Thermodynamics of Accelerated Fermion Gases and Their Instability at the Unruh Temperature
PHYSICAL REVIEW D 100, 125009 (2019) Thermodynamics of accelerated fermion gases and their instability at the Unruh temperature † ‡ George Y. Prokhorov ,1,* Oleg V. Teryaev,1,2,3, and Valentin I. Zakharov2,4,5, 1Joint Institute for Nuclear Research, 141980 Dubna, Russia 2Institute of Theoretical and Experimental Physics, NRC Kurchatov Institute, 117218 Moscow, Russia 3M. V. Lomonosov Moscow State University, 117234 Moscow, Russia 4School of Biomedicine, Far Eastern Federal University, 690950 Vladivostok, Russia 5Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia (Received 6 July 2019; revised manuscript received 30 October 2019; published 9 December 2019) We demonstrate that the energy density of an accelerated fermion gas evaluated within quantum- statistical approach in Minkowski space is related to a quantum correction to the vacuum expectation value of the energy-momentum tensor in a space with nontrivial metric and conical singularity. The key element of the derivation is the existence of a novel class of polynomial Sommerfeld integrals. The emerging duality of quantum-statistical and geometrical approaches is explicitly checked at temperatures T above or equal to the Unruh temperature TU. Treating the acceleration as an imaginary part of the chemical potential allows for an analytical continuation to temperatures T<TU. There is a discontinuity at T ¼ TU manifested in the second derivative of the energy density with respect to the temperature. Moreover, energy density becomes negative at T<TU, apparently indicating some instability. Obtained results might have phenomenological implications for the physics of heavy-ion collisions. DOI: 10.1103/PhysRevD.100.125009 I. INTRODUCTION In particular, the energy densities of accelerated gas of massless particles with spins 0 and 1=2 were evaluated Study of collective quantum properties of relativistic explicitly [9,10].
[Show full text]