Cytogenetics, Ploidy, and Genome Sizes of Camellia and Related

Total Page:16

File Type:pdf, Size:1020Kb

Cytogenetics, Ploidy, and Genome Sizes of Camellia and Related HORTSCIENCE 54(7):1124–1142. 2019. https://doi.org/10.21273/HORTSCI13923-19 for garden use in China (Xin et al., 2015). Although tea (C. sinensis) arrived in Europe during approximately the middle of the 17th Cytogenetics, Ploidy, and Genome Sizes century, the first living Camellia plant was not reported until nearly one century later, in of Camellia and Related Genera Lord Petre Thorndon’s hothouses in England. 1 2,5 Since then, ornamental camellias have be- William G. Hembree and Thomas G. Ranney come widely cultivated throughout Europe, Mountain Crop Improvement Laboratory, Department of Horticultural North America, Australia, and New Zealand Science, Mountain Horticultural Crops Research and Extension Center, (Ackerman, 2007; Darfler, 2014; Trehane, North Carolina State University, 455 Research Drive, Mills River, NC 2007). Their popularity and phenotypic var- 28759-3423 iability have led to tens of thousands of cultivars and hybrids (International Camellia Brian E. Jackson3 Society, 2015). However, there are many Department of Horticultural Science, North Carolina State University, polyploid camellias, and many species and complex hybrids have not been analyzed for Campus Box 7609, Raleigh, NC, 27695-7609 ploidy or genome size. Improved knowledge Mark Weathington4 of chromosome numbers and ploidy levels of key species and cultivars would be a valuable JC Raulston Arboretum, North Carolina State University, Campus Box 7522, resource for further breeding and improve- Raleigh, NC 27695-7522 ment of Camellia. Analyses of other closely related genera would provide a broader un- Additional index words. cytology, DNA content, flow cytometry, chromosomes, plant derstanding of ploidy within Theaceae and breeding, polyploidy, Hartia, Polyspora, Pyrenaria, Stewartia, taxonomy, Theaceae, Tutche- help contextualize evolutionary relationships ria in this family. Abstract. Camellia L., the most speciose member of the diverse tea family Theaceae, has a long and complex horticultural history. Extensive cultivation and hybridization have Taxonomy/Systematics produced thousands of varieties of Camellia, including commercially important crops such as cultivated tea, oilseed, and iconic flowering shrubs. Cytogenetics of Camellia and The genus Camellia has undergone sev- related genera is complicated; chromosome number and ploidy can vary widely between eral taxonomic revisions (Prince, 2007). species, and interspecific and interploid hybridization occurs. However, specific in- Sealy (1958) published a revision of the formation regarding cytogenetics of many species, cultivars, and modern hybrids is genus Camellia that included 12 sections lacking. The objectives of this study were to compile a consolidated literature review of and 82 species with an additional group of the cytogenetics of Camellia and related genera and to determine chromosome numbers, 24 doubtful species. Chang and Bartholomew ploidy, and genome sizes of specific accessions of selected species, cultivars, and (1984) and Chang (1998) completed several interspecific and interploid hybrids. A review of the existing literature regarding taxonomic revisions of Camellia and reor- Theaceae cytogenetics is presented as a consolidated reference comprising 362 taxa. ganized the 238 species native to China in 18 Genome sizes were determined with flow cytometry using propidium iodide as a sections and 4 subgenera. More recently, fluorochrome and Pisum sativum ‘Ctirad’ and Magnolia virginiana ‘Jim Wilson’ as Ming (2000) published his monograph of internal standards. Chromosome numbers of selected taxa were determined using the genus Camellia; in that work, he reduced traditional cytology and were used to calibrate genome sizes with ploidy level. Our the number of subgenera to 2, the sections to results confirmed a base chromosome number of x = 15 for Theeae including Camellia, x 14, and the species to 119, which was less = 17 for Stewartiae, and x = 18 for Gordoniae. Surveyed camellias ranged from 2n =2x = than half of Chang’s final tally of 280 30 to 2n =8x = 120, including diploids, triploids, tetraploids, pentaploids, hexaploids, and species. The systems of both Ming (2000) octoploids. Previously uncharacterized taxa such as Camellia azalea, C. amplexicaulis, C. and Chang (1998) are widely used by bota- chrysanthoides, C. cordifolia, C. cucphuongensis, C. flava, C. nanyongensis, and C. nists today (Gao et al., 2005). In the work by trichoclada were found to be diploid. Ploidy was also newly determined for Schima Ming and Bartholomew (2007), the number argentea, S. khasiana, S. remotiserrata, and S. sinensis (all diploids). Both diploid and of species is 120, and 97 of these are native triploid Stewartia ovata were found, and a ploidy series was discovered for Polyspora that to China. ranged from diploid to octoploid. Ploidy determinations were used to confirm or Several changes to the accepted taxo- challenge the validity of putative interploid hybrids. Monoploid genome sizes varied nomic status of Camellia have occurred since among subfamily and genera, with 1Cx values ranging from 0.80 pg for Franklinia to a its original classification by Linnaeus. At mean of 3.13 pg for Camellia, demonstrating differential rates of genome expansion different times, Camellia has been placed independent of ploidy. Within Camellia, monoploid genome sizes varied among with the Guttiferales, Theales, and even subgenera, sections, and some species (range, 2.70–3.55 pg). This study provides a within Ternstroemiaceae (Luna and Ochoter- consolidated and expanded knowledgebase of ploidy, genome sizes, hybridity, and ena, 2004). Theaceae is now considered a reproductive pathways for specific accessions of Camellia and related genera that will distinct family within Ericales (Stevens, 2001 enhance opportunities and strategies for future breeding and improvement within onwards). Luna and Ochoterena (2004) Theaceae. found that Theaceae is closely related to Ternstroemiaceae; both belong to the same clade. Within Theaceae, there are three Theaceae (Mirb. ex Ker Gawl.), the tea imately 90% of all Camellia species, includ- tribes: Theeae, Gordoniae, and Stewartiae. family, is a small family of trees and shrubs ing those of greatest commercial importance, Theeae is the most diverse of these tribes and with a disjunct eastern Asian–eastern North are native to China and Japan (Bartholomew, contains Camellia, Polyspora, Pyrenaria, American and northern South American dis- 1986). The ornamental varieties are prized Apterosperma, and Laplacea. A recent mo- tribution (Stevens, 2001 onwards). Camellia for their glossy evergreen foliage and abun- lecular phylogenetic analysis of Theeae in- L. is the largest and most commercially dant showy flowers that can bloom from dicated that Camellia and Pyrenaria form a significant genus of Theaceae, with species autumn to early spring, when many other paraphyletic group; these two occur and found throughout southeastern and eastern plants in the landscape are dormant. More hybridize naturally with each other (Zhang Asia (Chang and Bartholomew, 1984; Luna than 1000 years before their western intro- et al., 2014). Gordoniae and Stewartiae be- Vega and Contreras-Medina, 2000). Approx- duction, ornamental camellias were grown long to the sister clade of Theeae. Gordoniae 1124 HORTSCIENCE VOL. 54(7) JULY 2019 is composed of the North American Frank- Ploidy series are seen in other Camellia species (2013). Approximately 40 to 50 mg of leaves linia and Gordonia, as well as the Asian as well, including (but not limited to) C. were used for each sample preparation. A Schima. Intergeneric hybrids between these hiemalis, C. oleifera, C. reticulata,andC. modified woody plant buffer (WPB) isolation species as well as between Camellia and sinensis (Ackerman, 1971; Bezbaruah, 1971; buffer composed of 0.2 mM Tris-HCl, 4 mM Franklinia have been reported (Ackerman Huang et al., 2013; Kondo, 1977). The variation MgCl2-6 H2O, 2.0 mM EDTA Na2-H2O, and Williams, 1982; Orton, 1977; Ranney and confusion regarding ploidy levels are further 86.0 mM NaCl, 2.0 mM dithiothreitol, 1% et al., 2003; Ranney and Fantz, 2006). Stew- complicated by and may be partly the result of (w/v) PVP-10, and 1% (v/v) Triton X-100 1 artiae includes the disjunct North American interspecific and interploid hybridization. For mL with a pH of 7.5 was prepared. Ice-cold and Asian Stewartia (including evergreen example, advanced hybrids of C. ·vernalis (C. nuclei suspensions were prepared by chop- species sometimes classified as Hartia) sasanqua ·japonica) can be triploid, tetraploid, ping tissue in the WPB with a razor blade. (Prince and Parks, 2001). pentaploid, or hexaploid (Tateishietal.,2007). The WPB buffer was used to reduce the Additionally, camellias can produce both unre- effects of phenolic compounds, preserve duced gametes (Wendel, 1984) and, in some chromatin integrity in the DNA, and help Ploidy and Cytogenetics instances, aneuploid gametes (Kondo, 1977), produce low CV values (Huang et al., 2013). resulting in additional possible variations within The suspensions were filtered through a There is some variation in the base chro- m mosome number among members of Thea- ploidy. 50- m nylon filter. The nuclei were sub- m · –1 ceae. Many genera including Camellia, Ploidy and genome size can influence sequently treated with 50 g mL RNase Polyspora, and Pyrenaria exhibit base chro- reproductive compatibility, fertility, and and stained with propidium iodide (PI) mosome numbers consistently reported as heritability of traits. Relative ploidy levels
Recommended publications
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • Taming the Wild Stewartia©
    1 Boland-Tim-2019B-Taming-Stewartia Taming the Wild Stewartia© Timothy M. Boland and Todd J. Rounsaville Polly Hill Arboretum, 809 State Road, West Tisbury, Massachusetts 02575, USA [email protected] Keywords: Asexual propagation, native trees, plant collections, seeds, Stewartia SUMMARY The Polly Hill Arboretum (PHA) began working with native stewartia in 1967. Our founder, Polly Hill, was devoted to growing trees from seed. In 2006, the Polly Hill Arboretum was recognized as the Nationally Accredited Collection holder for stewartia. This status has guided our collection development, particularly on focused seed expeditions, which began in 2007. The PHA has been successful growing both species from seed, however, overwintering survival and transplanting of juvenile plants has proved more challenging. New insights into winter storage of seedlings is beginning to shed light on this problem. Experimentation with overwintering rooted cuttings has revealed that plants have preferred temperature and chilling requirements. These new overwintering protocols have thus far yielded positive results. Recent work with tissue culture has also shown promising results with both species. Future work includes grafting superior clones of our native stewartia onto Asiatic species in an effort to overcome the problematic issues of overwintering, transplantability, and better resistance to soil borne pathogens. Our Plant Collections Network (PCN) development plan outlines our next phase work with stewartia over the upcoming several years. The results of this work will be shared in future years as we continue to bring these exceptional small flowering trees into commercial production. 2 INTRODUCTION The commitment to building Polly Hill Arboretum’s (PHA) stewartia collection is based on our founder Polly Hill’s history with the genus and our own desire to encourage the cultivation of these superb small-flowering trees in home gardens.
    [Show full text]
  • Minireview Paper Golden Camellias
    1 1 Minireview Paper 2 Golden Camellias: A Review 3 4 ABSTRACT 5 Golden camellias or yellow camellias are species belonging to genus Camellia L., family 6 Theaceae. Fifty two species were described in southern China and Vietnam. Active 7 ingredients such as polysaccharides, polyphenols, tea saponins, and flavonoids are well 8 known characteristics of golden camellias. Its leaves and flowers have been long 9 traditionally used for health improvement. It was found to be able to inhibit the 10 transplanted cancer, lower blood pressure, lower blood lipid, lower cholesterol, and 11 prevent atherosclerosis. Currently, it cost 320-700US$ per one kg of dry flowers. Such 12 price attracts many local ethnic people to plant golden camellias for poverty reduction. 13 This work reviews (1) species and natural distribution, (2) uses and healthcare values, (3) 14 techniques for seedling production, planting and tending, and (4) opportunities and 15 challenges for future development of golden camellias. 16 17 Keywords: Active ingredient; Camellia L.; poverty reduction; shade-tolerant species; yellow flower. 2 18 1. SPECIES AND NATURAL DISTRIBUTION 19 Golden camellias or yellow camellias are shrubs and small-sized trees belonging to genus 20 Camellia L [1], family Theaceae [2-8]. Golden camellias have light to heavy yellow 21 flowers (Fig. 1) and are 3-12 m tall at maturity in natural distribution conditions. The size 22 of flowers are different among species from 1 to 10 cm in diameter (Fig. 1). About 52 23 species (Table 1) of golden camellias have been described in southern China and Vietnam. 24 Of which, nearly 40 species have natural distribution in Vietnam.
    [Show full text]
  • A List of Plants Recommended for Snow Creek Landscaping Projects
    A List of Plants Recommended for Snow Creek Landscaping Projects This is intended to be a partial list of regional native plants that have proven to be reliably hardy in the Asheville area and conform to Snow Creek’s mission of developing sustainable landscapes. Plants with * in column D are thought to be resistant to deer browse. Please note that as the deer population increases and natural food supplies decrease deer may begin to feed off of plants included in this list. Column W ranks the water needs for each species from 1 to 3 with 3 being the highest moisture requirement. Newly installed plants require more water than usual. All plants have specific site requirements so please consult a reliable text for more detailed information about cultural requirements. The estimated height and spread of plants at maturity is given in feet. SHADE TREES: SPECIES CULTIVARS HT/SP FORM QUALITIES PROBLEMS D W Acer rubrum ‘Autumn 55/45 Broadly Can withstand wet or Shallow rooted, will * Red Maple Flame’ 60/50 ovate compacted soil, good not withstand high pH. 2 ‘Oct. Glory’ 50/30 Broadly red fall color, fast ‘Bowhall’ 60/50 ovate growing ‘Red Sunset’ Broadly Many others ovate Broadly ovate Acer x ‘Freemanii’ ‘Armstrong’ 60/25 Columnar Many of the same Somewhat shallow * 2 Hybrid Maple ‘Autumn 65/50 Ovate qualities as Red rooted Blaze’ 70/35 Ovate Maple but faster Not tolerant of high ‘Scarlet pH. Sentinel’ Acer saccharum ‘Gr. Mountain’ 70/40 Upright Excellent fall color, Requires a moist, * Sugar Maple ‘Legacy’ oval summer shade, fertile soil.
    [Show full text]
  • Number 3, Spring 1998 Director’S Letter
    Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m.
    [Show full text]
  • Page 1 of 19 the Origins of Camellia X Williamsii at Caerhays the History
    The Origins of Camellia x williamsii at Caerhays The history of the camellia in UK horticulture is a rather peculiar story. Camellias enjoyed rising popularity in the 1840s but, largely, only in the grandest country houses with large conservatories as at Chatsworth, Chiswick and Sheffield Park. The perception was that camellias were delicate, tender, plants suitable only for growing under the protection of glass. This was very probably because early forms of Camellia japonica from Japan were being imported from much warmer Mediterranean climates in Spain, Portugal and Italy where, again, they were being grown in the courtyards and walled gardens of wealthy nobility and landowners. The situation in Cornwall in the latter half of the 19th Century was different. Ships’ captains operating out of Falmouth were commissioned to bring back new plants from overseas by Cornish landowners and industrialists. One of the earliest examples of a collection of Camellia japonica varieties can still be found today in decline and over maturity in the walled garden at Scorrier House near Redruth. Here they still grow up against sheltering high stone walls. Tregothnan Estate near Truro also has one of the very earliest collections of Camellia japonica dating from the 1820s. It would appear that the plants which you still see today in good order were actually moved (and cut back) to their current location in the arboretum in about 1923. So camellias were far from being unknown in English gardens, but they had not exactly become popular or widely grown. One has to remember that in its pure specie form Camellia japonica has small, often sparse, and fairly unexciting single red flowers.
    [Show full text]
  • Camellia Sinensis (L.) Kuntze (7)
    “As Primeiras Camélias Asiáticas a Chegarem a Portugal e à Europa”. Armando Oliveira António Sanches (1623), Planisfério. 1 O género Camellia L. está praticamente confinado ao sul da China (80% de todas as espécies) e à região do sul da Ásia que inclui as Filipinas e as zonas do noroeste do arquipélago da Indonésia, com a inclusão do Japão e partes da Coreia. Estima-se que praticamente 20% das espécies de Camellia se encontram no Vietname. A região fitogeográfica do sul da Ásia é composta pela China, Laos, Mianmar (ex-Birmânia), Tailândia, Camboja e Vietname. 1 (Huang et al., 2016) 106 • A proposta taxonómica de Linnaeus (1835), “Sistema Natura”, permitiu-nos obter uma mais fácil e rápida identificação das espécies. • Baseia-se numa classificação dita binomial que atribui nomes compostos por duas palavras, quase sempre recorrendo ao latim. Adaptado de Fairy Lake Botanical Garden Flora (2018) 2 Reino Filo Classe Ordem Família Género Espécies/Variedades Cultivares Camellia caudata Wall. (11) Camellia drupifera Lour. (4) Dicotiledóneas Antófitas Camellia euryoides Lindl. (7) Vegetal (a semente Ericales (25) Theaceaes (12) Camellia (102+40) (que dão flor) contém 2 ou mais Camellia japonica L. cotilédones) Camellia kissi Wall. (11) Camellia oleifera Abel (6) Camellia rosaeflora Hook. (1) Camellia sasanqua Thunb. Camellia sinensis (L.) Kuntze (7) • A 1ª parte do nome é referente ao género da espécie em causa e a 2ª parte identifica a espécie dentro de um determinado género. Adaptado de Fairy Lake Botanical Garden Flora (2018) 2 Ordem Família
    [Show full text]
  • Ecological Sustainability Will Probably Always Be Limited by Its Small Size and Fragmented Condition (See Section 3.5)
    United States Department of Agriculture Forest Service May 2011 Terrestrial Species Viability Evaluation for The Uwharrie National Forest Land and Resource Management Plan Environmental Impact Statement Contents 1.0 Introduction ................................................................................................................... 1 2.0 Purpose .......................................................................................................................... 1 2.1 Requirements in the National Forest Management Act (NFMA) ............................. 1 3.0 Ecosystem Diversity ..................................................................................................... 2 3.1 Spatial Scales for Ecosystem Diversity ................................................................... 4 3.2 Characteristics of Ecosystem Diversity ................................................................... 7 3.3 Range of Variation .................................................................................................... 9 3.4 Current Condition and Trend of Ecosystem Characteristics and Status of Ecosystem Diversity ..................................................................................................... 15 3.5 – Risks to Selected Characteristics of Ecosystem Diversity ................................... 20 3.6 Recommended Forest Plan Components ............................................................... 21 3.7 Assessing effects of Forest Plan alternatives on viability ....................................
    [Show full text]
  • A Brief Nomenclatural Review of Genera and Tribes in Theaceae Linda M
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 24 | Issue 1 Article 8 2007 A Brief Nomenclatural Review of Genera and Tribes in Theaceae Linda M. Prince Rancho Santa Ana Botanic Garden, Claremont, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Prince, Linda M. (2007) "A Brief Nomenclatural Review of Genera and Tribes in Theaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 24: Iss. 1, Article 8. Available at: http://scholarship.claremont.edu/aliso/vol24/iss1/8 Aliso 24, pp. 105–121 ᭧ 2007, Rancho Santa Ana Botanic Garden A BRIEF NOMENCLATURAL REVIEW OF GENERA AND TRIBES IN THEACEAE LINDA M. PRINCE Rancho Santa Ana Botanic Garden, 1500 North College Ave., Claremont, California 91711-3157, USA ([email protected]) ABSTRACT The angiosperm family Theaceae has been investigated extensively with a rich publication record of anatomical, cytological, paleontological, and palynological data analyses and interpretation. Recent developmental and molecular data sets and the application of cladistic analytical methods support dramatic changes in circumscription at the familial, tribal, and generic levels. Growing interest in the family outside the taxonomic and systematic fields warrants a brief review of the recent nomenclatural history (mainly 20th century), some of the classification systems currently in use, and an explanation of which data support various classification schemes. An abridged bibliography with critical nomen- clatural references is provided. Key words: anatomy, classification, morphology, nomenclature, systematics, Theaceae. INTRODUCTION acters that were restricted to the family and could be used to circumscribe it.
    [Show full text]
  • Native Vascular Plants
    !Yt q12'5 3. /3<L....:::5_____ ,--- _____ Y)Q.'f MUSEUM BULLETIN NO.4 -------------- Copy I NATIVE VASCULAR PLANTS Endangered, Threatened, Or Otherwise In Jeopardy In South Carolina By Douglas A. Rayner, Chairman And Other Members Of The South Carolina Advisory Committee On Endangered, Threatened And Rare Plants SOUTH CAROLINA MUSEUM COMMISSION S. C. STATE LIR7~'· '?Y rAPR 1 1 1995 STATE DOCU~ 41 ;::,·. l s NATIVE VASCULAR PLANTS ENDANGERED, THREATENED, OR OTHERWISE IN JEOPARDY IN SOUTH CAROLINA by Douglas A. Rayner, Chairman and other members of the South Carolina Advisory Committee on Endangered, Threatened, and Rare Plants March, 1979 Current membership of the S. C. Committee on Endangered, Threatened, and Rare Plants­ Subcommittee on Criteria: Ross C. Clark, Chairman (1977); Erskine College (taxonomy and ecology) Steven M. Jones, Clemson University (forest ecology) Richard D. Porcher, The Citadel (taxonomy) Douglas A. Rayner, S.C. Wildlife Department (taxonomy and ecology) Subcommittee on Listings: C. Leland Rodgers, Chairman (1977 listings); Furman University (taxonomy and ecology) Wade T. Batson, University of South Carolina, Columbia (taxonomy and ecology) Ross C. Clark, Erskine College (taxonomy and ecology) John E. Fairey, III, Clemson University (taxonomy) Joseph N. Pinson, Jr., University of South Carolina, Coastal Carolina College (taxonomy) Robert W. Powell, Jr., Converse College (taxonomy) Douglas A Rayner, Chairman (1979 listings) S. C. Wildlife Department (taxonomy and ecology) INTRODUCTION South Carolina's first list of rare vascular plants was produced as part of the 1976 S.C. En­ dangered Species Symposium by the S. C. Advisory Committee on Endangered, Threatened and Rare Plants, 1977. The Symposium was a joint effort of The Citadel's Department of Biology and the S.
    [Show full text]
  • And Cross-Pollination in Pollen Tube Growth, Early Ovule Development and Fruit Set of Camellia Grijsii
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 18–1478/2019/21–4–819–826 DOI: 10.17957/IJAB/15.0960 http://www.fspublishers.org Full Length Article Comparison of Self- and Cross-Pollination in Pollen Tube Growth, Early Ovule Development and Fruit Set of Camellia grijsii Huan Xiong1, Feng Zou1*, Deyi Yuan1*, Xiaofeng Tan1, Jun Yuan1, Ting Liao1 and Genhua Niu2 1Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education Central South University of Forestry and Technology, Changsha 410004, Hunan, China 2Texas AgriLife Research at El Paso, Texas A&M University System, 1380 A&M Circle, El Paso, TX 79927, USA *For correspondence: [email protected]; [email protected] Abstract Camellia grijsii Hance is one of the most important woody edible oil tree species in Southern China; however, it often has a low fruit set rate. To elucidate the causes of poor fruit set in C. grijsii, self-pollination (SP) with C. grijsii and cross-pollination (CP) of C. grijsii × C. villosa tests were conducted. Pollen germination and pollen tube growth into pistils, and early ovule development after SP and CP, were examined using a paraffin section and fluorescence microscopy. The fruit set percentage in SP and CP was also investigated. The results showed that pollen germinated normally on the stigma, and the pollen tubes both reached the style base after SP and CP, but the growth rates of pollen differed significantly between SP and CP, being faster for CP. The pollen tubes arrived at the style base 48 h after SP, but only 24 h after CP.
    [Show full text]
  • * Correspondence To: Yujing Yan, Email: [email protected] Or Charles C
    Supplementary Materials for Phytogeographic history of the Tea family inferred through high-resolution phylogeny and fossils *Yujing Yan1,2, *Charles C. Davis2, Dimitar Dimitrov1,3, Zhiheng Wang4, Carsten Rahbek5,1,4,6,7, Michael Krabbe Borregaard1 1. Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark 2. Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Ave, Cambridge, MA 02138, USA 3. Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway 4. Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory of Earth Surface Processes of Ministry of Education, Peking University, Beijing 100871, China 5. Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark 6. Department of Life Sciences, Imperial College London, Silkwood Park campus, Ascot SL5 7PY, UK 7. Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark. * Correspondence to: Yujing Yan, email: [email protected] or Charles C. Davis, email: [email protected] This PDF file includes: Appendix 1 (p.4) Supplementary Notes 1 (p. 2-4) Supplementary Tables S1 to S11 (p.7-42) Supplementary Figures S1 to S10 (p.43-52) 1 Supplementary Note 1. Inference of biogeographical patterns using a fully Bayesian method in RevBayes We applied an alternative biogeographic method proposed by Landis et al. (2020) to a subset of our Theaceae empirical dataset and compared its performance to our method. This method uses a hierarchical Bayesian approach to account for the uncertainty in the position of fossils (lack of characters), phylogenetic relationships, and the geological/biogeographic template at once.
    [Show full text]