FGF9 and SHH Signaling Coordinate Lung Growth and Development

Total Page:16

File Type:pdf, Size:1020Kb

FGF9 and SHH Signaling Coordinate Lung Growth and Development RESEARCH ARTICLE 1507 Development 133, 1507-1517 (2006) doi:10.1242/dev.02313 FGF9 and SHH signaling coordinate lung growth and development through regulation of distinct mesenchymal domains Andrew C. White1, Jingsong Xu2, Yongjun Yin1, Craig Smith1, Gregory Schmid1 and David M. Ornitz1,* Morphogenesis of the lung is regulated by reciprocal signaling between epithelium and mesenchyme. In previous studies, we have shown that FGF9 signals are essential for lung mesenchyme development. Using Fgf9 loss-of-function and inducible gain-of- function mouse models, we show that lung mesenchyme can be divided into two distinct regions: the sub-mesothelial and sub- epithelial compartments, which proliferate in response to unique growth factor signals. Fibroblast growth factor (FGF) 9 signals from the mesothelium (the future pleura) to sub-mesothelial mesenchyme through both FGF receptor (FGFR) 1 and FGFR2 to induce proliferation. FGF9 also signals from the epithelium to the sub-epithelial mesenchyme to maintain SHH signaling, which regulates cell proliferation, survival and the expression of mesenchymal to epithelial signals. We further show that FGF9 represses peribronchiolar smooth muscle differentiation and stimulates vascular development in vivo. We propose a model in which FGF9 and SHH signals cooperate to regulate mesenchymal proliferation in distinct submesothelial and subepithelial regions. These data provide a molecular mechanism by which mesothelial and epithelial FGF9 directs lung development by regulating mesenchymal growth, and the pattern and expression levels of mesenchymal growth factors that signal back to the epithelium. KEY WORDS: Fibroblast growth factor 9 (FGF9), Sonic hedgehog (SHH), Lung development, Branching morphogenesis, Mesothelium, Epithelium, Mesenchyme, Mouse INTRODUCTION normal lung development is not clear (Bellusci et al., 1997b; The embryonic lung develops from three distinct tissue layers: the Cardoso et al., 1997; Guo et al., 1996; Park et al., 1998; Post et al., outer mesothelium, the mesenchyme and the bronchial epithelium. 1996; Simonet et al., 1995; Tichelaar et al., 2000). Spry2, an Following formation of the primary epithelial branches that define inducible inhibitor of FGF and EGF receptor tyrosine kinase the lobular structure of the lung, morphogenesis proceeds to the signaling, is expressed in the distal epithelial tips and is functionally pseudoglandular stage (E9.5-E16), in which continued downstream of the mesenchymal FGF genes, acting to suppress mesenchymal growth is coupled with epithelial branching to create mesenchymal FGF signaling to epithelium (Hanafusa et al., 2002; the respiratory tree. During this crucial developmental stage, a Mailleux et al., 2001; Tefft et al., 2002; Tefft et al., 1999; Zhang et dynamic network of signaling growth factors interact across the al., 2001). three tissue boundaries to regulate lung growth and branching, FGF9 fulfills the role of a reciprocal epithelial to mesenchymal orchestrating proportional growth of the proximal conducting signal in the lung. At E10.5, Fgf9 is expressed in both the airways, the terminal epithelial buds and the surrounding vascular mesothelial lining (future pleura) of the lung bud and in the network (Shannon and Hyatt, 2004). epithelium of the developing airways. As lung development Several studies have identified fibroblast growth factors (FGFs) progresses through the pseudoglandular stage, Fgf9 expression that signal across epithelial and mesenchymal boundaries to regulate persists in the mesothelium but can no longer be detected in the lung both the pseudoglandular and subsequent stages of lung epithelium (Colvin et al., 1999). Fgf9–/– mice have severe lung development (Shannon and Hyatt, 2004). In vitro studies have hypoplasia and die in the perinatal period. The most characteristic shown that mesenchymally expressed FGF10 activates the ‘b’ splice feature of Fgf9–/– lungs is a reduced ratio of mesenchyme to form of FGF receptor 2 (FGFR2b) in lung epithelium to direct epithelium caused by a reduction in mesenchymal (but not budding by stimulating epithelial cell migration and proliferation epithelial) proliferation at E10.5-E11.5. In addition, a secondary (Bellusci et al., 1997b; Park et al., 1998; Peters et al., 1992; Weaver consequence of Fgf9 gene inactivation is reduced branching of the et al., 2000). Consistent with this activity, loss of function of Fgf10 epithelial tubules after ~E12.5. Previous studies suggested that a or Fgfr2b results in the absence of primary branching in vivo, molecular etiology of reduced branching morphogenesis may be causing the trachea to terminate as a blind sac (Arman et al., 1999; decreased mesenchymal Fgf10 at actively branching regions of the Celli et al., 1998; De Moerlooze et al., 2000; Min et al., 1998; Peters lung (Colvin et al., 2001). et al., 1995; Sekine et al., 1999). Fgf7, also a ligand for FGFR2b, is Sonic hedgehog (SHH) and bone morphogenic protein 4 (BMP4) T expressed in developing lung mesenchyme, but its function during also modulate lung mesenchymal and epithelial development. Bmp4 is expressed in the distal epithelium, where it appears to have a 1Department of Molecular Biology and Pharmacology, Washington University primary role in promoting distal epithelial differentiation and Medical School, St Louis, MO 63110, USA. 2Brigham and Women’s Hospital, Division antagonizing FGF-mediated epithelial budding, and has a suggested of Critical Care and Pulmonary Medicine, Boston, MA 02115, USA. role in specifying smooth muscle precursors (Bellusci et al., 1996; *Author for correspondence (e-mail: [email protected]) Bitgood and McMahon, 1995; Mailleux et al., 2005; Weaver et al., 2000). Additionally, Bmp4 is upregulated by FGF10 in vitro and in Accepted 30 January 2006 vivo (Lebeche et al., 1999; Mailleux et al., 2005; Mailleux et al., DEVELOPMEN 1508 RESEARCH ARTICLE Development 133 (8) 2001; Weaver et al., 2000). Shh is expressed in the distal epithelium Whole mount in situ hybridization, lacZ staining and of the lung throughout the pseudoglandular stage and binds to its immunohistochemistry receptor, patched 1 (Ptch1), in the adjacent sub-epithelial Whole-mount in situ hybridization was performed as described previously LacZ+/– mesenchyme (Bellusci et al., 1997a; Bitgood and McMahon, 1995; (Colvin et al., 2001). Tie2 and Noggin-lacZ expression was visualized by staining whole lobes with 1 mg/ml X-gal, 2 mM MgCl2, 35 mM Miller et al., 2001; Weaver et al., 2003). Other members of this ϫ signaling pathway, such as Gli1 and Hip1, colocalize with Ptch1 Ke3F(CN)6, 35 mM Ke4F(CN)6 and 1 PBS at room temperature in the dark. Following adequate color reaction, tissues were washed and (Chuang et al., 2003; Grindley et al., 1997). Both Shh gain-of- dehydrated to methanol. Tissues were then sectioned in paraffin wax at 5 function and loss-of-function mutations, as well as combinatorial ␮M (Tie2LacZ+/–) or cryosectioned at 12 ␮M (Noggin-lacZ) and Gli loss-of-function mutations, demonstrate that SHH signaling counterstained with Eosin. Panel comparisons were paired with littermate positively affects both mesenchymal and epithelial growth, as well controls, ensuring similar developmental time points, tissue processing and as lobe formation (reviewed by van Tuyl and Post, 2000). SHH is staining incubation periods (8-10 hours). proposed to modulate the epithelial branching pattern by focally For whole-mount immunohistochemistry, dissected lung tissues were suppressing Fgf10 in distal mesenchyme and upregulating Fgf7 fixed overnight in 4% PFA, dehydrated to 100% methanol and stored at (Lebeche et al., 1999; Pepicelli et al., 1998). Conversely, FGF10 –20°C. All incubations and washes were performed at 4°C while shaking. does not affect Shh, whereas high levels of FGF7 suppresses both Tissues were rehydrated, incubated with a blocking solution (2% skim milk, Shh expression and signaling (Lebeche et al., 1999; Park et al., 1% sheep serum, 0.1% Triton X-100) for 2 hours, primary and secondary antibodies, in blocking solution, overnight at 4°C and then washed (2% skim 1998). Although Shh appears unaffected at late stages of branching –/– milk, 0.1% Triton X-100) five times at hourly intervals. Visualization of in Fgf9 lungs (Colvin et al., 2001), we hypothesized that FGF9 secondary antibody conjugated to HRP was performed using the DAB kit may directly or indirectly regulate SHH signaling at early stages of (Vector Laboratories), according to manufacturer’s instructions. PECAM1- branching, which in turn may affect mesenchymal proliferation and stained tissues were sectioned in paraffin wax at 5 ␮M and counterstained the level and pattern of Fgf10. with Hematoxylin. Rat anti-PECAM1 (BD) was incubated at 1:500, To investigate further the mechanisms by which FGF9 regulates monoclonal anti-TTF1 (DakoCytomation) at 1:200, monoclonal anti- lung development, we have developed two gain-of-function models: phosphohistone H3 (Sigma) at 1:500 and rabbit anti-active caspase 3 (R&D) an in vivo method to transiently express ectopic FGF9 in lung at 1:600. Secondary HRP conjugated anti-mouse antibody (Chemicon) was incubated at 1:300, HRP anti-rat at 1:200 and HRP anti-rabbit at 1:400. epithelium, and in vitro organ culture that mimics FGF9 ␮ overexpression in the mesothelium. Combined with the Fgf9 loss- Immunohistochemistry on paraffin embedded 5 M sections was performed using a standard protocol with citrate buffer antigen retrieval. Rat anti-SMA of-function mouse, these two systems facilitated an examination
Recommended publications
  • Instability Restricts Signaling of Multiple Fibroblast Growth Factors
    Cell. Mol. Life Sci. DOI 10.1007/s00018-015-1856-8 Cellular and Molecular Life Sciences RESEARCH ARTICLE Instability restricts signaling of multiple fibroblast growth factors Marcela Buchtova • Radka Chaloupkova • Malgorzata Zakrzewska • Iva Vesela • Petra Cela • Jana Barathova • Iva Gudernova • Renata Zajickova • Lukas Trantirek • Jorge Martin • Michal Kostas • Jacek Otlewski • Jiri Damborsky • Alois Kozubik • Antoni Wiedlocha • Pavel Krejci Received: 18 June 2014 / Revised: 7 February 2015 / Accepted: 9 February 2015 Ó Springer Basel 2015 Abstract Fibroblast growth factors (FGFs) deliver ex- failure to activate FGF receptor signal transduction over tracellular signals that govern many developmental and long periods of time, and influence specific cell behavior regenerative processes, but the mechanisms regulating FGF in vitro and in vivo. Stabilization via exogenous heparin signaling remain incompletely understood. Here, we ex- binding, introduction of stabilizing mutations or lowering plored the relationship between intrinsic stability of FGF the cell cultivation temperature rescues signaling of un- proteins and their biological activity for all 18 members of stable FGFs. Thus, the intrinsic ligand instability is an the FGF family. We report that FGF1, FGF3, FGF4, FGF6, important elementary level of regulation in the FGF sig- FGF8, FGF9, FGF10, FGF16, FGF17, FGF18, FGF20, and naling system. FGF22 exist as unstable proteins, which are rapidly de- graded in cell cultivation media. Biological activity of Keywords Fibroblast growth factor Á FGF Á Unstable Á FGF1, FGF3, FGF4, FGF6, FGF8, FGF10, FGF16, FGF17, Proteoglycan Á Regulation and FGF20 is limited by their instability, manifesting as Electronic supplementary material The online version of this article (doi:10.1007/s00018-015-1856-8) contains supplementary material, which is available to authorized users.
    [Show full text]
  • Expression of Fibroblast Growth Factor 9 in Normal Human Lung and Idiopathic Pulmonary Fibrosis
    JHCXXX10.1369/0022155413497366Coffey et al.FGF9 in IPF 497366research-article2013 Article Journal of Histochemistry & Cytochemistry 61(9) 671 –679 © The Author(s) 2013 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1369/0022155413497366 jhc.sagepub.com Expression of Fibroblast Growth Factor 9 in Normal Human Lung and Idiopathic Pulmonary Fibrosis Emily Coffey, Donna R. Newman, and Philip L. Sannes Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina Summary The fibroblast growth factor (FGF) family of signaling ligands contributes significantly to lung development and maintenance in the adult. FGF9 is involved in control of epithelial branching and mesenchymal proliferation and expansion in developing lungs. However, its activity and expression in the normal adult lung and by epithelial and interstitial cells in fibroproliferative diseases like idiopathic pulmonary fibrosis (IPF) are unknown. Tissue samples from normal organ donor human lungs and those of a cohort of patients with mild to severe IPF were sectioned and stained for the immunolocalization of FGF9. In normal lungs, FGF9 was confined to smooth muscle surrounding airways, alveolar ducts and sacs, and blood vessels. In addition to these same sites, lungs of IPF patients expressed FGF9 in a population of myofibroblasts within fibroblastic foci, hypertrophic and hyperplastic epithelium of airways and alveoli, and smooth muscle cells surrounding vessels embedded in thickened interstitium. The results demonstrate that FGF9 protein increased in regions of active cellular hyperplasia, metaplasia, and fibrotic expansion of IPF lungs, and in isolated human lung fibroblasts treated with TGF- β1 and/or overexpressing Wnt7B.
    [Show full text]
  • FGF Signaling Regulates Mesenchymal Differentiation and Skeletal Patterning Along the Limb Bud Proximodistal Axis Kai Yu and David M
    RESEARCH ARTICLE 483 Development 135, 483-491 (2008) doi:10.1242/dev.013268 FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis Kai Yu and David M. Ornitz* Fibroblast growth factors (FGFs) are signals from the apical ectodermal ridge (AER) that are essential for limb pattern formation along the proximodistal (PD) axis. However, how patterning along the PD axis is regulated by AER-FGF signals remains controversial. To further explore the molecular mechanism of FGF functions during limb development, we conditionally inactivated fgf receptor 2 (Fgfr2) in the mouse AER to terminate all AER functions; for comparison, we inactivated both Fgfr1 and Fgfr2 in limb mesenchyme to block mesenchymal AER-FGF signaling. We also re-examined published data in which Fgf4 and Fgf8 were inactivated in the AER. We conclude that limb skeletal phenotypes resulting from loss of AER-FGF signals cannot simply be a consequence of excessive mesenchymal cell death, as suggested by previous studies, but also must be a consequence of reduced mesenchymal proliferation and a failure of mesenchymal differentiation, which occur following loss of both Fgf4 and Fgf8. We further conclude that chondrogenic primordia formation, marked by initial Sox9 expression in limb mesenchyme, is an essential component of the PD patterning process and that a key role for AER-FGF signaling is to facilitate SOX9 function and to ensure progressive establishment of chondrogenic primordia along the PD axis. KEY WORDS: FGF, FGF receptor, Apical ectodermal ridge (AER), Limb bud development, Chondrogenesis INTRODUCTION Previous studies indicate that AER-FGF signals are important The apical ectodermal ridge (AER) is a specialized ectodermal for maintaining mesenchymal cell survival during limb structure formed at the distal tip of the vertebrate limb bud that is development (Boulet et al., 2004; Sun et al., 2002).
    [Show full text]
  • FGF Signaling Network in the Gastrointestinal Tract (Review)
    163-168 1/6/06 16:12 Page 163 INTERNATIONAL JOURNAL OF ONCOLOGY 29: 163-168, 2006 163 FGF signaling network in the gastrointestinal tract (Review) MASUKO KATOH1 and MASARU KATOH2 1M&M Medical BioInformatics, Hongo 113-0033; 2Genetics and Cell Biology Section, National Cancer Center Research Institute, Tokyo 104-0045, Japan Received March 29, 2006; Accepted May 2, 2006 Abstract. Fibroblast growth factor (FGF) signals are trans- Contents duced through FGF receptors (FGFRs) and FRS2/FRS3- SHP2 (PTPN11)-GRB2 docking protein complex to SOS- 1. Introduction RAS-RAF-MAPKK-MAPK signaling cascade and GAB1/ 2. FGF family GAB2-PI3K-PDK-AKT/aPKC signaling cascade. The RAS~ 3. Regulation of FGF signaling by WNT MAPK signaling cascade is implicated in cell growth and 4. FGF signaling network in the stomach differentiation, the PI3K~AKT signaling cascade in cell 5. FGF signaling network in the colon survival and cell fate determination, and the PI3K~aPKC 6. Clinical application of FGF signaling cascade in cell polarity control. FGF18, FGF20 and 7. Clinical application of FGF signaling inhibitors SPRY4 are potent targets of the canonical WNT signaling 8. Perspectives pathway in the gastrointestinal tract. SPRY4 is the FGF signaling inhibitor functioning as negative feedback apparatus for the WNT/FGF-dependent epithelial proliferation. 1. Introduction Recombinant FGF7 and FGF20 proteins are applicable for treatment of chemotherapy/radiation-induced mucosal injury, Fibroblast growth factor (FGF) family proteins play key roles while recombinant FGF2 protein and FGF4 expression vector in growth and survival of stem cells during embryogenesis, are applicable for therapeutic angiogenesis. Helicobacter tissues regeneration, and carcinogenesis (1-4).
    [Show full text]
  • Age-Driven Developmental Drift in the Pathogenesis of Idiopathic Pulmonary Fibrosis
    BACK TO BASICS INTERSTITIAL LUNG DISEASES | Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis Moisés Selman1, Carlos López-Otín2 and Annie Pardo3 Affiliations: 1Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico city, Mexico. 2Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain. 3Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico city, Mexico. Correspondence: Moisés Selman, Instituto Nacional de Enfermedades Respiratorias, Tlalpan 4502, CP 14080, México DF, México. E-mail: [email protected] ABSTRACT Idiopathic pulmonary fibrosis (IPF) is a progressive and usually lethal disease of unknown aetiology. A growing body of evidence supports that IPF represents an epithelial-driven process characterised by aberrant epithelial cell behaviour, fibroblast/myofibroblast activation and excessive accumulation of extracellular matrix with the subsequent destruction of the lung architecture. The mechanisms involved in the abnormal hyper-activation of the epithelium are unclear, but we propose that recapitulation of pathways and processes critical to embryological development associated with a tissue specific age-related stochastic epigenetic drift may be implicated. These pathways may also contribute to the distinctive behaviour of IPF fibroblasts. Genomic and epigenomic studies have revealed that wingless/ Int, sonic hedgehog and other developmental signalling pathways are reactivated and deregulated in IPF. Moreover, some of these pathways cross-talk with transforming growth factor-β activating a profibrotic feedback loop. The expression pattern of microRNAs is also dysregulated in IPF and exhibits a similar expression profile to embryonic lungs. In addition, senescence, a process usually associated with ageing, which occurs early in alveolar epithelial cells of IPF lungs, likely represents a conserved programmed developmental mechanism.
    [Show full text]
  • TABLE S1 Complete Overview of Protocols for Induction of Pscs Into
    TABLE S1 Complete overview of protocols for induction of PSCs into renal lineages Ref 2D/ Cell type Protocol Days Growth factors Outcome Other analyses # 3D hiPSC, hESC, Collagen type I tx murine epidydymal fat pads,ex vivo 54 2D 8 Y27632, AA, CHIR, BMP7 IM miPSC, mESC Matrigel with murine fetal kidney hiPSC, hESC, Suspension,han tx murine epidydymal fat pads,ex vivo 54 2D 20 AA, CHIR, BMP7 IM miPSC, mESC ging drop with murine fetal kidney tx murine epidydymal fat pads,ex vivo 55 hiPSC, hESC Matrigel 2D 14 CHIR, TTNPB/AM580, Y27632 IM with murine fetal kidney Injury, tx murine epidydymal fat 57 hiPSC Suspension 2D 28 AA, CHIR, BMP7, TGF-β1, TTNPB, DMH1 NP pads,spinal cord assay Matrigel,membr 58 mNPC, hESC 3D 7 BPM7, FGF9, Heparin, Y27632, CHIR, LDN, BMP4, IGF1, IGF2 NP Clonal expansion ane filter iMatrix,spinal 59 hiPSC 3D 10 LIF, Y27632, FGF2/FGF9, TGF-α, DAPT, CHIR, BMP7 NP Clonal expansion cord assay iMatrix,spinal 59 murine NP 3D 8-19 LIF, Y27632, FGF2/FGF9, TGF- α, DAPT, CHIR, BMP7 NP Clonal expansion cord assay murine NP, Suspension, 60 3D 7-19 BMP7, FGF2, Heparin, Y27632, LIF NP Nephrotoxicity, injury model human NP membrane filter Suspension, Contractility and permeability assay, ex 61 hiPSC 2D 10 AA, BMP7, RA Pod gelatin vivo with murine fetal kidney Matrigel. 62 hiPSC, hESC fibronectin, 2D < 50 FGF2, AA, WNT3A, BMP4, BMP7, RA, FGF2, HGF or RA + VITD3 Pod collagen type I Matrigel, Contractility and uptake assay,ex vivo 63 hiPSC 2D 13 Y27632, CP21R7, BMP4, RA, BMP7, FGF9, VITD3 Pod collagen type I with murine fetal kidney Collagen
    [Show full text]
  • And Fibroblast Growth Factor Receptor Interactions Usin
    www.nature.com/scientificreports OPEN Characterization of clostridium botulinum neurotoxin serotype A (BoNT/A) and fbroblast growth factor receptor interactions using novel receptor dimerization assay Nicholas G. James1, Shiazah Malik2, Bethany J. Sanstrum1, Catherine Rhéaume2, Ron S. Broide2, David M. Jameson1, Amy Brideau‑Andersen2 & Birgitte S. Jacky2* Clostridium botulinum neurotoxin serotype A (BoNT/A) is a potent neurotoxin that serves as an efective therapeutic for several neuromuscular disorders via induction of temporary muscular paralysis. Specifc binding and internalization of BoNT/A into neuronal cells is mediated by its binding domain (HC/A), which binds to gangliosides, including GT1b, and protein cell surface receptors, including SV2. Previously, recombinant HC/A was also shown to bind to FGFR3. As FGFR dimerization is an indirect measure of ligand‑receptor binding, an FCS & TIRF receptor dimerization assay was developed to measure rHC/A‑induced dimerization of fuorescently tagged FGFR subtypes (FGFR1‑ 3) in cells. rHC/A dimerized FGFR subtypes in the rank order FGFR3c (EC50 ≈ 27 nM) > FGFR2b (EC50 ≈ 70 nM) > FGFR1c (EC50 ≈ 163 nM); rHC/A dimerized FGFR3c with similar potency as the native FGFR3c ligand, FGF9 (EC50 ≈ 18 nM). Mutating the ganglioside binding site in HC/A, or removal of GT1b from the media, resulted in decreased dimerization. Interestingly, reduced dimerization was also observed with an SV2 mutant variant of HC/A. Overall, the results suggest that the FCS & TIRF receptor dimerization assay can assess FGFR dimerization with known and novel ligands and support a model wherein HC/A, either directly or indirectly, interacts with FGFRs and induces receptor dimerization. Botulinum neurotoxin type A (BoNT/A) is a 150 kDa metalloenzyme belonging to the family of neurotoxins produced by Clostridium botulinum.
    [Show full text]
  • Spatiotemporal Expression Patterns of Critical Genes Involved in FGF Signaling During Morphogenesis and Odontogenesis of Deciduous Molar in Miniature Pig
    Spatiotemporal Expression Patterns of Critical Genes Involved in FGF Signaling during Morphogenesis and Odontogenesis of Deciduous Molar in Miniature Pig Wenwen Guo Capital Medical University School of Stomatology Ran Zhang Peking University Stomatological Hospital Lei Hu Capital Medical University School of Stomatology Jiangyi Wang Capital Medical University School of Stomatology Fu Wang Dalian Medical University Jinsong Wang Capital Medical University Chunmei Zhang Capital Medical University School of Stomatology Xiaoshan Wu Xiangya Hospital Central South University Songlin Wang ( [email protected] ) Capital Medical University School of Stomatology Research Article Keywords: miniature pig, tooth development, deciduous molar, broblast growth factor, dental epithelium, dental mesenchyme Posted Date: March 5th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-267527/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Background The broblast growth factor (FGF) pathway plays important role in epithelial-mesenchymal interactions during tooth development. However, how the ligands, receptors, and inhibitors of the FGF pathway get involved into the epithelial-mesenchymal interactions are largely unknown in miniature pigs, which can be used as large animal models for similar tooth anatomy and replacement patterns to humans. Results In this study, we investigated the spatiotemporal expression patterns of critical genes encoding FGF ligands, receptors, and inhibitors in the third deciduous molar of the miniature pig at the cap, early bell, and late bell stages. With the methods of uorescence in situ hybridization and real time RT-PCR, it was revealed that the expression of Fgf3, Fgf4, Fgf7, and Fgf9 mRNAs were located mainly in the dental epithelium and underlying mesenchyme at the cap stage.
    [Show full text]
  • FGF9 for Baldness When Activated by Fgf9, the Receptors Increased Wnt Activity and Transcript Levels
    TARGETS & MECHANISMS in the mice decreased new follicle growth. The effects were partially reversed by administration of exogenous Fgf9. Finally, the group found that mouse fibroblasts at the wound sites expressed two receptors for Fgf9—the keratinocyte growth factor receptor (Kgfr; Fgfr2; Cd332) and fibroblast growth factor receptor 3 (Fgfr3; Cd333). FGF9 for baldness When activated by Fgf9, the receptors increased Wnt activity and transcript levels. The higher Wnt activation in turn increased Fgf9 By Lauren Martz, Staff Writer expression on fibroblasts. A University of Pennsylvania team has found that increasing fibro- These studies suggest FGF9 produced by gd T cells initiates a blast growth factor 9 levels in wounded skin can promote the growth feedback loop in wound fibroblasts that amplifies the signaling of hair follicles in mice.1 Follica Inc. has licensed the findings and components required for follicle neogenesis (see Figure 1, “Wound- plans to test the effects of the growth factor in hair growth indications. induced hair follicle neogenesis”). Male pattern baldness, or androgenic alopecia, occurs when In human dermal samples, the gd T cells required to initiate the circulating hormones cause hair follicles to shrink and eventually process were scarce, unlike stop producing hair. Treatments include Rogaine minoxidil from in mouse skin. This finding “FGF9 modulation could Johnson & Johnson, a vasodilator thought to increase nutrient potentially explains why humans be used in combination supply to the follicles and prevent miniaturization, and Propecia do not undergo hair follicle with skin disruption alone finasteride from Merck & Co. Inc., which converts testosterone to neogenesis when wounded. or in combination with dihydrotestosterone.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/30/2021 03:40:24AM Via Free Access
    27 7 Endocrine-Related E Labanca et al. FGF axis in bone metastasis 27:7 R255–R265 Cancer REVIEW Fibroblast growth factors signaling in bone metastasis Estefania Labanca1, Elba S Vazquez2,3, Paul G Corn1, Justin M Roberts1, Fen Wang4, Christopher J Logothetis1 and Nora M Navone1 1Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA 2Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 3CONICET – Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina 4Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA Correspondence should be addressed to N M Navone: [email protected] Abstract Many solid tumors metastasize to bone, but only prostate cancer has bone as a Key Words single, dominant metastatic site. Recently, the FGF axis has been implicated in cancer f prostate cancer progression in some tumors and mounting evidence indicate that it mediates prostate f bone metastasis cancer bone metastases. The FGF axis has an important role in bone biology and f fibroblast growth factors mediates cell-to-cell communication. Therefore, we discuss here basic concepts of f fibroblast growth factor bone biology, FGF signaling axis, and FGF axis function in adult bone, to integrate these receptors concepts in our current understanding of the role of FGF axis in bone metastases. Endocrine-Related Cancer (2020) 27, R255–R265 Introduction Development of metastases is a complex and demanding cancer progression.
    [Show full text]
  • FGF9 Inhibits Browning Program of White Adipocytes and Associates with Human Obesity
    62 2 Journal of Molecular Y Sun, R Wang et al. FGF9 inhibits browning program 62:2 79–90 Endocrinology of white adipocytes RESEARCH FGF9 inhibits browning program of white adipocytes and associates with human obesity Yingkai Sun1,*, Rui Wang1,*, Shaoqian Zhao1, Wen Li1, Wen Liu1, Lingyun Tang2, Zhugang Wang2, Weiqing Wang1, Ruixin Liu1, Guang Ning1, Jiqiu Wang1 and Jie Hong1 1Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Shanghai, China 2State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China Correspondence should be addressed to J Wang or J Hong: [email protected] or [email protected] *(Y Sun and R Wang contributed equally to this work) Abstract Browning of white adipose tissue has been proven to be a potential target to fight against Key Words obesity and its metabolic commodities, making the exploration of molecules involved in f FGF9 browning process important. Among those browning agents reported recently, FGF21 f browning play as a quite promising candidate for treating obesity for its obvious enhancement of f HIF1α thermogenic capacity in adipocyte and significant improvement of metabolic disorders f obesity in both mice and human. However, whether other members of fibroblast growth factor (FGF) family play roles in adipose thermogenesis and obese development is still an open question. Here, we examined the mRNA expression of all FGF family members in three adipose tissues of male C57BL/6 mice and found that FGF9 is highly expressed in adipose tissue and decreased under cold stress.
    [Show full text]
  • Expression of Fgfs During Early Mouse Tongue Development
    Gene Expression Patterns 20 (2016) 81e87 Contents lists available at ScienceDirect Gene Expression Patterns journal homepage: http://www.elsevier.com/locate/gep Expression of FGFs during early mouse tongue development * Wen Du a, b, Jan Prochazka b, c, Michaela Prochazkova b, c, Ophir D. Klein b, d, a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China b Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA c Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic d Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA article info abstract Article history: The fibroblast growth factors (FGFs) constitute one of the largest growth factor families, and several Received 29 September 2015 ligands and receptors in this family are known to play critical roles during tongue development. In order Received in revised form to provide a comprehensive foundation for research into the role of FGFs during the process of tongue 13 December 2015 formation, we measured the transcript levels by quantitative PCR and mapped the expression patterns by Accepted 29 December 2015 in situ hybridization of all 22 Fgfs during mouse tongue development between embryonic days (E) 11.5 Available online 31 December 2015 and E14.5. During this period, Fgf5, Fgf6, Fgf7, Fgf9, Fgf10, Fgf13, Fgf15, Fgf16 and Fgf18 could all be detected with various intensities in the mesenchyme, whereas Fgf1 and Fgf2 were expressed in both the Keywords: Tongue epithelium and the mesenchyme.
    [Show full text]