Relaxing the Higgs Mass and Its Vacuum Energy by Living at the Top of the Potential

Total Page:16

File Type:pdf, Size:1020Kb

Relaxing the Higgs Mass and Its Vacuum Energy by Living at the Top of the Potential PHYSICAL REVIEW D 101, 115002 (2020) Relaxing the Higgs mass and its vacuum energy by living at the top of the potential † Alessandro Strumia1,* and Daniele Teresi 1,2, 1Dipartimento di Fisica “E. Fermi”, Universit`a di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy 2INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy (Received 17 February 2020; accepted 19 May 2020; published 1 June 2020) We consider an ultralight scalar coupled to the Higgs in the presence of heavier new physics. In the electroweak broken phase the Higgs gives a tree-level contribution to the light-scalar potential, while new physics contributes at loop level. Thereby, the theory has a cosmologically metastable phase where the light scalar is around the top of its potential, and the Higgs is a loop factor lighter than new physics. Such regions with precarious naturalness are anthropically and environmentally selected, as regions with heavier Higgs crunch quickly. We expect observable effects of rolling in the dark-energy equation of state. Furthermore, vacuum energies up to the weak scale can be canceled down to anthropically small values. DOI: 10.1103/PhysRevD.101.115002 I. INTRODUCTION values of ϕ such that the Higgs mass is a loop factor lighter than new physics. Scalars with mass m below the present Hubble scale H0 This observation is relevant for the Higgs-mass hierarchy can still lie away from the minimum of their potential and problem if, for some reason, ϕ lies close to the maximum of thereby undergo significant cosmological evolution at its potential. The authors of [7,8] explored possible reasons: present times. This can be of possible relevance for barring the possibility that ϕ is a ghost, they added extra understanding the apparently unnatural hierarchy of scales wiggles to Vϕ in order to generate local minima around the observed in Nature: cosmological constant much below the maximum, arguing that they can be favored cosmologically weak scale much below the Planck scale. See [1–12] for because they inflate more. some recent attempts of understanding hierarchies via We consider a simpler way of living at the top. Since the cosmological evolution. potential Vϕ is flat around its maximum, regions suffi- We here consider a scalar ϕ with the shift symmetry that ciently close to it can be cosmologically metastable, as long keeps its potential flat broken by small interactions to other as ϕ is so weakly coupled that its mass is small, m ≲ H0. fields, in particular to the Higgs doublet H and to other Instead, regions away from the maximum quickly roll heavier new physics that generates a Higgs mass hierarchy down and catastrophically collapse into a big crunch, as problem. The interaction with the Higgs can be para- illustrated in Fig. 1. In this way, only regions where the ϕ M2ðϕÞ metrized by a -dependent Higgs mass, h . The model Higgs is light are long-lived: a small Higgs mass is selected. will cosmologically generate a little hierarchy, maximal in ϕ The multiverse volume at late times gets dominated by such the special case where the couplings to new physics are near-critical regions at the border between the broken and mediated by the Higgs. unbroken Higgs phase. Indeed, integrating out the Higgs generates a tree-level We also find that this setting allows for a range of values ∼− 4ðϕÞ negative contribution Vϕ Mh to the effective poten- of the vacuum energy, up to the weak scale in the most ϕ 2ðϕÞ 0 tial for if Mh > , i.e., when electroweak symmetry optimistic case, thereby providing a mechanism (alternative breaking takes place. Heavier new physics contributes at to a landscape of vacua) for the anthropic selection of loop level. The full potential Vϕ can have a maximum for the cosmological constant down to the small observed value. *[email protected] This scenario generates a little hierarchy, making the † [email protected] weak scale one or two loop factors below the scale of new physics. The needed new physics is unspecified and might Published by the American Physical Society under the terms of be a full solution to hierarchy problems, such as super- the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to symmetry (see, e.g., [8]), or possibly a landscape with the author(s) and the published article’s title, journal citation, electroweak, rather than meV, spacing (e.g., from string and DOI. Funded by SCOAP3. [13–15] or quantum field [16,17] theory). 2470-0010=2020=101(11)=115002(8) 115002-1 Published by the American Physical Society ALESSANDRO STRUMIA and DANIELE TERESI PHYS. REV. D 101, 115002 (2020) couplings g.2 For example, the heavy new physics could be supersymmetric and ϕ could be a quasimodulus. We want to compute the effective potential for ϕ. First, we integrate out the heavy new physics obtaining the effective field theory around the weak scale, with effective potential 2ðϕÞ ð ϕÞ¼ − Mh j j2 þ λj j4 þ heavyðϕÞ ð Þ Veff H; V0 2 H H Vϕ ; 1 where λ ≈ 0.126 is the Higgs quartic. The potential contains the tree-level coupling of ϕ to the Higgs, parametrized by 2ðϕÞ FIG. 1. Effective potential for ϕ around its maximum. After Mh . The squared Higgs mass might receive unnaturally inflation different patches of the Universe have different values of large corrections from heavy new physics, but what matters ϕ. In most patches ϕ is away from its maximum and slides down here is its value renormalized around the weak scale. In leading to a crunch. Only patches where ϕ is near the top are agreement with the decoupling theorem, heavy new physics metastable on cosmological timescales. These correspond to a heavy can instead give the Vϕ ðϕÞ term in the effective potential Higgs mass one or two loop factors lighter than new physics. (to be computed at one- or two-loop level in Sec. II A). 2ðϕÞ 0 Finally, we integrate out the Higgs boson. If Mh > An observable consequence of precarious naturalness is (such that, in our notation, the electroweak symmetry is that in an Oð1Þ fraction of the long-lived regions of the broken), the Higgs gives a tree-level contribution to ðϕÞ Universe, the scalar field ϕ is rolling down the potential Veff . The Higgs also gives a loop-level contribution, now, with detectably large effects on the equation of state of the usual running of the cosmological constant, that can be dark energy. The other robust consequence is the presence neglected with respect to loop effects of heavier fields. We of new physics coupled to the Higgs around or below the thereby obtain the effective potential for the light field ϕ ≈20 TeV scale, in order to generate the maximum at the observed value. 4ðϕÞ Mh 2 heavy V ðϕÞ¼ 0 − θð ðϕÞÞ þ ðϕÞ ð Þ The paper is structured as follows. In Sec. II we present eff V 16λ Mh Vϕ ; 2 the model and study its cosmological dynamics in Sec. III, where we illustrate the mechanism leading to precarious θ ¼ 1 M2ðϕÞ > 0 naturalness. We then discuss bounds and signals in Sec. IV where for h and zero otherwise, so that the ðϕÞ ϕ 0 tree-level part of Veff is flat for < . and finally conclude in Sec. V. heavy We assume that the sign of Vϕ is such that, together ðϕÞ with the negative tree-level Higgs term, Veff has a local II. PRECARIOUS NATURALNESS: THE SETUP maximum. Without loss of generality, we can shift ϕ so that ϕ ¼ 0 We consider the Standard Model (SM) with mass the maximum lies at . We next assume, for simplicity, scale M ≈ 125 GeV plus heavier new physics at the mass that the two terms can be approximated by first-order h Taylor expansions scale M ≫ Mh and an ultralight scalar ϕ with mass-scale m ≪ Mh. A Higgs-mass hierarchy problem arises if the Higgs 2ðϕÞ ≃ 2 þ ϕ heavy ≃ ϕ ð Þ Mh Mh0 g ;Vϕ gA : 3 interacts significantly with heavier new particles. We leave the heavy new physics unspecified. This includes the possibility of new physics, such as supersymmetry, that The parameter Mh0 must be negligibly different from the ϕ makes its scale M naturally smaller than the ultimate physical Higgs mass, 125 GeV, given that will lie very Λ close to the maximum. The maximum condition then cutoff of the theory at some scale , possibly around 2 1 ¼ 8λ the Planck mass. implies Mh0 A. As we now show, this is loop sup- On the other hand, the lightness of ϕ is naturally pressed with respect to M. understood if the ϕ potential is protected by a shift symmetry, broken at some scale ≲Λ by very small 2Such tiny couplings mediate a force much weaker than gravity for the Higgs. However, this is not in contradiction with the weak gravity conjecture [18], since the force is attractive, so that its effect adds up to gravity [19]. Sometimes it is argued that 1The possibility of new physics at the weak scale that makes also scalar forces must be stronger than gravity [19], but the the Higgs mass natural would have been simpler, but it has been arguments for this are weaker [20] and disappear for fields with disfavored by collider searches. sizable gauge interactions, like the Higgs boson in our case. 115002-2 RELAXING THE HIGGS MASS AND ITS VACUUM … PHYS. REV. D 101, 115002 (2020) FIG. 2. Combined selection of a small cosmological constant, in addition to a small Higgs mass, for m ≪ H0.
Recommended publications
  • Measurement of Associated Z+Charm Production and Search for W' Bosons in the CMS Experimented at the LHC
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS FÍSICAS Departamento de Física Atómica, Molecular y Nuclear TESIS DOCTORAL Measurement of associated Z+charm production and search for W' bosons in the CMS experimented at the LHC Medida de la producción asociada de Z+charm y búsqueda de bosones W' en el experimento CMS del LHC MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Alberto Escalante del Valle Director Juan Alcaraz Maestre Madrid, 2017 ©Alberto Escalante del Valle, 2017 CENTRO DE INVESTIGACIONES ENERGETICAS´ MEDIOAMBIENTALES Y TECNOLOGICAS´ Measurement of associated Z+charm production and Search for W0 bosons in the CMS experiment at the LHC by Alberto Escalante del Valle A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in the Universidad Complutense de Madrid Facultad de Ciencias F´ısicas Departamento de F´ısicaAt´omica,Molecular y Nuclear Supervised by: Dr. Juan Alcaraz Maestre Dr. Juan Pablo Fern´andezRamos Madrid February 2017 CENTRO DE INVESTIGACIONES ENERGETICAS´ MEDIOAMBIENTALES Y TECNOLOGICAS´ Medida de la producci´onasociada de Z+charm y B´usquedade bosones W0 en el experimento CMS del LHC por Alberto Escalante del Valle Memoria de la tesis presentada para optar al grado de Doctor en Filosof´ıa en la Universidad Complutense de Madrid Facultad de Ciencias F´ısicas Departamento de F´ısicaAt´omica,Molecular y Nuclear Supervisado por: Dr. Juan Alcaraz Maestre Dr. Juan Pablo Fern´andezRamos Madrid Febrero 2017 Abstract Measurement of associated Z+charm production and Search for W0 bosons in the CMS experiment at the LHC by Alberto Escalante del Valle Do we understand how elementary particles interact with each other? Are we able to predict the result of the collisions of these elementary particles at the LHC? The objective of this thesis is to investigate the validity of our current theoretical model, the Standard Model of particle physics, to explain the production of two low rate processes in proton-proton collisions at the LHC.
    [Show full text]
  • Jhep06(2019)110
    Published for SISSA by Springer Received: February 22, 2019 Revised: June 3, 2019 Accepted: June 10, 2019 Published: June 20, 2019 Coset cosmology JHEP06(2019)110 Luca Di Luzio,a;b Michele Redi,c Alessandro Strumiaa and Daniele Teresia;b aDipartimento di Fisica, Universit`adi Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy bINFN, Sezione di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy cINFN Sezione di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We show that the potential of Nambu-Goldstone bosons can have two or more local minima e.g. at antipodal positions in the vacuum manifold. This happens in many models of composite Higgs and of composite Dark Matter. Trigonometric potentials lead to unusual features, such as symmetry non-restoration at high temperature. In some mod- els, such as the minimal SO(5)=SO(4) composite Higgs with fermions in the fundamental representation, the two minima are degenerate giving cosmological domain-wall problems. Otherwise, an unusual cosmology arises, that can lead to supermassive primordial black holes; to vacuum or thermal decays; to a high-temperature phase of broken SU(2)L, pos- sibly interesting for baryogenesis. Keywords: Cosmology of Theories beyond the SM, Global Symmetries, Spontaneous Symmetry Breaking, Technicolor and Composite Models ArXiv ePrint: 1902.05933 Open Access, c The Authors. https://doi.org/10.1007/JHEP06(2019)110 Article funded by SCOAP3. Contents
    [Show full text]
  • Quantum Vacuum Energy Density and Unifying Perspectives Between Gravity and Quantum Behaviour of Matter
    Annales de la Fondation Louis de Broglie, Volume 42, numéro 2, 2017 251 Quantum vacuum energy density and unifying perspectives between gravity and quantum behaviour of matter Davide Fiscalettia, Amrit Sorlib aSpaceLife Institute, S. Lorenzo in Campo (PU), Italy corresponding author, email: [email protected] bSpaceLife Institute, S. Lorenzo in Campo (PU), Italy Foundations of Physics Institute, Idrija, Slovenia email: [email protected] ABSTRACT. A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. This model introduces the possibility to interpret gravity and the quantum behaviour of matter as two different aspects of the same origin. The change of the quantum vacuum energy density can be considered as the fundamental medium which determines a bridge between gravity and the quantum behaviour, leading to new interest- ing perspectives about the problem of unifying gravity with quantum theory. PACS numbers: 04. ; 04.20-q ; 04.50.Kd ; 04.60.-m. Key words: general relativity, three-dimensional space, quantum vac- uum energy density, quantum mechanics, generalized Klein-Gordon equation for the quantum vacuum energy density, generalized Dirac equation for the quantum vacuum energy density. 1 Introduction The standard interpretation of phenomena in gravitational fields is in terms of a fundamentally curved space-time. However, this approach leads to well known problems if one aims to find a unifying picture which takes into account some basic aspects of the quantum theory. For this reason, several authors advocated different ways in order to treat gravitational interaction, in which the space-time manifold can be considered as an emergence of the deepest processes situated at the fundamental level of quantum gravity.
    [Show full text]
  • Phenomenological Implications of Neutrinos in Extra Dimensions
    October 27, 2018 CERN-TH/2001–184 hep-ph/0107156 IFUP–TH/18–2001 Phenomenological implications of neutrinos in extra dimensions Andr´ede Gouvˆea, Gian Francesco Giudice, Alessandro Strumia∗, and Kazuhiro Tobe Theoretical Physics Division, CERN, CH-1211, Gen`eve 23, Switzerland Abstract Standard Model singlet neutrinos propagating in extra dimensions induce small Dirac neutrino masses. While it seems rather unlikely that their Kaluza-Klein excitations directly participate in the observed neutrino oscillations, their virtual exchange may lead to detectable signatures in future neutrino experiments and in rare charged lepton processes. We show how these effects can be described by specific dimension-six effective operators and discuss their experimental signals. 1 Introduction The hypothesis that Standard Model (SM) singlet fields propagate in extra dimensions leads to striking arXiv:hep-ph/0107156v2 1 Nov 2001 results. When applied to the graviton, it allows to lower the quantum gravity scale down to few TeV [1, 2], suggesting a new scenario for addressing the Higgs mass hierarchy problem. It is also natural to consider the case of “right-handed neutrinos” (i.e., fermions without SM gauge interactions) propagating in extra dimensions. The smallness of the neutrino masses, of the Dirac type, could in fact be a manifestation of this hypothesis [3, 4, 5, 6]. If the radius of the compactified dimensions is very large, R > eV−1, Kaluza-Klein (KK) modes of right-handed neutrinos would significantly participate in neutrino∼ oscillations. However, KK interpreta- tions of the atmospheric and solar neutrino puzzles are disfavoured by the following arguments: A KK tower of sterile neutrinos gives rise to active/sterile oscillations at a small ∆m2 1/R2 • ∼ only in the case of a single large extra dimension.
    [Show full text]
  • A Final Cure to the Tribulations of the Vacuum in Quantum Theory Joseph Jean-Claude
    A Final Cure to the Tribulations of the Vacuum in Quantum Theory Joseph Jean-Claude To cite this version: Joseph Jean-Claude. A Final Cure to the Tribulations of the Vacuum in Quantum Theory. 2019. hal-01991699 HAL Id: hal-01991699 https://hal.archives-ouvertes.fr/hal-01991699 Preprint submitted on 24 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Final Cure to the Tribulations of the Vacuum in Quantum Theory Joseph J. JEAN-CLAUDE April 16, 2017 - Revision I (Jan-2019) © Copyright [email protected] Abstract Quantum Field Theory seems to be of late anything but unraveling, apparently shifting from crisis to crisis. Undeniably, there seems to be running, for many different reasons, a rampant discomfort with the Standard Model, an extension of QFT aiming at complementing it. Prior to the latest supersymmetry upset, what has been known as the “vacuum castastrophe” or the “cosmological constant problem” resoundingly shook the very foundations of the Theory. Effectively the enormous numeric disparity between its predicted value of the vacuum energy density, an element of utmost significance in the Theory, and the measured value of this quantity from a Relativistic approach has prompted some to qualify this mishap as the biggest predictive failure of any Theory.
    [Show full text]
  • Estimating the Vacuum Energy Density E
    Estimating the Vacuum Energy Density E. Margan Estimating the Vacuum Energy Density - an Overview of Possible Scenarios Erik Margan Experimental Particle Physics Department, “Jožef Stefan” Institute, Ljubljana, Slovenia 1. Introduction There are several different indications that the vacuum energy density should be non-zero, each indication being based either on laboratory experiments or on astronomical observations. These include the Planck’s radiation law, the spontaneous emission of a photon by a particle in an excited state, the Casimir’s effect, the van der Waals’ bonds, the Lamb’s shift, the Davies–Unruh’s effect, the measurements of the apparent luminosity against the spectral red shift of supernovae type Ia, and more. However, attempts to find the way to measure or to calculate the value of the vacuum energy density have all either failed or produced results incompatible with observations or other confirmed theoretical results. Some of those results are theoretically implausible because of certain unrealistic assumptions on which the calculation model is based. And some theoretical results are in conflict with observations, the conflict itself being caused by certain questionable hypotheses on which the theory is based. And the best experimental evidence (the Casimir’s effect) is based on the measurement of the difference of energy density within and outside of the measuring apparatus, thus preventing in principle any numerical assessment of the actual energy density. This article presents an overview of the most important estimation methods. - 1 - Estimating the Vacuum Energy Density E. Margan - 2 - Estimating the Vacuum Energy Density E. Margan 2. Planck’s Theoretical Vacuum Energy Density The energy density of the quantum vacuum fluctuations has been estimated shortly after Max Planck (1900-1901) [1] published his findings of the spectral distribution of the ideal thermodynamic black body radiation and its dependence on the temperature of the radiating black body.
    [Show full text]
  • Higgs Inflation
    Higgs inflation Javier Rubio Institut fur¨ Theoretische Physik, Ruprecht-Karls-Universitat¨ Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany —————————————————————————————————————————— Abstract The properties of the recently discovered Higgs boson together with the absence of new physics at collider experiments allows us to speculate about consistently extending the Standard Model of particle physics all the way up to the Planck scale. In this context, the Standard Model Higgs non- minimally coupled to gravity could be responsible for the symmetry properties of the Universe at large scales and for the generation of the primordial spectrum of curvature perturbations seeding structure formation. We overview the minimalistic Higgs inflation scenario, its predictions, open issues and extensions and discuss its interplay with the possible metastability of the Standard Model vacuum. —————————————————————————————————————————— arXiv:1807.02376v3 [hep-ph] 13 Mar 2019 Email: [email protected] 1 Contents 1 Introduction and summary3 2 General framework7 2.1 Induced gravity . .7 2.2 Higgs inflation from approximate scale invariance . .8 2.3 Tree-level inflationary predictions . 11 3 Effective field theory interpretation 14 3.1 The cutoff scale . 14 3.2 Relation between high- and low-energy parameters . 16 3.3 Potential scenarios and inflationary predictions . 17 3.4 Vacuum metastability and high-temperature effects . 21 4 Variations and extensions 22 4.1 Palatini Higgs inflation . 23 4.2 Higgs-Dilaton model . 24 5 Concluding remarks 26 6 Acknowledgments 26 2 1 Introduction and summary Inflation is nowadays a well-established paradigm [1–6] able to explain the flatness, homogene- ity and isotropy of the Universe and the generation of the primordial density fluctuations seeding structure formation [7–10].
    [Show full text]
  • New Varying Speed of Light Theories
    New varying speed of light theories Jo˜ao Magueijo The Blackett Laboratory,Imperial College of Science, Technology and Medicine South Kensington, London SW7 2BZ, UK ABSTRACT We review recent work on the possibility of a varying speed of light (VSL). We start by discussing the physical meaning of a varying c, dispelling the myth that the constancy of c is a matter of logical consistency. We then summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz invariance; bimetric theories (where the speeds of gravity and light are not the same); locally Lorentz invariant VSL theories; theories exhibiting a color dependent speed of light; varying c induced by extra dimensions (e.g. in the brane-world scenario); and field theories where VSL results from vacuum polarization or CPT violation. We show how VSL scenarios may solve the cosmological problems usually tackled by inflation, and also how they may produce a scale-invariant spectrum of Gaussian fluctuations, capable of explaining the WMAP data. We then review the connection between VSL and theories of quantum gravity, showing how “doubly special” relativity has emerged as a VSL effective model of quantum space-time, with observational implications for ultra high energy cosmic rays and gamma ray bursts. Some recent work on the physics of “black” holes and other compact objects in VSL theories is also described, highlighting phenomena associated with spatial (as opposed to temporal) variations in c. Finally we describe the observational status of the theory. The evidence is slim – redshift dependence in alpha, ultra high energy cosmic rays, and (to a much lesser extent) the acceleration of the universe and the WMAP data.
    [Show full text]
  • Path Integral in Quantum Field Theory Alexander Belyaev (Course Based on Lectures by Steven King) Contents
    Path Integral in Quantum Field Theory Alexander Belyaev (course based on Lectures by Steven King) Contents 1 Preliminaries 5 1.1 Review of Classical Mechanics of Finite System . 5 1.2 Review of Non-Relativistic Quantum Mechanics . 7 1.3 Relativistic Quantum Mechanics . 14 1.3.1 Relativistic Conventions and Notation . 14 1.3.2 TheKlein-GordonEquation . 15 1.4 ProblemsSet1 ........................... 18 2 The Klein-Gordon Field 19 2.1 Introduction............................. 19 2.2 ClassicalScalarFieldTheory . 20 2.3 QuantumScalarFieldTheory . 28 2.4 ProblemsSet2 ........................... 35 3 Interacting Klein-Gordon Fields 37 3.1 Introduction............................. 37 3.2 PerturbationandScatteringTheory. 37 3.3 TheInteractionHamiltonian. 43 3.4 Example: K π+π− ....................... 45 S → 3.5 Wick’s Theorem, Feynman Propagator, Feynman Diagrams . .. 47 3.6 TheLSZReductionFormula. 52 3.7 ProblemsSet3 ........................... 58 4 Transition Rates and Cross-Sections 61 4.1 TransitionRates .......................... 61 4.2 TheNumberofFinalStates . 63 4.3 Lorentz Invariant Phase Space (LIPS) . 63 4.4 CrossSections............................ 64 4.5 Two-bodyScattering . 65 4.6 DecayRates............................. 66 4.7 OpticalTheorem .......................... 66 4.8 ProblemsSet4 ........................... 68 1 2 CONTENTS 5 Path Integrals in Quantum Mechanics 69 5.1 Introduction............................. 69 5.2 The Point to Point Transition Amplitude . 70 5.3 ImaginaryTime........................... 74 5.4 Transition Amplitudes With an External Driving Force . ... 77 5.5 Expectation Values of Heisenberg Position Operators . .... 81 5.6 Appendix .............................. 83 5.6.1 GaussianIntegration . 83 5.6.2 Functionals ......................... 85 5.7 ProblemsSet5 ........................... 87 6 Path Integral Quantisation of the Klein-Gordon Field 89 6.1 Introduction............................. 89 6.2 TheFeynmanPropagator(again) . 91 6.3 Green’s Functions in Free Field Theory .
    [Show full text]
  • Astrophysics and Physics of Neutrino Detection
    Astrophysics and Physics of Neutrino Detection A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Cheng-Hsien Li IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy Professor Yong-Zhong Qian, Advisor September, 2017 c Cheng-Hsien Li 2017 ALL RIGHTS RESERVED Acknowledgements This dissertation would be impossible to complete without the help and support from many people and institutions. First and foremost, I would like to express my sincere gratitude to my research advisor, Professor Yong-Zhong Qian, who has patiently guided me through this long PhD journey. I learned a lot from his insights in neutrino physics and his approaches to problems during countless hours of discussion. He always offered helpful suggestions regarding my thesis projects and how to conduct rigorous research. I would like to thank Dr. Projjwal Banerjee for guiding me on the SN1987A project presented in this thesis. He was not only a research collaborator but he is also a dear friend to me. He kindly offered advice and encouragement which helped me overcome difficulties during my PhD study. In addition, I feel grateful to have received a lot of help from then fellow graduate students, Dr. Ke-Jun Chen, Dr. Meng-Ru Wu, Dr. Zhen Yuan, Mr. Zhu Li, and Mr. Zewei Xiong, in the Nuclear Physics Group. I am also indebted to Professor Hans-Thomas Janka and Professor Tobias Fischer for generously providing supernova simulation results from their research groups upon request, Professor Huaiyu Duan for commenting on my wave-packet project, and Professor Alexander Heger for the computing resource I received in the research group.
    [Show full text]
  • The Quantum Vacuum and the Cosmological Constant Problem
    The Quantum Vacuum and the Cosmological Constant Problem S.E. Rugh∗and H. Zinkernagely To appear in Studies in History and Philosophy of Modern Physics Abstract - The cosmological constant problem arises at the intersection be- tween general relativity and quantum field theory, and is regarded as a fun- damental problem in modern physics. In this paper we describe the historical and conceptual origin of the cosmological constant problem which is intimately connected to the vacuum concept in quantum field theory. We critically dis- cuss how the problem rests on the notion of physically real vacuum energy, and which relations between general relativity and quantum field theory are assumed in order to make the problem well-defined. 1. Introduction Is empty space really empty? In the quantum field theories (QFT’s) which underlie modern particle physics, the notion of empty space has been replaced with that of a vacuum state, defined to be the ground (lowest energy density) state of a collection of quantum fields. A peculiar and truly quantum mechanical feature of the quantum fields is that they exhibit zero-point fluctuations everywhere in space, even in regions which are otherwise ‘empty’ (i.e. devoid of matter and radiation). These zero-point fluctuations of the quantum fields, as well as other ‘vacuum phenomena’ of quantum field theory, give rise to an enormous vacuum energy density ρvac. As we shall see, this vacuum energy density is believed to act as a contribution to the cosmological constant Λ appearing in Einstein’s field equations from 1917, 1 8πG R g R Λg = T (1) µν − 2 µν − µν c4 µν where Rµν and R refer to the curvature of spacetime, gµν is the metric, Tµν the energy-momentum tensor, G the gravitational constant, and c the speed of light.
    [Show full text]
  • Thermodynamics of Accelerated Fermion Gases and Their Instability at the Unruh Temperature
    PHYSICAL REVIEW D 100, 125009 (2019) Thermodynamics of accelerated fermion gases and their instability at the Unruh temperature † ‡ George Y. Prokhorov ,1,* Oleg V. Teryaev,1,2,3, and Valentin I. Zakharov2,4,5, 1Joint Institute for Nuclear Research, 141980 Dubna, Russia 2Institute of Theoretical and Experimental Physics, NRC Kurchatov Institute, 117218 Moscow, Russia 3M. V. Lomonosov Moscow State University, 117234 Moscow, Russia 4School of Biomedicine, Far Eastern Federal University, 690950 Vladivostok, Russia 5Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia (Received 6 July 2019; revised manuscript received 30 October 2019; published 9 December 2019) We demonstrate that the energy density of an accelerated fermion gas evaluated within quantum- statistical approach in Minkowski space is related to a quantum correction to the vacuum expectation value of the energy-momentum tensor in a space with nontrivial metric and conical singularity. The key element of the derivation is the existence of a novel class of polynomial Sommerfeld integrals. The emerging duality of quantum-statistical and geometrical approaches is explicitly checked at temperatures T above or equal to the Unruh temperature TU. Treating the acceleration as an imaginary part of the chemical potential allows for an analytical continuation to temperatures T<TU. There is a discontinuity at T ¼ TU manifested in the second derivative of the energy density with respect to the temperature. Moreover, energy density becomes negative at T<TU, apparently indicating some instability. Obtained results might have phenomenological implications for the physics of heavy-ion collisions. DOI: 10.1103/PhysRevD.100.125009 I. INTRODUCTION In particular, the energy densities of accelerated gas of massless particles with spins 0 and 1=2 were evaluated Study of collective quantum properties of relativistic explicitly [9,10].
    [Show full text]