen battery, pro- duced a steady and continuous light which was publicly exhibited in Paris. It attracted considerable attention and was utilized, in a small way, for the lighting of public squares and theaters. From 1844 on, inventors turned their attention to perfecting the lamp mechanism and it was soon developed to a rather high degree of efficiency. Because of its great cost, the inconvenience and labor involved in its care and maintenance, the weakening of the current and the evolution of obnoxious gases, the galvanic cell did not prove to be a commercial success as a source of energy. It was for this reason that no very extended use was made of the arc lamp until the discovery of magnetic induction and the inven- tion of the electro-magnetic generator. This invention stimu- lated practical as well as scientific investigations and in 1878 the present series arc lamp with its shunt coil was devised. From this date improvements and inventions followed one another in rapid succession until the present high degree of development of the arc lamp has been attained. 3 THE GENERAL THEORY OF THE DIRECT CURRENT OPEN ARC When two carbon rods are oonnected to the terminals of a battery or generator so that a constant difference of potential of forty volts or more is maintained and these rods are first brought together and then separated a short distance, a contin- uous electrical discharge takes place across the gap. This dis- charge is accompanied by a brilliant white light and the evolu- tion of intense heat. The circuit is maintained through the gap due to the presence of volatilized carbon and carbon mist. This conducting strip of mist and vapor, called the arc stream, which bridges the gap, flows from the negative electrode toward the positive electrode. Therefore, the character of the arc stream is determined very largely by the composition of the negative electrode. It also follows that the temperature of the arc is probably that of the boiling of the material composing the neg- ative electrode. In 1881 Sir Wm.Abney announced this deduction and said further that the temperature was constant. The tempera- lure was given by M. Viole as 3500oC and by Rosetti as 3900oC. The temperature of the negative carbon tip is probably about 3000**C. An exploration of the arc stream will show that it is by no means honogeneous. There is a thin layer of true carbon vapor covering the tip of the positive electrode; between this layer of vapor and the negative electrode the carbon is in the form of mist. The whole stream is surrounded by a greenish flame produced by the carbon mist combining with the oxygen of the sur- rounding air. This flame is almost a perfect insulator and hence plays no part in the conduction of current through the gap. The vapor near the positive electrode has a very much higher specific resistance than has the mist, and hence a large part of the energy consumed by the arc is absorbed in this layer of vapor and appears in the form of heat. It is this heat, in all probability, which causes the volatilization of the positive electrode. The volatil- ization of the positive electrode furnishes the carbon which is consumed or burned by oxidizing, and for this reason the positive electrode wastes away more rapidly than does the negative elec- trode, the ratio being about two to one in the ordinary open D. C. arc. This fact has given rise to the erroneous idea that the positive electrode feeds the arc stream. It does, however, furnish some of the carbon of the arc stream through heat evapor- ation. That the positive electrode does not feed the arc stream and its vaporization is not essential may be proved by making the positive electrode so large that the cooling effect prevents vol- atilization, when it will be found that the change in no way af- fects the operation of the arc. Near the periphery of the electrode the vapor layer, covering the positive carbon tip, is cooled by the surrounding air into mist. Now since volatilization can occur only where « the vapor is in actual contact with the carbon, it is evident that the inner part of the positive electrode tip is the only part of that electrode consumed by volatilization. This fact causes a hollow or crater-, as it is called, to be formed in the positive carbon, leaving a rim at the periphery. This rim is itself consumed, or rather burned, by combining with the oxygen of the surrounding air, with varying degrees of rapidity depending on length of arc and value of current flowing. For a short arc 5 the consumption is slow and hence the crater will be deep. The rate of consumption increases with an increase of arc length. The depth of the crater varies in general with the current except for long arcs. Thus it would seem that an increase of arc length would decrease the crater depth and, in fact, both crater and rim practically disappear for arc lengths greater than diameter of positive electrode. The tip of the negative electrode is covered with carbon mist. Hence the negative electrode is not volatilised, but is heated partly by the carbon mist and partly by radiation from the positive electrode. The tip of the negative electrode being covered by mist is consumed solely by burning and through supplying the arc stream carbon. The sides of the electrode being heated to a rather high degree and being unprotected from the air, burn away more rapidly than does the protected tip. These sides are heated by the crater of the positive carbon and hence the negative tip will be longer and more slender the larger the crater and the shorter the arc. In general, the length of the tapering parts of both carbons is increased by increasing the cur- rent and decreasing the arc length. If the current is sufficiently increased and arc length decreased, a mushroom tip is formed on the negative carbon. This mushroom tip is caused by carbon being deposited from the crater It interferes with the formation of the proper arc and obstructs the light from the crater. It is also undesirable in that it causes an unpleasant hissing noise. Hissing is an unstable con- dition of the arc and it may occur with any length of arc, pro- vided the current is sufficiently large. The real distinction between the hissing and silent arcs is that in the silent arc the crater occupies only the end of the positive carbon. The his- sing seems to be due to the crater becoming too large to occupy the end of the positive carbon, and hence extends up the side of the carbon. The air then rushes in radially, burns the carbon very rapidly and produces tho hissing sound.
Recommended publications
  • The Electric Arc Plasma Temperature
    DIAGNOSTICS OF MULTICOMPONENT ELECTRIC ARC PLASMA A.I. Cheredarchuk, V.F. Boretskij, A.N. Veklich Taras Shevchenko Kiev National University, Kiev, Ukraine E-mail: [email protected] The plasma parameters of electric arc discharge in a gas flow between copper electrodes were investigated. The electrical conductivity of copper-argon and copper-carbon dioxide plasma was calculated. It was found that at low temperatures (5000 K<T<9000 K) the electrical conductivity considerably depends on the amount of copper in plasma. PACS: 51.20.d 1. INTRODUCTION Ne(r) in discharge at 30 A were obtained from width of The electric arc between evaporated electrodes has spectral lines CuI 448.0 nm, broadened due to the quadratic diverse technological applications. It is well known that Stark effect. In the case of low current (3.5 A) absolute electrode vapours have a determining influence on intensity of CuI 465.1 nm spectral line was used. properties of arc plasma. The insignificant impurity N , m-3 (about 1 %) of electrode metal vapour appreciably j CO 2 changes plasma parameters of the discharge in a rather CO wide temperature range [1]. Unfortunately the influence O O e of metal impurity on the plasma of free burning electric 1E23 2 C arc discharge in different working gases is not O+ experimentally investigated in detail yet. The main aim of this study is a development of complex diagnostics techniques of determination of 1E20 plasma parameters of electric arc discharge in a gas flow between copper electrodes. + CO 2. TRANSPORT PROPERTIES C 2 T, K 1E17 OF THERMAL PLASMA 5000 10000 15000 20000 In calculations of the transport properties of thermal plasma it is necessary to know the proportion between Fig.
    [Show full text]
  • Industrial Lighting a Primer
    Industrial Lighting A Primer All through history people have sought better ways to illuminate their work. Even the cavemen needed torches to allow them to draw on the walls of their underground caverns. Fire brought both light and heat for thousands of years before crude lamps of animal fat gave way to the candle for general indoor illumination used around the world. Roman Grease Lamp An offshoot of the common candlestick became what we now call the Lacemakers Globe. This quite possibly could qualify as the world’s first industrial light source! It was observed that when a candle flame was aligned behind a rounded glass bottle filled with water, a magnifying and focusing effect was produced, in addition to simply lighting up a small area. This was high technology of the first order! No longer did the lacemaker have to pack it in when the sun went down, for soon the new Lacemaker’s Globe became fairly common in European Cottage Industry, enabling the production of lace at a greater rate than ever before. It is also not too much of a stretch to conclude that the repetitive patterns of the lacemaker could be looked upon as a forerunner to the theory of mass production, along with the pin makers who toiled away in the ‘second tier’ of the feeble light pool cast by the globe, hammering heads onto straightened bits of wire in order to make the common pin. This was mighty slim pickings by today’s standards to be sure, but just a few hundred years ago it represented a revolutionary increase in handiwork production after the sun went down, for the very first time in history.
    [Show full text]
  • !History of Lightingv2.Qxd
    CONTENTS Introduction 3 The role of lighting in modern society 3 1. The oldest light sources 4 Before the advent of the lamp 4 The oldest lamps 4 Candles and torches 5 Further development of the oil lamp 6 2. Gaslight 9 Introduction 9 Early history 9 Gas production 10 Gaslight burners 10 The gas mantle 11 3. Electric lighting before the incandescent lamp 14 Introduction 14 Principle of the arc lamp 15 Further development of the arc lamp 16 Applications of the arc lamp 17 4. The incandescent lamp 20 The forerunners 20 The birth of the carbon-filament lamp 22 Further development of the carbon-filament lamp 25 Early metal-filament lamps 27 The Nernst lamp 28 The birth of the tungsten-filament lamp 29 Drawn tungsten filaments 30 Coiled filaments 30 The halogen incandescent lamp 31 5. Discharge lamps 32 Introduction 32 The beginning 32 High-voltage lamps 33 Early low-pressure mercury lamps 34 The fluorescent lamp 35 High-pressure mercury lamps 36 Sodium lamps 37 The xenon lamp 38 6. Electricity production and distribution 39 Introduction 39 Influence machines and batteries 39 Magneto-electric generators 40 Self-exciting generators 41 The oldest public electricity supply systems 41 The battle of systems 42 The advent of modern a.c. networks 43 The History of Light and Lighting While the lighting industry is generally recognized as being born in 1879 with the introduction of Thomas Alva Edison’s incandescent light bulb, the real story of light begins thousands of years earlier. This brochure was developed to provide an extensive look at one of the most important inventions in mankind’s history: artificial lighting.
    [Show full text]
  • Electric Light Pdf, Epub, Ebook
    ELECTRIC LIGHT PDF, EPUB, EBOOK Seamus Heaney | 96 pages | 19 Mar 2001 | FABER & FABER | 9780571207985 | English | London, United Kingdom Electric Light PDF Book Tour EL: 5 min videos on each light type, followed by a 5 question quiz for each lamp type. Wednesday 17 June In , Thomas Edison began serious research into developing a practical incandescent lamp and on October 14, , Edison filed his first patent application for "Improvement In Electric Lights". Sunday 27 September Wednesday 29 July Wednesday 16 September View all albums. Saturday 10 October View all similar artists. In colder climates where heating and lighting is required during the cold and dark winter months, the heat byproduct has some value. Saturday 15 August Similar To Jeff Lynne. Tuesday 18 August Monday 25 May Wednesday 22 April Play album Buy Loading. Friday 24 April Wednesday 15 July Main article: Incandescent light bulb. Wednesday 14 October Help Learn to edit Community portal Recent changes Upload file. Features Exploring the local sounds and scenes at Noise Pop Fest. Due to the importance of this area of engineering we offer a full course of web pages, videos, and educational tools to communicate to you the world of of the electric light and the engineers and inventors who made it possible. Friday 31 July Monday 8 June Friday 21 August Sunday 18 October Friday 26 June The inside of the tubes are coated with phosphors that give off visible light when struck by ultraviolet photons. Friday 4 September Connect to Spotify Dismiss. Thursday 7 May Sunday 31 May Wednesday 1 July Tuesday 20 October The electric arc is struck by touching the rod tips then separating them.
    [Show full text]
  • The Electric-Lamp Industry
    Massachusetts Institute of Technology Studies of Innovation • GiSma,..=("EaEssormat THE MACMILLAN COMPANY THE ELECTRIC-LAMP INDUSTRY: NEW YORK a BOSTON a CHICAGO DALLAS • ATLANTA • SAN FRANCISCO MACMILLAN AND CO., LIMITED Technological Change and Economic LONDON a BOMBAY a CALCUTTA MADRAS a MELBOURNE Development from 1800 to 1947 THE MACMILLAN COMPANY OF CANADA, LIMITED TORONTO By ARTHUR A. BRIGHT, Jr. THE MACMILLAN COMPANY • NEW YORK 1949 FOREWORD THIS study of the economic development of the electric- lamp industry is the second volume in a series of studies on the economics of innovation, undertaken at the Massachusetts Insti- tute of Technology. The creative role played by science and technology in modern economic life is apparent to everyone. But we know relatively little about the human factors which condition the introduction of technological change into our environment. Are there barriers to innovation inherent in the increasing concentration of power in a few large concerns? Does the patent system, designed as an incentive to invention, act more often as a brake on new develop- ments? What has been the role of key personalities in creating change? Are there lessons to be drawn from the past on how the innovating process can be more effective, not only from the standpoint of achieving a higher standard of material being but from the point of view of smoother human relations? Certainly, material progress at any price is not a satisfactory goal. On the other hand, freedom for creative action in initiating and carrying out new developments is a basic human drive for many individu- als. I believe, personally, that a great society should strive toward a goal which will give to individuals and groups the maximum opportunities for creative expression; yet this means to me that the State must act to prevent the compulsive pressure of some particular group from overriding others to the destruction of human values.
    [Show full text]
  • Humphry Davy and the Arc Light
    REMAKING HISTORY By William Gurstelle Humphry Davy and the Arc Light » Thomas Edison did not invent the first electric BRILLIANT light.* More than 70 years before Edison’s 1879 MISTAKES: Humphry Davy, incandescent lamp patent, the English scientist chemist, inventor, Humphry Davy developed a technique for produc- and philosopher: ing controlled light from electricity. “I have learned Sir Humphry Davy (1778–1829) was one of the more from my failures than from giants of 19th-century science. A fellow of the my successes.” prestigious Royal Society, Davy is credited with discovering, and first isolating, elemental sodium, potassium, calcium, magnesium, boron, barium, and strontium. A pioneer in electrochemistry, he appeared between the electrode tips, Davy had to also developed the first medical use of nitrous oxide separate the carbon electrodes slightly and care- and invented the miner’s safety lamp. The safety fully in order to sustain the continuous, bright arc lamp alone is directly responsible for saving of electricity. Once that was accomplished, he found hundreds, if not thousands, of miners’ lives. the device could sustain the arc for long periods, But it is his invention of the arc lamp for which we even as the carbon rods were consumed in the heat remember him here. Davy’s artificial electric light of the process. consisted of two carbon rods, made from wood Davy’s arc lamp of 1807 was not economically charcoal, connected to the terminals of an enormous practical until the cost of producing a 50V-or-so collection of voltaic cells. (In Davy’s day, thousands power supply became reasonable.
    [Show full text]
  • High Performance Flash and Arc Lamps Catalog
    Europe: Saxon Way, Bar Hill, Cambridge, CB3 8SL Tel: +44 (0)1954 782266 Fax: +44 (0)1954 782993 USA: 44370 Christy St., Freemont, CA 94538, USA Tel: (800) 775-OPTO Tel: (510) 979-6500 Fax: (510) 687-1344 USA: 35 Congress Street, Salem, MA 01970, USA Tel: (978) 745-3200 Fax: (978) 745-0894 Asia: 47 Ayer Rajah Cresent, 06-12, Singapore 139947 Tel: +65-775-2022 Fax: +65-775-1008 Japan: 18F, Parale Mitsui Building 8, Higashida-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken, 210-0005 Japan Tel: 81 44 200 9150 Fax: 81 44 200 9160 www.perkinelmer.com/opto Optoelectronics Lighting Imaging Telecom High Performance Flash and Arc Lamps Lighting Imaging Teleco m Introduction This publication is divided into two sections: Past, Present and Future Part 1 – Technical Information Solid state laser systems have historically used pulsed and CW (DC) xenon or krypton filled arc lamps as exci- Part 2 – Product Range tation for pump sources. When in 1960, at Hughes Research Labs, the first practical pulsed laser system Part 1 is intended to give the necessary technical infor- was demonstrated by mation to manufacturers, designers and researchers to T. H. Maiman the technology and understanding enable them to select the correct flashlamp for their involved in the manufacture and operation of application and also to give an insight into the design flashlamps was of a very basic nature. Up to procedures necessary for correct flashlamp operation. that time (1960) the major use of flashlamps was pho- Part 2 is a guide to the wide, varied and complex range tography and related applications.
    [Show full text]
  • History of Electric Light
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 76. NUMBER 2 HISTORY OF ELECTRIC LIGHT BY HENRY SGHROEDER Harrison, New Jersey PER\ ^"^^3^ /ORB (Publication 2717) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 15, 1923 Zrtie Boxb QSaftitnore (prcee BALTIMORE, MD., U. S. A. CONTENTS PAGE List of Illustrations v Foreword ix Chronology of Electric Light xi Early Records of Electricity and Magnetism i Machines Generating Electricity by Friction 2 The Leyden Jar 3 Electricity Generated by Chemical Means 3 Improvement of Volta's Battery 5 Davy's Discoveries 5 Researches of Oersted, Ampere, Schweigger and Sturgeon 6 Ohm's Law 7 Invention of the Dynamo 7 Daniell's Battery 10 Grove's Battery 11 Grove's Demonstration of Incandescent Lighting 12 Grenet Battery 13 De Moleyns' Incandescent Lamp 13 Early Developments of the Arc Lamp 14 Joule's Law 16 Starr's Incandescent Lamp 17 Other Early Incandescent Lamps 19 Further Arc Lamp Developments 20 Development of the Dynamo, 1840-1860 24 The First Commercial Installation of an Electric Light 25 Further Dynamo Developments 27 Russian Incandescent Lamp Inventors 30 The Jablochkofif " Candle " 31 Commercial Introduction of the Differentially Controlled Arc Lamp ^3 Arc Lighting in the United States 3;^ Other American Arc Light Systems 40 " Sub-Dividing the Electric Light " 42 Edison's Invention of a Practical Incandescent Lamp 43 Edison's Three-Wire System 53 Development of the Alternating Current Constant Potential System 54 Incandescent Lamp Developments, 1884-1894 56 The Edison " Municipal
    [Show full text]
  • Miniature and Low Wattage HID Lamps?
    Miniature HID Lamps? Page 1 of 4 Miniature and Low Wattage HID Lamps? I know that some of us want a more energy efficient flashlight or a more energy efficient bicycle headlight or the like. And some of us wonder why commercial products to satisfy those desires aren't out there? As for flashing a xenon strobe rapidly with low energy flashes - there is a bit of a problem. Performance of xenon flashtubes largely gets better with higher flash energy and worse with lower flash energy. If the energy is high enough to give satisfactory improvement of energy efficiency over halogen lamps, any economical flashtube including all made of glass as opposed to quartz will not survive such flashing repeated rapidly enough to appear to glow continuously. NOTE - It takes 50-60 flashes per second to avoid flicker! Movies avoid flicker at 24 frames/second by having the "on" fraction of each cycle being about 80 percent of the cycle as opposed to the fraction of 1 percent that a fast xenon strobe would have. (NOTE - someone tells me that movie projectors "blink" twice per frame for 48 "blinks" per second, and this may well be true for just some projectors.) You need the off time to be under 20 or preferably under about 16 milliseconds to make the light appear continuous. Further discussion of this is in a separate file on making xenon glow continuously. Now back to miniature HID lamps: One obstacle is the thermal conduction loss from the arc. This is surprisingly proportional to the overall length of the arc and surprisingly independent of the width of the arc or the gas/vapor pressure or the power.
    [Show full text]
  • What Makes the Powerarc a Better Illuminator
    ELEMENTAL ANALYSIS FLUORESCENCE GRATINGS & OEM SPECTROMETERS What makes the PowerArc OPTICAL COMPONENTS CUSTOM SOLUTIONS PARTICLE CHARACTERIZATION a better Illuminator RAMAN / AFM-RAMAN / TERS SPECTROSCOPIC ELLIPSOMETRY SPR IMAGING A 75 Watt Xenon Arc Lamp Illuminator Provides the Same Power Output as a 450 Watt Xenon Arc Lamp in a Vertical Lamp Housing! Users of old style vertical arc lamp housings are throwing Please note that the PowerArc™ series of lamp housings away as much as 90% of the lamps output, due to are designed for lamps from 75 watts to 150 watts. poor collection efficiency. These old style vertical lamp Please also refer to our KiloArc™ light source for ultra high housings have a collection lens in front of the arc lamp and intensity requirements with 1,000 watt arc lamps. sometimes, but not always, a back reflector behind them. The problem with this old design is that only the light that Arc Lamp Housing actually strikes these optical elements is delivered outside At the heart of the PowerArc™ lamp housing is a of the lamp housing. All other photons emitted by the lamp proprietary on-axis ellipsoidal reflector. Our reflectors are wasted, simply heating the inside of the lamp housing. collect up to 70% of the radiant energy from the arc lamp, Conversely the unique PowerArc™ lamp housing has an versus only 12% for typical condenser systems in vertical enveloping ellipsoidal reflector that collects virtually all of lamp housings. The ellipse literally wraps around the arc the light emitted by the lamp arc, delivering those photons lamp, collecting 5 to 6 times more output power than a to a secondary focal point outside of the lamp housing, conventional system.
    [Show full text]
  • Basic Physics of the Incandescent Lamp (Lightbulb) Dan Macisaac, Gary Kanner,Andgraydon Anderson
    Basic Physics of the Incandescent Lamp (Lightbulb) Dan MacIsaac, Gary Kanner,andGraydon Anderson ntil a little over a century ago, artifi- transferred to electronic excitations within the Ucial lighting was based on the emis- solid. The excited states are relieved by pho- sion of radiation brought about by burning tonic emission. When enough of the radiation fossil fuels—vegetable and animal oils, emitted is in the visible spectrum so that we waxes, and fats, with a wick to control the rate can see an object by its own visible light, we of burning. Light from coal gas and natural say it is incandescing. In a solid, there is a gas was a major development, along with the near-continuum of electron energy levels, realization that the higher the temperature of resulting in a continuous non-discrete spec- the material being burned, the whiter the color trum of radiation. and the greater the light output. But the inven- To emit visible light, a solid must be heat- tion of the incandescent electric lamp in the ed red hot to over 850 K. Compare this with Dan MacIsaac is an 1870s was quite unlike anything that had hap- the 6600 K average temperature of the Sun’s Assistant Professor of pened before. Modern lighting comes almost photosphere, which defines the color mixture Physics and Astronomy at entirely from electric light sources. In the of sunlight and the visible spectrum for our Northern Arizona University. United States, about a quarter of electrical eyes. It is currently impossible to match the He received B.Sc.
    [Show full text]
  • The Invention of the Electric Light
    The Invention of the Electric Light B. J. G. van der Kooij This case study is part of the research work in preparation for a doctorate-dissertation to be obtained from the University of Technology, Delft, The Netherlands (www.tudelft.nl). It is one of a series of case studies about “Innovation” under the title “The Invention Series”. About the text—This is a scholarly case study describing the historic developments that resulted in the steam engine. It is based on a large number of historic and contemporary sources. As we did not conduct any research into primary sources, we made use of the efforts of numerous others by citing them quite extensively to preserve the original character of their contributions. Where possible we identified the individual authors of the citations. As some are not identifiable, we identified the source of the text. Facts that are considered to be of a general character in the public domain are not cited. About the pictures—Many of the pictures used in this case study were found at websites accessed through the Internet. Where possible they were traced to their origins, which, when found, were indicated as the source. As most are out of copyright, we feel that the fair use we make of the pictures to illustrate the scholarly case is not an infringement of copyright. Copyright © 2015 B. J. G. van der Kooij Cover art is a line drawing of Edison’s incandescent lamp (US Patent № 223.898) and Jablochkoff’s arc lamp (US Patent № 190.864) (courtesy USPTO). Version 1.1 (April 2015) All rights reserved.
    [Show full text]