Symmetric Models, Singular Cardinal Patterns, and Indiscernibles

Total Page:16

File Type:pdf, Size:1020Kb

Symmetric Models, Singular Cardinal Patterns, and Indiscernibles Symmetric Models, Singular Cardinal Patterns, and Indiscernibles Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨atBonn vorgelegt von Ioanna Matilde Dimitriou aus Thessaloniki Bonn, 2011 2 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨at Rheinischen Friedrich-Wilhelms-Universit¨atBonn 1. Gutachter: Prof. Dr. Peter Koepke 2. Gutachter: Prof. Dr. Benedikt L¨owe Tag der Promotion: 16. Dezember 2011 Erscheinungsjahr: 2012 3 Summary This thesis is on the topic of set theory and in particular large cardinal axioms, singular cardinal patterns, and model theoretic principles in models of set theory without the axiom of choice (ZF). The first task is to establish a standardised setup for the technique of symmetric forcing, our main tool. This is handled in Chapter 1. Except just translating the method in terms of the forcing method we use, we expand the technique with new definitions for properties of its building blocks, that help us easily create symmetric models with a very nice property, i.e., models that satisfy the approximation lemma. Sets of ordinals in symmetric models with this property are included in some model of set theory with the axiom of choice (ZFC), a fact that enables us to partly use previous knowledge about models of ZFC in our proofs. After the methods are established, some examples are provided, of constructions whose ideas will be used later in the thesis. The first main question of this thesis comes at Chapter 2 and it concerns patterns of singular cardinals in ZF, also in connection with large cardinal axioms. When we do assume the axiom of choice, every successor cardinal is regular and only certain limit cardinals are singular, such as @!. Here we show how to construct almost any pattern of singular and regular cardinals in ZF. Since the partial orders that are used for the constructions of Chapter 1 cannot be used to construct successive singular cardinals, we start by presenting some partial orders that will help us achieve such combinations. The techniques used here are inspired from Moti Gitik's 1980 paper \All uncountable cardinals can be singular", a straightforward modification of which is in the last section of this chapter. That last section also tackles the question posed by Arthur Apter \Which cardinals can become simultaneously the first measurable and first regular uncountable cardinal?". Most of this last part is submitted for publication in a joint paper with Arthur Apter , Peter Koepke, and myself, entitled \The first measurable and first regular cardinal can simultaneously be @ρ+1, for any ρ". Throughout the chapter we show that several large cardinal axioms hold in the symmetric models we produce. The second main question of this thesis is in Chapter 3 and it concerns the consistency strength of model theoretic principles for cardinals in models of ZF, in connection with large cardinal axioms in models of ZFC. The model theoretic principles we study are variations of Chang conjectures, which, when looked at in models of set theory with choice, have very large consistency strength or are even inconsistent. We found that by removing the axiom of choice their consistency strength is weakened, so they become easier to study. Inspired by the proof of the equiconsis- tency of the existence of the !1-Erd}oscardinal with the original Chang conjecture, we prove equiconsistencies for some variants of Chang conjectures in models of ZF with various forms of Erd}oscardinals in models of ZFC. Such equiconsistency re- sults are achieved on the one direction with symmetric forcing techniques found in Chapter 1, and on the converse direction with careful applications of theorems from core model theory. For this reason, this chapter also contains a section where the most useful `black boxes' concerning the Dodd-Jensen core model are collected. More detailed summaries of the contents of this thesis can be found in the beginnings of Chapters 1, 2, and 3, and in the conclusions, Chapter 4. 4 Curriculum Vitae Ioanna Matilde Dimitriou Education 1/2006 - 12/2011 Mathematisches Institut der Universit¨atBonn PhD student, subject: set theory supervisor: Prof.Dr.Peter Koepke 9/2003 - 12/2005 Institute for Logic, Language and Computation (ILLC), Universiteit van Amsterdam Master of Science, subject: logic Thesis: \Strong limits and inaccessibility with non wellorderable owersets", supervisor: Prof.Dr.Benedikt L¨owe 10/1998 - 7/2003 Department of Mathematics, Aristotle University of Thessaloniki, Greece. Bachelor degree in Mathematics. Scientific Publications Ioanna Dimitriou, Peter Koepke, and Arthur Apter. The first measurable cardinal can be the first uncountable regular cardinal at any successor height. submitted for publication Andreas Blass, Ioanna M. Dimitriou, Benedikt L¨owe. Inaccessible cardinals with- out the axiom of choice. Fundamenta Mathematicae, vol.194, pp. 179-189 L. Afanasiev, P. Blackburn, I. Dimitriou, B. Gaiffe, E. Goris, M. Marx and M. de Rijke. PDL for ordered trees. Journal of Applied Non-Classical Logic (2005), 15(2): 115-135 Teaching experience Tutor and substitute for the lecture \Higher set theory: Formal derivations and natural proofs". Winter semester 2010-11, Univesit¨atBonn. Leader for the ILLC Master's research project \Singularizing successive cardinals". June 2009, Institute for Logic, Language, and Computation, Univestiteit van Am- sterdam Graduate seminar on logic (with P.Koepke and J.Veldman). Winter semester 2008- 09, Univestit¨atBonn 5 Graduate Seminar on Logic (with P.Koepke). Summer semester 2008, Universit¨at Bonn Tutor for the class \Set theory I" (Mengenlehre I). Winter semester 2006-07, Uni- versit¨atBonn. Carer for the \Diplomandenseminar" (with P.Koepke). Summer semester 2006, Universit¨atBonn. Tutor for the class \Einf¨uhrungin die Mathematische Logik". Summer semes- ter 2006, Universit¨atBonn. Carer for Blockseminar \Mengenlehre; Large cardinals and determinacy" (with P.Koepke and B.L¨owe) February 11-12, 2006, Amsterdam. Invited talks Amsterdam workshop in set theory. \The first uncountable regular can be the first measurable". Amsterdam, 26-27 May 2009 Oberseminar of the mathematical logic group of M¨unster. \A modern approach to Gitiks All uncountable cardinals can be singular". M¨unster,19 June 2008. Logic seminar of the logic group of Leeds. “L¨owenheim-Skolem type properties in set theory". Leeds, 7 May 2008. 1 Games in Logic, Language and Computation 14 2 meeting. \Topological regulari- ties in second order arithmetic". Amsterdam, 28 September 2007. Oberseminar of the mathematical logic group of Bonn. \Fragments of Choice under the axiom of Determinacy". June 2, 2005, Bonn, Germany. Other professional activities Organising committee for the \Young set theory workshop 2011", plus website and booklet design. K¨onigswinter (near Bonn), 21-25 March 2011 Website and booklet design for the \Young set theory workshop 2010". Raach (near Vienna), February 15 - 19, 2010 Organisor of the first workshop of the project \ICWAC: Infinitary combinatorics without the axiom of choice", plus website and booklet design. Bonn, 11-13 June 2009. Organising committee of the \Young set theory workshop 2008", and editor of 6 the workshop report. Bonn, 21-25 January 2008. Scientific secretary of \BIWOC: Bonn International Workshop on Ordinal Com- putability", plus website and booklet design. Organising committee of the \Colloquium Logicum 2006" conference. September 22-24, 2006, Bonn, Germany. Employment November 15, 2006 to February 28, 2011 scientific staff (wissenschaftliche Mitar- beiterin) at the Mathematics department of University Bonn. January 2, 2006 to November 14, 2006, scientific assistant (wissenschaftliche Hilf- skraft) at the Mathematics department of University of Bonn. Languages Greek: native English: fluent German: advanced Spanish: intermediate Dutch: beginner 7 Acknowledgements Doctoral theses take a long time to prepare, and this process is not as smooth as one might hope or plan. With this note I would like to thank the people who played a crucial role in this process. I would like to thank first and foremost my parents Christos and Marta, for their loving support, also financial but mainly emotional, and for the safety net that they provide me with. An essential role in my emotional stability played also my partner Calle Runge, whom I thank from the bottom of my heart for his emotional support, for providing me with a homely environment to escape to, and for our amazing conversations about life, the universe, and everything. Also when stress got way too much, he was there to help me, along with Jonah Lamp and Mark Jackson, who with me are \Jonah Gold and his Silver Apples". Guys, thank you so much for all the fun and stress relief that drumming in a band gave me in the difficult times of a PhD. I am grateful to my supervisor Peter Koepke for the opportunity to fulfill this dream of mine, and for all that he taught me, not only in the realm of core model theory, but also in the social aspects of the academic world. A big thank you goes also to Benedikt L¨owe, the second referee of this thesis, for his invaluable advice ever since my master's studies at the ILLC in Amsterdam, and for his question on patterns of singular cardinals that led to Section 2 of Chapter 2. Special thanks go to Andr´esCaicedo and to my officemate Thilo Weinert, for their suggestions and corrections of earlier versions of the thesis, and a big thanks to the Mathematical logic group of Bonn for listening to my detailed presentations of Chapters 1 and 2. I also thank Arthur Apter for coauthoring a paper with Peter Koepke and myself, and for the informative discussions. I am grateful to all the people in the \Young set theory workshop" for the engaging talks, formal and informal. I would like to express my appreciation to Moti Gitik whose ideas, especially in his paper \All uncountable cardinals can be singular" have kept me busy for a good two years during my PhD studies, and have taught me so much.
Recommended publications
  • Calibrating Determinacy Strength in Borel Hierarchies
    University of California Los Angeles Calibrating Determinacy Strength in Borel Hierarchies A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Sherwood Julius Hachtman 2015 c Copyright by Sherwood Julius Hachtman 2015 Abstract of the Dissertation Calibrating Determinacy Strength in Borel Hierarchies by Sherwood Julius Hachtman Doctor of Philosophy in Mathematics University of California, Los Angeles, 2015 Professor Itay Neeman, Chair We study the strength of determinacy hypotheses in levels of two hierarchies of subsets of 0 0 1 Baire space: the standard Borel hierarchy hΣαiα<ω1 , and the hierarchy of sets hΣα(Π1)iα<ω1 in the Borel σ-algebra generated by coanalytic sets. 0 We begin with Σ3, the lowest level at which the strength of determinacy had not yet been characterized in terms of a natural theory. Building on work of Philip Welch [Wel11], 0 [Wel12], we show that Σ3 determinacy is equivalent to the existence of a β-model of the 1 axiom of Π2 monotone induction. 0 For the levels Σ4 and above, we prove best-possible refinements of old bounds due to Harvey Friedman [Fri71] and Donald A. Martin [Mar85, Mar] on the strength of determinacy in terms of iterations of the Power Set axiom. We introduce a novel family of reflection 0 principles, Π1-RAPα, and prove a level-by-level equivalence between determinacy for Σ1+α+3 and existence of a wellfounded model of Π1-RAPα. For α = 0, we have the following concise 0 result: Σ4 determinacy is equivalent to the existence of an ordinal θ so that Lθ satisfies \P(!) exists, and all wellfounded trees are ranked." 0 We connect our result on Σ4 determinacy to work of Noah Schweber [Sch13] on higher order reverse mathematics.
    [Show full text]
  • Arxiv:1901.02074V1 [Math.LO] 4 Jan 2019 a Xoskona Lrecrias Ih Eal Ogv Entv a Definitive a Give T to of Able Basis Be the Might Cardinals” [17]
    GENERIC LARGE CARDINALS AS AXIOMS MONROE ESKEW Abstract. We argue against Foreman’s proposal to settle the continuum hy- pothesis and other classical independent questions via the adoption of generic large cardinal axioms. Shortly after proving that the set of all real numbers has a strictly larger car- dinality than the set of integers, Cantor conjectured his Continuum Hypothesis (CH): that there is no set of a size strictly in between that of the integers and the real numbers [1]. A resolution of CH was the first problem on Hilbert’s famous list presented in 1900 [19]. G¨odel made a major advance by constructing a model of the Zermelo-Frankel (ZF) axioms for set theory in which the Axiom of Choice and CH both hold, starting from a model of ZF. This showed that the axiom system ZF, if consistent on its own, could not disprove Choice, and that ZF with Choice (ZFC), a system which suffices to formalize the methods of ordinary mathematics, could not disprove CH [16]. It remained unknown at the time whether models of ZFC could be found in which CH was false, but G¨odel began to suspect that this was possible, and hence that CH could not be settled on the basis of the normal methods of mathematics. G¨odel remained hopeful, however, that new mathemati- cal axioms known as “large cardinals” might be able to give a definitive answer on CH [17]. The independence of CH from ZFC was finally solved by Cohen’s invention of the method of forcing [2]. Cohen’s method showed that ZFC could not prove CH either, and in fact could not put any kind of bound on the possible number of cardinals between the sizes of the integers and the reals.
    [Show full text]
  • Singular Cardinals: from Hausdorff's Gaps to Shelah's Pcf Theory
    SINGULAR CARDINALS: FROM HAUSDORFF’S GAPS TO SHELAH’S PCF THEORY Menachem Kojman 1 PREFACE The mathematical subject of singular cardinals is young and many of the math- ematicians who made important contributions to it are still active. This makes writing a history of singular cardinals a somewhat riskier mission than writing the history of, say, Babylonian arithmetic. Yet exactly the discussions with some of the people who created the 20th century history of singular cardinals made the writing of this article fascinating. I am indebted to Moti Gitik, Ronald Jensen, Istv´an Juh´asz, Menachem Magidor and Saharon Shelah for the time and effort they spent on helping me understand the development of the subject and for many illuminations they provided. A lot of what I thought about the history of singular cardinals had to change as a result of these discussions. Special thanks are due to Istv´an Juh´asz, for his patient reading for me from the Russian text of Alexandrov and Urysohn’s Memoirs, to Salma Kuhlmann, who directed me to the definition of singular cardinals in Hausdorff’s writing, and to Stefan Geschke, who helped me with the German texts I needed to read and sometimes translate. I am also indebted to the Hausdorff project in Bonn, for publishing a beautiful annotated volume of Hausdorff’s monumental Grundz¨uge der Mengenlehre and for Springer Verlag, for rushing to me a free copy of this book; many important details about the early history of the subject were drawn from this volume. The wonderful library and archive of the Institute Mittag-Leffler are a treasure for anyone interested in mathematics at the turn of the 20th century; a particularly pleasant duty for me is to thank the institute for hosting me during my visit in September of 2009, which allowed me to verify various details in the early research literature, as well as providing me the company of many set theorists and model theorists who are interested in the subject.
    [Show full text]
  • Martin's Maximum and Weak Square
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000{000 S 0002-9939(XX)0000-0 MARTIN'S MAXIMUM AND WEAK SQUARE JAMES CUMMINGS AND MENACHEM MAGIDOR (Communicated by Julia Knight) Abstract. We analyse the influence of the forcing axiom Martin's Maximum on the existence of square sequences, with a focus on the weak square principle λ,µ. 1. Introduction It is well known that strong forcing axioms (for example PFA, MM) and strong large cardinal axioms (strongly compact, supercompact) exert rather similar kinds of influence on the combinatorics of infinite cardinals. This is perhaps not so sur- prising when we consider the widely held belief that essentially the only way to obtain a model of PFA or MM is to collapse a supercompact cardinal to become !2. We quote a few results which bring out the similarities: 1a) (Solovay [14]) If κ is supercompact then λ fails for all λ ≥ κ. 1b) (Todorˇcevi´c[15]) If PFA holds then λ fails for all λ ≥ !2. ∗ 2a) (Shelah [11]) If κ is supercompact then λ fails for all λ such that cf(λ) < κ < λ. ∗ 2b) (Magidor, see Theorem 1.2) If MM holds then λ fails for all λ such that cf(λ) = !. 3a) (Solovay [13]) If κ is supercompact then SCH holds at all singular cardinals greater than κ. 3b) (Foreman, Magidor and Shelah [7]) If MM holds then SCH holds. 3c) (Viale [16]) If PFA holds then SCH holds. In fact both the p-ideal di- chotomy and the mapping reflection principle (which are well known con- sequences of PFA) suffice to prove SCH.
    [Show full text]
  • Ineffability Within the Limits of Abstraction Alone
    Ineffability within the Limits of Abstraction Alone Stewart Shapiro and Gabriel Uzquiano 1 Abstraction and iteration The purpose of this article is to assess the prospects for a Scottish neo-logicist foundation for a set theory. The gold standard would be a theory as rich and useful as the dominant one, ZFC, Zermelo-Fraenkel set theory with choice, perhaps aug- mented with large cardinal principles. Although the present paper is self-contained, we draw upon recent work in [32] in which we explore the power of a reasonably pure principle of reflection. To establish terminology, the Scottish neo-logicist program is to develop branches of mathematics using abstraction principles in the form: xα = xβ $ α ∼ β where the variables α and β range over items of a certain sort, x is an operator taking items of this sort to objects, and ∼ is an equivalence relation on this sort of item. The standard exemplar, of course, is Hume’s principle: #F = #G ≡ F ≈ G where, as usual, F ≈ G is an abbreviation of the second-order statement that there is a one-one correspondence from F onto G. Hume’s principle, is the main support for what is regarded as a success-story for the Scottish neo-logicist program, at least by its advocates. The search is on to develop more powerful mathematical theories on a similar basis. As witnessed by this volume and a significant portion of the contemporary liter- ature in the philosophy of mathematics, Scottish neo-logicism remains controver- sial, even for arithmetic. There are, for example, issues of Caesar and Bad Com- pany to deal with.
    [Show full text]
  • Notes on Set Theory, Part 2
    §11 Regular cardinals In what follows, κ , λ , µ , ν , ρ always denote cardinals. A cardinal κ is said to be regular if κ is infinite, and the union of fewer than κ sets, each of whose cardinality is less than κ , is of cardinality less than κ . In symbols: κ is regular if κ is infinite, and κ 〈 〉 ¡ κ for any set I with I ¡ < and any family Ai i∈I of sets such that Ai < ¤¦¥ £¢ κ for all i ∈ I , we have A ¡ < . i∈I i (Among finite cardinals, only 0 , 1 and 2 satisfy the displayed condition; it is not worth including these among the cardinals that we want to call "regular".) ℵ To see two examples, we know that 0 is regular: this is just to say that the union of finitely ℵ many finite sets is finite. We have also seen that 1 is regular: the meaning of this is that the union of countably many countable sets is countable. For future use, let us note the simple fact that the ordinal-least-upper-bound of any set of cardinals is a cardinal; for any set I , and cardinals λ for i∈I , lub λ is a cardinal. i i∈I i α Indeed, if α=lub λ , and β<α , then for some i∈I , β<λ . If we had β § , then by i∈I i i β λ ≤α β § λ λ < i , and Cantor-Bernstein, we would have i , contradicting the facts that i is β λ β α β ¨ α α a cardinal and < i .
    [Show full text]
  • A Cardinal Preserving Extension Making the Set of Points of Countable V Cofinality Nonstationary
    A CARDINAL PRESERVING EXTENSION MAKING THE SET OF POINTS OF COUNTABLE V COFINALITY NONSTATIONARY MOTI GITIK, ITAY NEEMAN, AND DIMA SINAPOVA Abstract. Assuming large cardinals we produce a forcing extension of V which preserves cardinals, does not add reals, and makes the set of points of countable V cofinality in κ+ nonstationary. Continuing to force further, we obtain an extension in which the set of points of countable V cofinality in ν is nonstationary for every regular ν ≥ κ+. Finally we show that our large cardinal assumption is optimal. The results in this paper were inspired by the following question, posed in a preprint (http://arxiv.org/abs/math/0509633v1, 27 September 2005) to the paper Viale [9]: Suppose V ⊂ W and V and W have the same cardinals and the same reals. Can it be shown, in ZFC alone, that for every cardinal κ, there is in V a <ω + partition {As | s ∈ κ } of the points of κ of countable V cofinality, into disjoint sets which are stationary in W ? In this paper we show that under some assumptions on κ there is a reals and cardinal preserving generic extension W which satisfies that the set of points of κ+ of countable V cofinality is nonstationary. In particular, a partition as above cannot be found for each κ. Continuing to force further, we produce a reals and cardinal preserving extension in which the set of points of λ of countable V cofinality is nonstationary for every regular λ ≥ κ+. All this is done under the large cardinal assumption that for each α<κ there exists θ<κ with Mitchell order at least α.
    [Show full text]
  • Souslin Trees and Successors of Singular Cardinals
    Sh:203 Annals of Pure and Applied Logic 30 (1986) 207-217 207 North-Holland SOUSLIN TREES AND SUCCESSORS OF SINGULAR CARDINALS Shai BEN-DAVID and Saharon SHELAH Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel Communicated by A. Nerode Received 1 December 1983 Introduction The questions concerning existence of Aronszajn and Souslin trees are of the oldest and most dealt-with in modern set theory. There are many results about existence of h+-Aronszajn trees for regular cardinals A. For these cases the answer is quite complete. (See Jech [6] and Kanamory & Magidor [8] for details.) The situation is quite different when A is a singular cardinal. There are very few results of which the most important (if not the only) are Jensen’s: V = L implies K-Aronszajn, K-Souslin and special K-Aronszajn trees exist iff K is not weakly- compact [7]. On the other hand, if GCH holds and there are no A+-Souslin trees for a singular h, then it follows (combining results of Dodd-Jensen, Mitchel and Shelah) that there is an inner model (of ZFC) with many measurable cardinals. In 1978 Shelah found a crack in this very stubborn problem by showing that if A is a singular cardinal and K is a super-compact one s.t. cof A < K < A, then a weak version of q,* fai1s.l The relevance of this result to our problem was found by Donder through a remark of Jensen in [7, pp. 2831 stating that if 2’ = A+, then q,* is equivalent to the existence of a special Aronszajn tree.
    [Show full text]
  • Peter Koellner
    Peter Koellner Department of Philosophy 50 Follen St. 320 Emerson Hall, Harvard University Cambridge, MA, 02138 Cambridge, MA 02138 (617) 821-4688 (617) 495-3970 [email protected] Employment Professor of Philosophy, Harvard University, (2010{) John L. Loeb Associate Professor of the Humanities, Harvard University, (2008{2010) Assistant Professor of Philosophy, Harvard University, (2003{2008) Education Ph.D. in Philosophy Massachusetts Institute of Technology, 2003 (Minor: Mathematical Logic) Research in Logic University of California, Berkeley Logic Group: 1998{2002 M.A. in Philosophy University of Western Ontario, 1996 B.A. in Philosophy University of Toronto, 1995 Research Interests Primary: Set Theory, Foundations of Mathematics, Philosophy of Mathematics Secondary: Foundations of Physics, Early Analytic Philosophy, History of Philosophy and the Exact Sciences Academic Awards and Honors • John Templeton Foundation Research Grant: Exploring the Frontiers of Incompleteness; 2011-2013 |$195,029 • Kurt G¨odelCentenary Research Fellowship Prize; 2008{2011 |$130,000 • John Templeton Foundation Research Grant: Exploring the Infinite (with W. Hugh Woodin); 2008{2009 |$50,000 • Clarke-Cooke Fellowships; 2005{2006, 2006{2007 • Social Sciences and Humanities Research Council of Canada Scholarship, 1996{2000 (tenure 1998{2000: Berkeley) Peter Koellner Curriculum Vitae 2 of 4 Teaching Experience Courses taught at Harvard: Set Theory (Phil 143, Fall 2003) Set Theory: Large Cardinals from Determinacy (Math 242, Fall 2004) Set Theory: Inner Model
    [Show full text]
  • Set Theory in Computer Science a Gentle Introduction to Mathematical Modeling I
    Set Theory in Computer Science A Gentle Introduction to Mathematical Modeling I Jose´ Meseguer University of Illinois at Urbana-Champaign Urbana, IL 61801, USA c Jose´ Meseguer, 2008–2010; all rights reserved. February 28, 2011 2 Contents 1 Motivation 7 2 Set Theory as an Axiomatic Theory 11 3 The Empty Set, Extensionality, and Separation 15 3.1 The Empty Set . 15 3.2 Extensionality . 15 3.3 The Failed Attempt of Comprehension . 16 3.4 Separation . 17 4 Pairing, Unions, Powersets, and Infinity 19 4.1 Pairing . 19 4.2 Unions . 21 4.3 Powersets . 24 4.4 Infinity . 26 5 Case Study: A Computable Model of Hereditarily Finite Sets 29 5.1 HF-Sets in Maude . 30 5.2 Terms, Equations, and Term Rewriting . 33 5.3 Confluence, Termination, and Sufficient Completeness . 36 5.4 A Computable Model of HF-Sets . 39 5.5 HF-Sets as a Universe for Finitary Mathematics . 43 5.6 HF-Sets with Atoms . 47 6 Relations, Functions, and Function Sets 51 6.1 Relations and Functions . 51 6.2 Formula, Assignment, and Lambda Notations . 52 6.3 Images . 54 6.4 Composing Relations and Functions . 56 6.5 Abstract Products and Disjoint Unions . 59 6.6 Relating Function Sets . 62 7 Simple and Primitive Recursion, and the Peano Axioms 65 7.1 Simple Recursion . 65 7.2 Primitive Recursion . 67 7.3 The Peano Axioms . 69 8 Case Study: The Peano Language 71 9 Binary Relations on a Set 73 9.1 Directed and Undirected Graphs . 73 9.2 Transition Systems and Automata .
    [Show full text]
  • The Higher Infinite in Proof Theory
    The Higher Infinite in Proof Theory∗y Michael Rathjen Department of Pure Mathematics, University of Leeds Leeds LS2 9JT, United Kingdom 1 Introduction The higher infinite usually refers to the lofty reaches of Cantor's paradise, notably to the realm of large cardinals whose existence cannot be proved in the established for- malisation of Cantorian set theory, i.e. Zermelo-Fraenkel set theory with the axiom of choice. Proof theory, on the other hand, is commonly associated with the manipula- tion of syntactic objects, that is finite objects par excellence. However, finitary proof theory became already infinitary in the 1950's when Sch¨uttere-obtained Gentzen's ordinal analysis for number theory in a particular transparent way through the use of an infinitary proof system with the so-called !-rule (cf. [54]). Nowadays one even finds vestiges of large cardinals in ordinal-theoretic proof theory. Large cardinals have worked their way down through generalized recursion (in the shape of recursively large ordinals) to proof theory wherein they appear in the definition procedures of so-called collapsing functions which give rise to ordinal representation systems. The surprising use of ordinal representation systems employing \names" for large cardinals in current proof-theoretic ordinal analyses is the main theme of this paper. The exposition here diverges from the presentation given at the conference in two regards. Firstly, the talk began with a broad introduction, explaining the current rationale and goals of ordinal-theoretic proof theory, which take the place of the original Hilbert Program. Since this part of the talk is now incorporated in the first two sections of the BSL-paper [48] there is no point in reproducing it here.
    [Show full text]
  • A Framework for Forcing Constructions at Successors of Singular Cardinals
    A FRAMEWORK FOR FORCING CONSTRUCTIONS AT SUCCESSORS OF SINGULAR CARDINALS JAMES CUMMINGS, MIRNA DAMONJA, MENACHEM MAGIDOR, CHARLES MORGAN, AND SAHARON SHELAH Abstract. We describe a framework for proving consistency re- sults about singular cardinals of arbitrary conality and their suc- cessors. This framework allows the construction of models in which the Singular Cardinals Hypothesis fails at a singular cardinal κ of uncountable conality, while κ+ enjoys various combinatorial prop- erties. As a sample application, we prove the consistency (relative to that of ZFC plus a supercompact cardinal) of there being a strong limit singular cardinal κ of uncountable conality where SCH fails + and such that there is a collection of size less than 2κ of graphs on κ+ such that any graph on κ+ embeds into one of the graphs in the collection. Introduction The class of uncountable regular cardinals is naturally divided into three disjoint classes: the successors of regular cardinals, the successors of singular cardinals and the weakly inaccessible cardinals. When we 2010 Mathematics Subject Classication. Primary: 03E35, 03E55, 03E75. Key words and phrases. successor of singular, Radin forcing, forcing axiom, uni- versal graph. Cummings thanks the National Science Foundation for their support through grant DMS-1101156. Cummings, Dºamonja and Morgan thank the Institut Henri Poincaré for their support through the Research in Paris program during the period 24-29 June 2013. Dºamonja, Magidor and Shelah thank the Mittag-Leer Institute for their sup- port during the month of September 2009. Mirna Dºamonja thanks EPSRC for their support through their grants EP/G068720 and EP/I00498. Morgan thanks EPSRC for their support through grant EP/I00498.
    [Show full text]