Standard Operating Procedures for Interlaboratory and Methods Assessment of the SARS‐Cov‐2 Genetic Signal in Wastewater

Total Page:16

File Type:pdf, Size:1020Kb

Standard Operating Procedures for Interlaboratory and Methods Assessment of the SARS‐Cov‐2 Genetic Signal in Wastewater Standard Operating Procedures for Interlaboratory and Methods Assessment of the SARS‐CoV‐2 Genetic Signal in Wastewater 2020 Introduction Interlaboratory and Methods Assessment of the SARS‐CoV‐2 Genetic Signal in Wastewater provides an assessment of the reliability and repeatability of laboratory methods currently being used to test for the genetic signal of SARS‐CoV‐2 in untreated wastewater. A number of the study’s participating labs agreed to publicly share their Standard Operating Procedures, and the ones provided here cover each of the eight major method groups described in the Environmental Science: Water Research & Technology manuscript about this project. Contents SOP 1.1 .......................................................................................................................................................... 1 SOP 1.2(H) ..................................................................................................................................................... 6 SOP 1S.1(H) ................................................................................................................................................. 20 SOP 1S.2H .................................................................................................................................................... 26 SOP 1S.3(H) ................................................................................................................................................. 31 SOP 2.1 ........................................................................................................................................................ 32 SOP 2.2 ........................................................................................................................................................ 64 SOP 2.3 ........................................................................................................................................................ 96 SOP 2S.1 .................................................................................................................................................... 125 SOP 2S.2 .................................................................................................................................................... 127 SOP 2S.5 .................................................................................................................................................... 135 SOP 2S.6 .................................................................................................................................................... 141 SOP 3.1 ...................................................................................................................................................... 147 SOP 3.2 ...................................................................................................................................................... 148 SOP 3.3 ...................................................................................................................................................... 149 SOP 3.4 ...................................................................................................................................................... 154 SOP 3.5 ...................................................................................................................................................... 155 SOP 3.6 ...................................................................................................................................................... 189 SOP 3S.1 .................................................................................................................................................... 192 SOP 3S.2H .................................................................................................................................................. 194 SOP 4.3 ...................................................................................................................................................... 202 SOP 4S.1(H) ............................................................................................................................................... 220 SOP 4S.2(H) ............................................................................................................................................... 230 SOP 4S.3 .................................................................................................................................................... 238 SOP 4S.4 .................................................................................................................................................... 239 SOP 4S.5H .................................................................................................................................................. 254 SOP 4S.8(H) ............................................................................................................................................... 300 SOPs 2S.3 and 4S.7 .................................................................................................................................... 302 SOP 1.1 Standard Operating Procedure Collection and Analysis Protocols for SARS-CoV-2 RT-qPCR Analysis from Wastewater (Revised 6-5-20) Collection: 1. For each influent sample, pipette 5 mL of influent into a 15 mL conical tube and store it at -80oC. Nothing is added to the samples these are just raw influent archives. Each sampling day there will be two samples, one from SJC and one from JW, so a total of two, 5mL influent samples per day will get archived. 2. Each sampling day, a total of six tubes of each sample will be preserved with DNA/RNA shield (Zymo Research Cat. R1100-250). So for two samples a total of 12 tubes will be prepared each day. a. The ratio of DNA/RNA shield to sample is 250 µL of sample to 750µL of RNA shield (1x) for each tube. First pipette the RNA shield into a sterile 2 mL screw-capped cryotubes then add the sample. Mix by inverting a couple of times. b. Store the cryotubes containing the influent mixed with the DNA/RNA shield in the -80oC revco freezer. 3. We will extract three tubes per sample leaving the other three in the freezer as back-ups. RNA Extraction: 1. For each sample three replicate extractions will be performed (i.e. three for the SJCe influent and three for the JWPCP influent). The Quick-RNA Fecal/Soil microbe microprep kit (Zymo Research Cat. R2040) is used for the RNA extractions. 2. For each extraction, take the tubes out of the -80oC freezer and thaw them in the BSC (class II B2) in Virology B lab. 3. Two mock extractions will be performed with each batch. One with extraction control RNA (in vitro transcribed AdV IPC RNA) and one without the extraction control RNA. a. The first will have 240µL of DEPC water and 750µL of RNA shield. The other 10µL will be carrier RNA (Qiagen Cat. 1068337). b. The second will have 235µL of DEPC water and 750µL of RNA shield. The remaining volume will be the carrier RNA (10µL) and the AdV IPC extraction control RNA (5µL). 4. For each tube, place the entire volume (about 1 mL) into a bead bashing tube from the Zymo Quick- RNA fecal/soil kit (cat. R2040). There should be eight tubes in total. 5. Bead beat on the FastPrep24 homogenizer for 40 seconds at 6m/s. 6. To get rid of the foam after bead beating, spin the samples down in the refrigerated microcentrifuge in the Virology B lab set at 4oC. Spin at >12,000 x g for 5-7 minutes. Note the Zymo protocol says to spin for one minute, this was found to be insufficient to get rid of the foam. 7. After centrifugation, remove the supernatant and place in a clean microfuge tube then add 5 µL of the in vitro transcribed AdV IPC RNA (approximately 104 copies/µL, usually a -7 dilution) to each sample tube and to the one mock extraction tube containing 230µL of DEPC water. This can be added directly after the sample is transferred to the new tube. a. The remaining mock extraction tube does not get the AdV IPC RNA and serves as another negative extraction control. 1 SOP 1.1 8. To the two mock extraction tubes (one with extraction control RNA and one without) add 10 µL of carrier RNA diluted to 1ug/ul (Qiagen cat. 1068337). 9. Proceed with the Zymo extraction as stated in the instructions. a. Note that in step 4 of the Zymo protocol it states to transfer 400µL of supernatant to a new tube. The extraction volume we have is more than 400µL (usually around 700µL). We pipette a fixed volume of 700µL and place it in a sterile 2 mL tube then add an equal volume of RNA binding buffer (700µL) from the Zymo kit as stated in the Zymo kit’s instruction notes. b. The total volume is processed through one Zymo-Spin IIICG Column as stated in step 5 of the Zymo protocol (around 1.4mL). This will require multiple spins to get the entire volume through. Collect and save each of the supernatants from the spins. Combine all of the supernatants in a sterile 15 mL conical tube and add one volume of ethanol (approximately 1.4 mL) as stated in step 6 of the protocol. c. The total volume of supernatant with ethanol is processed through a single new Zymo-spin IIICG Column in step 7 (about 2.8 mL). This will require multiple spins to get the entire volume through the column. d. Proceed with the Zymo protocol as stated from step 8 on. e. Add an additional centrifuge spin (2 minutes, >12,000 x g) for step 17 is done to ensure the column is dry prior to the final elution step. This equates to two, two-minute spins for this
Recommended publications
  • Tevilas Keilim
    STAR-K Kosher Classroom HALACHOS OF TEVIFOOD UTENSIL TEVILA GUIDELINELASFOOD UTENSIL TEVILAKEILIM GUIDELINE FOOD UTENSIL TEVILA GUIDELINE Earthenware, Non-Glazed Porcelain Enamel Tevila w/o Brocha Aluminum Pans, Disposable Tevila with Brocha No Tevila to be used more than once Dull Finish, e.g. Flower Pot Racks, Cooling Tevila w/o Brocha George Foreman Grill Tevila w/o Brocha Aluminum Pans, Disposable Tevila w/o Brocha Racks, Oven No Tevila to be used only once (including Pyrex, Duralex & Corelle) Glass Tevila with Brocha Rolling Pins Metal or Wood No Tevila Blech No Tevila Hot Air Popcorn Maker, Metal Tevila with Brocha Sandwich Maker Tevila w/o Brocha Blender -Handheld Immersion Hot Water Urn, Metal Tevila with Brocha Wand with metal blade on bottom Tevila with Brocha Sink Racks, Stainless Steel No Tevila Ice Cream Scooper Tevila with Brocha Bone No Tevila Spatula, Metal Tevila with Brocha Knife, Arts & Crafts No Tevila Brush, Pastry No Tevila Stoneware Tevila w/o Brocha Knife Sharpener No Tevila Brush for Grill, Metal No Tevila Stoneware, Non-Glazed No Tevila Meat Thermometer No Tevila Can Opener No Tevila Storage Utensils, Glass Meat Tenderizer Hammer, not brought to the table No Tevila Cans, Reusable Empty Metal No Tevila if opened by a Yehudi No Tevila Metal Cutlery Tevila with Brocha Styrofoam No Tevila China, Bone Tevila w/o Brocha Tea Kettle, Corelle Tevila with Brocha Metal Flour & Sugar Storage Tevila w/o Brocha China, Glazed Tevila w/o Brocha Canisters Thermos (Glass Insert) Tevila with Brocha Colander, Metal Tevila with Brocha
    [Show full text]
  • Catalog Holding List A-E in PDF Form
    Company Name Location Date Original? Pages Color-B/W? Product Comments See U.S. Glass Circa Adams & Co. Copy 1890-1900 Akro Agate Glass Co. Clarksburg, WV 1940’s Original 4 Color Akroite floral containers Decorated beverage ware, Anchor Hocking Lancaster, OH 1942 Original 11 Color Fire-King oven ware & jade- ite Anchor Hocking Lancaster, OH 1953 Original 4 B/W Cape Cod or Sandwich pattern Loose sheets Decorated glass, Sandwich Some pages have Anchor Hocking Lancaster, OH 1954 Original 44 Color, B/W pattern, Fire-King, etc. pictures cut out Turquoise Blue & Copper Tint Anchor Hocking Lancaster, OH 1956 Original 5 Color Loose sheets Fire-King Plus 4 page B/W price Anchor Hocking Lancaster, OH 1957-1958 Original 47 Color, B/W Fire-King, Forest Green, etc. list Fire-King, beverage items, Anchor Hocking Lancaster, OH 1959-1960 Original 56 Color, B/W kitchenware Fire-King, kitchenware, some Anchor Hocking Lancaster, OH 1960-1961 Original 59 Color, B/W Early American Pres-cut, etc. Anchor Hocking Lancaster, OH 1961 Original 1 Color Desert gold stemware Fire-King, Sandwich, Several pages with cut Anchor Hocking Lancaster, OH 1961-1962 Original 67 Color, B/W beverage items, etc. outs “Institutional Glassware”, Anchor Hocking Lancaster, OH 1963 Original 12 B/W Stems, tumblers, Ashtrays, Catalog HR 63 etc. Mostly beverage ware, some Plus 8 page B/W price Anchor Hocking Lancaster, OH 1964 Original 78 Color, B/W Fire-King list Tumblers, Prescut, Ovenware, Plus 2 page B/W price Anchor Hocking Lancaster, OH 1965 Original 78 Color etc. revision sheet Loose sheet, includes Anchor Hocking Lancaster, OH 1965 Original 2 B/W “Bravo” Cut Tumblers prices Beverage Ware, Prescut, , Plus 1 page B/W price Anchor Hocking Lancaster, OH 1966 Original 80 Color Jade-ite, etc.
    [Show full text]
  • RNA Isolation and Purification for Every Sample, RNA Type, and Application Isolate and Purify RNA with Confidence
    RNA isolation and purification For every sample, RNA type, and application Isolate and purify RNA with confidence RNA isolation is a crucial step in your quest to understand gene expression levels. With all the solutions that Thermo Fisher Scientific has to offer, you can be confident that you’re getting started on the right foot. Go ahead and push the limits of your research. We’ll be there to support you with robust RNA purification kits, trusted RNA tools, and experienced technical support, all backed by nearly 30 years of leadership and innovation in RNA technologies. • Isolate from any sample type, for any application • Obtain high-purity, intact RNA • Achieve high yields, even from small sample quantities Contents Methods of RNA isolation 4 RNA and sample types 5 RNA applications 6 Organic RNA extraction 8 Spin column RNA extraction 10 Lysate-based RNA extraction 11 Automated RNA purification 12 Transcriptome purification 14 mRNA purification 15 MicroRNA and small RNA purification 16 Viral RNA purification 18 RNA from FFPE samples 20 RNA isolation technology guide 22 Avoiding RNA degradation 26 Tips for handling RNA 27 RNA quantitation 28 Gene expression solutions 30 Gene expression research considerations 31 Superior cDNA synthesis for any application 32 Complete kit with flexible priming options 33 Which instrument fits your needs? 34 Which thermal cycler or PCR instrument fits your needs? 35 RNA technical resources 36 Services and support 37 Ordering information 38 Methods of RNA isolation For every application, sample, and RNA type For over three decades, our scientists have developed and professional support. Our RNA isolation products innovative and robust RNA isolation products designed include organic reagents, columns, sample lysate, and to make your job as a scientist easier.
    [Show full text]
  • Virus Purification, Rna Extraction, and Targeted
    VIRUS PURIFICATION, RNA EXTRACTION, AND TARGETED GENOME CAPTURE IN ONE CHIP Miyako Niimi1*, Taisuke Masuda1, Kunihiro Kaihatsu2, Nobuo Kato2, and Fumihito Arai1 1Nagoya University, JAPAN and 2Osaka University, JAPAN ABSTRACT In this research, we demonstrated a microfluidic chip to pretreat the samples for viral genome assay. The microfluidic chip has the following three functions; (1) Virus purification and enrichment, (2) Viral RNA extraction, and (3) Capture of the targeted virus genome. (1) Hydroxyapatite chromatography, Boom method, and PNA (2) (Peptide Nucleic Acid) were used for the above three (3) functions, respectively. These three functions were integrated in one chip. Furthermore PNA immobilized on the glass can detect the targeted virus genome so that in situ virus detection would be possible by anybody, anywhere, anytime. KEYWORDS: Virus purification, RNA extraction and detection, Infectious disease diagnosis INTRODUCTION For the purpose of diagnosing the infectious diseases Figure 1. Concept of the microfluidic chip. The microflu- quickly and accurately, DNA sequencers for gene analysis idic chip consists of the three parts: (1) hydroxyapatite- of infectious viruses have been developed rapidly. The packed microcolumn for virus purification, (2) silica- latest DNA sequencers can treat the massive numbers of packed microcolumn for viral RNA extraction, and (3) samples such as saliva and nasal at one time. However, it PNA immobilized glass for capture of the targeted virus is necessary to purify and enrich the virus and extract the genome. viral RNA in the sample as the pretreatments before gene (1) (2) analysis. Hydroxyapatite chromatography[1] have been Sample Elution Buffer used extensively for purification and fractionation of Hydroxy- various biochemical substances such as protein and virus.
    [Show full text]
  • Mead Art Museum Andrew W. Mellon Faculty Seminar: Jan 15 and 16, 2015
    Mead Art Museum Andrew W. Mellon Faculty Seminar: Jan 15 and 16, 2015 Looking at Glass through an Interdisciplinary Lens: Teaching and Learning with the Mead’s Collection Books: Bach, Hans and Norbert Neuroth, eds. The Properties of Optical Glass. Berlin: Springer-Verlag, 1995. Barr, Sheldon. Venetian Glass: Confections in Glass, 1855-1914. New York: Harry N. Abrams, 1998. Battie, David and Simon Cottle, eds. Sotheby's Concise Encyclopedia of Glass. London: Conran Octopus, 1991. Blaszczyk, Regina Lee. Imagining Consumers, Design and Innovation from Wedgwood to Corning. Baltimore: Johns Hopkins University Press, 2000. Bradbury, S. The Evolution of the Microscope. Oxford: Pergamon Press, 1967. Busch, Jason T., and Catherine L. Futter. Inventing the Modern World: Decorative Arts at the World’s Fairs, 1951-1939. New York, NY: Skira Rizzoli, 2012. Carboni, Stefano and Whitehouse, David. Glass of the Sultans. New York: Metropolitan Museum of Art; Corning, NY: The Corning Museum of Glass; Athens: Benaki Museum; New Haven and London: Yale University Press, 2001. Charleston, Robert J. Masterpieces of glass: a world history from the Corning Museum of Glass. 2nd ed.: New York, Harry N. Abrams, 1990. The Corning Museum of Glass. Innovations in Glass. Corning, New York: The Corning Museum of Glass, 1999. Lois Sherr Dubin. The History of Beads: from 30,000 B.C. to the present. London: Thames & Hudson, 2006. Fleming, Stuart. Roman Glass: Reflections of Everyday Life. Philadelphia: University of Pennsylvania Museum, 1997. ----Roman Glass: Reflections on Cultural Change. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology, 1999. 1 Frelinghuysen, Alice Cooney. Louis Comfort Tiffany at the Metropolitan Museum.
    [Show full text]
  • A Suitable RNA Preparation Methodology for Whole Transcriptome Shotgun Sequencing Harvested from Plasmodium Vivax‑Infected Patients Catarina Bourgard1, Stefanie C
    www.nature.com/scientificreports OPEN A suitable RNA preparation methodology for whole transcriptome shotgun sequencing harvested from Plasmodium vivax‑infected patients Catarina Bourgard1, Stefanie C. P. Lopes2,3, Marcus V. G. Lacerda2,3, Letusa Albrecht1,4* & Fabio T. M. Costa1* Plasmodium vivax is a world‑threatening human malaria parasite, whose biology remains elusive. The unavailability of in vitro culture, and the difculties in getting a high number of pure parasites makes RNA isolation in quantity and quality a challenge. Here, a methodological outline for RNA‑ seq from P. vivax isolates with low parasitemia is presented, combining parasite maturation and enrichment with efcient RNA extraction, yielding ~ 100 pg.µL−1 of RNA, suitable for SMART‑Seq Ultra‑Low Input RNA library and Illumina sequencing. Unbiased coding transcriptome of ~ 4 M reads was achieved for four patient isolates with ~ 51% of transcripts mapped to the P. vivax P01 reference genome, presenting heterogeneous profles of expression among individual isolates. Amongst the most transcribed genes in all isolates, a parasite‑staged mixed repertoire of conserved parasite metabolic, membrane and exported proteins was observed. Still, a quarter of transcribed genes remain functionally uncharacterized. In parallel, a P. falciparum Brazilian isolate was also analyzed and 57% of its transcripts mapped against IT genome. Comparison of transcriptomes of the two species revealed a common trophozoite‑staged expression profle, with several homologous genes being expressed. Collectively, these results will positively impact vivax research improving knowledge of P. vivax biology. Plasmodium vivax is the most prevalent malaria parasite outside Sub-Saharan Africa, causing the most geographi- cally widespread type of malaria, placing millions of people at risk of infection 1.
    [Show full text]
  • RNA Extraction and Quantification, Reverse Transcription, and Real
    RNA Extraction and Quantification, Reverse Transcription, and Real-time PCR (q-PCR) General Surgery Labs SOP 9-10-2014 Sladjana Stratomirovic RNA Extraction and Quantification, Reverse Transcription, and Real-time PCR (q-PCR) Preparation of Samples Cells: o Remove media and wash cells 2X with cold PBS. (2 ml for 6 well plate or 3 ml for 6cm plate) . Keep on ice at all times! o Add 200-500 ul cold PBS o Scrape cells and collect a 1.5 eppendorf tube o Spin down to collect pellet at 12000 rpm for 10 min (4 degree) o Remove PBS completely . store the pellet at -80 freezer if you are not extracting RNA immediately Snap frozen tissue: o Homogenize tissue by placing it in liquid nitrogen-cooled aluminum foil and crushing it into fine pieces (using a hammer) for use in Western blots, RNA extractions etc. Only a small amount of tissue is needed for RNA extraction (20-30 mg) o The rest of the homogenized tissue can be aliquoted and stored at -80. RNA Extraction RNA extraction is done using different RNA extraction kits specific for certain cells, tissue, blood, etc. You can learn more about different kits for different tissues on the Qiagen website: http://www.qiagen.com. The RNeasy Mini Kit from Qiagen is the kit used most often in our lab. The kit is supplied with a Quick–Start protocol for RNA extraction. You can find more detailed explanation in the Qiagen handbook on their website:www.qiagen.com/handbooks. Notes before start using Qiagen kit: Add 10ul β –mercacptoethanol (β-ME) to 1ml RLT buffer provided in the kit.
    [Show full text]
  • Development of an RNA Extraction Protocol for Norovirus from Raw Oysters and Detection by Qrt-PCR and Droplet-Digital RT-PCR
    foods Article Development of an RNA Extraction Protocol for Norovirus from Raw Oysters and Detection by qRT-PCR and Droplet-Digital RT-PCR Daniel Plante 1 , Julio Alexander Bran Barrera 1, Maude Lord 1, Irène Iugovaz 1 and Neda Nasheri 2,3,* 1 Microbiology Laboratory, Regulatory Operations and Enforcement Branch, Health Canada, 1001 St-Laurent Street West, Longueil, QC J4K 1C7, Canada; [email protected] (D.P.); [email protected] (J.A.B.B.); [email protected] (M.L.); [email protected] (I.I.) 2 National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada 3 Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada * Correspondence: [email protected] Abstract: Foodborne viruses such as norovirus and hepatitis A virus cause frequent outbreaks associated with the consumption of raw or undercooked oysters. Viral particles are bioaccumulated in the oyster’s digestive glands, making RNA extraction and RT-PCR detection difficult due to the complex nature of the food matrix and the presence of RT-PCR inhibitors. Herein, we have developed a viral RNA extraction protocol from raw oysters using murine norovirus (MNV) as a surrogate for human noroviruses. The method combines lysis in Tri-Reagent reagent, followed by RNA extraction using Direct-Zol purification columns and lithium chloride precipitation. Viral load Citation: Plante, D.; Bran Barrera, J.A.; Lord, M.; Iugovaz, I.; Nasheri, N. quantification was performed by both qRT-PCR and droplet-digital RT-PCR.
    [Show full text]
  • Corning's Care and Safe Handling of Glassware Application Note
    Care and Safe Handling of Laboratory Glassware Care and Safe Handling of Laboratory Glassware CONTENTS Glass: The Invisible Container . 1 Glass Technical Data . 2 PYREX ® Glassware . 2 PYREXPLUS ® Glassware . 2 PYREX Low Actinic Glassware . 2 VYCOR ® Glassware . 2 Suggestions for Safe Use of PYREX Glassware . 3 Safely Using Chemicals . 3 Safely Handling Glassware . 3 Heating and Cooling . 4 Autoclaving . 4 Mixing and Stirring . 5 Using Stopcocks . 5 Joining and Separating Glass Apparatus . 5 Using Rubber Stoppers . 6 Vacuum Applications . 6 Suggestions for Safe Use of PYREXPLUS Glassware . 6 Exposure to Heat . 7 Exposure to Cold . 7 Exposure to Chemicals . 7 Exposure to Ultraviolet . 7 Exposure to Microwave . 7 Exposure to Vacuum . 7 Autoclaving . 7 Labeling and Marking . 8 Suggestions for Safe Use of Fritted Glassware . 8 Selecting Fritted Glassware . 8 Proper Care of Fritted Ware . 8 Suggestions for Safe Use of Volumetric Glassware . 9 Types of Volumetric Glassware . 9 Calibrated Glassware Markings . 9 Reading Volumetric Glassware . 9 Suggestions for Cleaning and Storing Glassware . 10 Safety Considerations . 10 Cleaning PYREX Glassware . 10 Cleaning PYREXPLUS Glassware . 12 Cleaning Cell Culture Glassware . 12 Rinsing, Drying and Storing Glassware . 13 Glass Terminology . 13 Care and Safe Handling of Laboratory Glassware GLASS: THE INVISIBLE MATERIAL Q PYREX glassware comes in a wide variety of laboratory shapes, sizes and degrees of accuracy — a design to meet From the 16th century to today, chemical researchers have used every experimental need. glass containers for a very basic reason: the glass container is transparent, almost invisible and so its contents and reactions While we feel PYREX laboratory glassware is the best all- within it are clearly visible.
    [Show full text]
  • History of Several Major Producers of Depression Glass - Part Two by Barbara E
    VOLUME 38, NUMBER 5 PAGE 7 History of Several Major Producers of Depression Glass - Part Two by Barbara E. Mauzy Men blowing glass ~ this is how bottles and similar items were created before the use of ma- chines. By the end of the Great Depression more than half of the American glass factories had closed, but those engaged in the production of this cheaply manufactured dinnerware and accessories were able to survive, and here are some of the most important and successful enterprises. .Jeannette Glass Company The Jeannette Bottle Works began operations in 1888 and after several changes of ownership became the Jeannette Glass Company in 1898. Apothecary (medicine and drug store), beverage, and other bottles were hand- made at Jeannette Bottle Works, but with the introduction of the O’Neill semi-automatic bottle blowing machine in 1899 Jeannette first expanded production to include wide-mouth jars and then to lens covers, glass blocks, and more. O’Neill semi-automatic bottle blowing machine In 1917 American 3-Way Luxfer Prism Company bought controlling interest of the Jeannette Bottle Works and the entire plant was converted to the manufacture of pressed ware. It is this pressed glassware that most collectors think of when con- sidering Depression Glass. By the end of the Depression more than half of the American glass factories had closed, but those engaged in the production of this cheaply manufactured dinner- ware and accessories were able to survive, and Jeannette Glass Company was among these successful enter- prises. Cherry Blossom Floral Iris (Continued on page 8) PAGE 8 NEWS & VIEWS (Continued from page 7) Manufacturing of glassware continued for decades with the peak of production being in 1930.
    [Show full text]
  • ID Title Author 238 Crackle Glass, Collecting
    ID Title Pub. Date Author 238 Crackle Glass, Collecting - w/pg 1997 Alford, Judy 253 Buffalo Pottery, The Book of - w/pg 1987 Altman, Seymour & Violet 232 Hobstar, The 1992 American Cut Glass Association 312 Satsuma 1978 Andacht, Sandra 132 Rainbow, The Glass 1969 Anderton, Johana 038 Candlesticks, Glass 1977 Archer, Margaret & Douglas 154 Moser, Artistry in Glass 1857-1923 1988 Baldin, Gary & Lee Carno 080 Paden City 1978 Barnett, Jerry 286 Flower Frogs for Collectors 2001 Bell, Bonnie 235 Kitchen, Bath & Beyond, Collectibles w/pg 1998 Bercovici, Bryson, & Gillham 201 Japan Ceramics, The Collectors Guide To Made In 1994 Besswhite, Carole 032 Tiffin Glassmasters Book I 1979 Bickenheuser, Fred 059 Tiffin Glassmasters Book II - wlpg 1981 Bickenheuser, Fred 106 Tiffin Glassmasters Book III 1985 Bickenheuser, Fred 171 Lighting of the 20s-30’s, Electric (Vol. 1) 1992 Black, James 172 Lighting of the 20s-30s, Electric (Vol. 2) 1993 Black, James 283 Egg Cups 1995 Blake, Brenda C. 267 Brilliant Cut Glass, Handbook For American 2001 Boggess, Bill & Louise 163 Cut Glass, Identifying American Brilliant 1990 Boggess. Bill & Louise 243 Fostoria Glassware 1887-1982 1999 Bones, Frances 033 Heisey Stemware 1976 Bradley-Ryan-Ryan 112 Heiseys Orchid Etching - w/pg 1983 Bredehoft, Neila 113 Heisey Rose 1983 Bredehoft, Neila 376 Heisey Glass (1925-1938) 1986 Bredehoft, Neila 317 Toothpick Holders, Glass (2nd Edition) 2005 Bredehoft, Neila & Tom; Jo & Bob Sanford 257 Collectible Glass 1920-1970, Fifty Years of Vol. 1 --w/pg 1997 Bredehoft, Tom & Neila 258 Collectible Glass 1920-1970, Fifty Years of Vol. ll--w/pg 2000 Bredehoft, Tom & Neila 225 Moon & Star, Mysteries of The Breeze, George & Linda 282 Kemple Glass 1945-1970 1997 Burkholder, J.R.
    [Show full text]
  • Bacterial RNA Extraction and Purification from Whole Human
    Technical Note pubs.acs.org/ac Bacterial RNA Extraction and Purification from Whole Human Blood Using Isotachophoresis Anita Rogacs, Yatian Qu, and Juan G. Santiago* Department of Mechanical Engineering, Stanford University, Stanford, California, 94305 *S Supporting Information ABSTRACT: We demonstrate a novel assay for physico- chemical extraction and isotachophoresis-based purification of 16S rRNA from whole human blood infected with Pseudomonas putida. This on-chip assay is unique in that the extraction can be automated using isotachophoresis in a simple device with no moving parts, it protects RNA from degradation when isolating from ribonuclease-rich matrices (such as blood), and produces a purified total nucleic acid sample that is compatible with enzymatic amplification assays. We show that the purified RNA is compatible with reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and demonstrate a clinically relevant sensitivity of 0.03 bacteria per nanoliter using RT-qPCR. ucleic acid amplification methods, including reverse magnetic beads. These approaches are well-established in N transcription-quantitative polymerase chain reaction traditional settings but require multiple reagent wash steps and (RT-qPCR), targeting the 16S rRNA (16S rRNA) enable fast specialized fabrication or manipulation (e.g., pumping liquids and specific detection of bacteria in complex samples such as for wash steps or moving magnets for beads). Further, SPE whole blood.1,2 16S rRNA is a universal constituent of bacterial binding capacity can be low due to competitive protein ribosomes present at high copy numbers (103−104 per actively absorptions (e.g., to silica) and the presence of PCR inhibiting 3,4 growing cell). Targeting these biomarkers can potentially chemistry such as guanidinium thiocyanate (GuCN), guanidi- increase assay sensitivity compared with the assays targeting the nium chloride (GuHCl), isopropyl alcohol, or ethanol.
    [Show full text]