Chapter 5 GENERAL CIRCULATION Local Fire-Weather Elements-Wind

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 5 GENERAL CIRCULATION Local Fire-Weather Elements-Wind Chapter 5 GENERAL CIRCULATION Local fire-weather elements-wind, temperature, moisture, and stability-respond continually to the varying patterns of pressure systems and to the changing properties of huge masses of air moving in generally predictable circulations over the earth's surface. These broadscale circulations determine the regional patterns of rapidly changing fire weather-long term trends resulting in periods of wetness or drought and above or below-normal temperatures, and in seasonal changes in fire weather. If we are to become acquainted with these variations in fire weather, we must understand how they are brought about, and the settings in which they take place. The response to overall airflow applies also to local fuel conditions, so an understanding of general air circulation within the troposphere is essential to a usable knowledge of wildland fire behavior. GENERAL CIRCULATION So far we have been concerned principally with heated uniformly, and the resultant unequal heating the static properties of the atmosphere-its of the atmosphere causes compensating air temperature, moisture, and pressure. In this motions, which tend to reduce the horizontal chapter we will begin a more detailed consideration temperature differences. of the dynamics of the atmosphere-its motion-which was introduced in chapter 1. The actual motions that are developed within the atmosphere are extremely complex and are not yet We learned in chapter 1 that the atmosphere is fully understood. Theories and models, which have a gaseous mantle encasing the earth held there by been derived, are not wholly accepted because gravity-and rotating with the earth. Within this huge they do not completely account for all of the envelope of air there are motions of a variable observed atmospheric motions. Most of the major nature. If forces were not present to act on the features of the global circulations are rather well atmosphere and upset its equilibrium, there would understood. Therefore, future modifications of be no atmospheric motion-no circulation. The present-day theories resulting from further research pressure exerted by the weight of the atmosphere will not seriously affect out understanding of the would be the same everywhere at a given level. But general circulation as it relates to fire weather. disturbing forces are present. The earth is not PRIMARY CIRCULATION In equatorial regions the earth’s surface Certainly this is a very hypothetical situation, but let receives more solar energy from the sun than it us accept it for the sake of development of our radiates back to space, and therefore acts as a discussion. We know that regions of warm heat source for the air in these regions. In polar surfaces, which warm the air overlying them, are regions the earth’s surface radiates more energy characterized by rising air. The warming air into space than it receives from the sun. Since expands and is forced aloft by the cooler, denser equatorial regions do not get hotter and hotter, and air flowing in from adjacent areas. since polar regions do not become progressively colder, there must be some net transport of heat In equatorial regions the warm air would rise to energy from equatorial to polar regions. Just near the tropopause, reach a level of the same air how this is accomplished is one of the major density, then spread out and flow both north and features of the general circulation that is not south. As it moved toward the poles, it would cool completely understood. This transport could be by radiation and sink as its density increased. In accomplished by closed horizontal “cells” with the polar regions it would descend and begin to north-south flow, by large-scale eddies, or, move toward the Equator. perhaps, by both methods. We will consider both methods. In this hypothetical case the transport of heat could take place by simple convective circulation. Convective Circulation At the earth’s surface there would be a permanent low-pressure belt around the earth at the Equator Let us suppose that the earth's surface was and a high-pressure area at each pole. uniform, that the earth did not rotate, and that it was uniformly heated around the entire Equator. heating mentioned above combined with the effect of the earth's rotation and the unequal partitioning of heat due to the uneven distribution of land and sea areas. Before we discuss the circulation on a rotating earth with a uniform surface, we will need to consider why and how the earth's rotation affects airflow. How the Earth's Rotation Affects Airflow: Coriolis Force If a maps of air, or any other body, moves in a straight line as viewed from a position in space, its path as viewed from a position on the earth is curved. The curvature indicates a deflection to the right in the Northern Hemisphere and a deflection to the left in the Southern Hemisphere. The reason for the deflection is that the earth, rotating toward the east on its axis, turns underneath the moving air or body. This deflective force is called the In a simple convective circulation, worm air expands and is Coriolis force. It is an apparent rather than a real forced aloft. As it cools, it descends and returns to the heat source. force, but since we are stationed on earth and view motions from the earth, the deflection is real from Since the earth does rotate, and since the sun all earthbound positions. is its single source of energy, this simple convective pattern cannot exist. The real circulation patterns To visualize the Coriolis force, let us consider a are the result of the unequal large disk or merry-go-round, rotating in a counterclockwise direction, as representing the Northern Hemisphere. A boy tossing a ball from the center outward would find that the ball made a straight path in space, but traced a curved path on the disk below showing a deflection toward the right. Although more difficult to visualize, it is a fact that if the boy were stationed at any place on the rotating disk and tossed the ball in any horizontal direction, the ball would trace a curved path on the disk with a deflection to the right. On the rotating earth, an air current in the Northern Hemisphere starting as a southerly wind, that is, moving toward the north, would be deflected to the right and become a southwest or west wind. Likewise, a north wind deflected to the right becomes a northeast or east wind. Since the northward airflow aloft just north of the equatorial region becomes nearly a true westerly flow, the northward movement is slowed and the air "piles If the general circulation could be represented by a simple up" at about latitude 30°N. The air also loses convective circulation, heated air at the Equator would rise to considerable heat by radiation. near the tropopause, then spread out both north and south. Toward the poles, it would cool, and finally descend and move back to the Equator. of the earth's rotation comes into play. The northward-flowing current is turned to the right and becomes the prevailing westerlies of middle latitudes. The southward-flowing current, also deflected to the right, becomes the northeast trades of the low latitudes. The air aloft that gradually moves northward continue to lose heat. In the polar regions it descends, gives up additional heat to the surface, and flows southward. This current is also turned to the right by the Coriolis force and becomes the polar easterlies of high latitudes. The cold air gradually pushes southward and finally meets the A ball tossed horizontally from the center (or, in fact any location) northward-flowing tropical air in what is referred to on a large, counterclockwise rotating disk will take a straight path as the polar front zone. The polar and tropical air in space, but, because of the Coriolis force, the path traced on the masses, which have different densities, tend to disk will show a deflection to the right. resist mixing. Instead, the lighter tropical air flows Because of the piling up and the heat loss, up and over the forward edge of the denser polar some of the air descends, producing a surface air. high-pressure belt, while the rest continues in the westerly current aloft. Air that has descended flows This type of cellular circulation causes air to both northward toward the pole and southward accumulate in the polar region. When the toward the Equator at the surface. Again, the effect On a rotating earth with a uniform surface, the general circulation of the Northern Hemisphere would be composed of the trade winds, prevailing westerlies, and polar easterlies. mass becomes great enough, the polar front zone is pushed southward, and the cold polar air penetrates to fairly low latitudes in a "polar outbreak". In this simplified circulation system, heat energy is carried northward by the airflow aloft, and cold air moves southward in cold outbreaks to maintain a balance of energy between equatorial and polar regions. This primary circulation system results in the formation of several well-defined major regional circulation patterns or wind belts, some of which we have already mentioned. These are known as: Doldrums, trade winds, horse latitudes, prevailing westerlies, polar front zone, and polar easterlies. The equatorial region of warm and moist rising air currents is referred to as the doldrums. It is a region of light surface winds, considerable cloudiness, and widespread shower activity. When The polar front zone is an area of storminess, cloudiness, and the doldrum belt moves north from the Equator, as precipitation, and its position is extremely variable.
Recommended publications
  • 3 Atmospheric Motion
    Final PDF to printer CHAPTER 3 Atmospheric Motion MOTION OF THE EARTH’S ATMOSPHERE has a great influence on human lives by controlling climate, rainfall, weather patterns, and long-range transportation. It is driven largely by differences in insolation, with influences from other factors, including topography, land-sea interfaces, and especially rotation of the planet. These factors control motion at local scales, like between a mountain and valley, at larger scales encompassing major storm systems, and at global scales, determining the prevailing wind directions for the broader planet. All of these circulations are governed by similar physical principles, which explain wind, weather patterns, and climate. Broad-scale patterns of atmospheric circulation are shown here for the Northern Hemisphere. Examine all the components on this figure and think about what you know about each. Do you recognize some of the features and names? Two features on this figure are identified with the term “jet stream.” You may have heard this term watching the nightly weather report or from a captain on a cross-country airline flight. What is a jet stream and what effect does it have on weather and flying? Prominent labels of H and L represent areas with relatively higher and lower air pressure, respectively. What is air pressure and why do some areas have higher or lower pressure than other areas? Distinctive wind patterns, shown by white arrows, are associated with the areas of high and low pressure. The winds are flowing outward and in a clockwise direction from the high, but inward and in a counterclockwise direction from the low.
    [Show full text]
  • Climate and Atmospheric Circulation of Mars
    Climate and QuickTime™ and a YUV420 codec decompressor are needed to see this picture. Atmospheric Circulation of Mars: Introduction and Context Peter L Read Atmospheric, Oceanic & Planetary Physics, University of Oxford Motivating questions • Overview and phenomenology – Planetary parameters and ‘geography’ of Mars – Zonal mean circulations as a function of season – CO2 condensation cycle • Form and style of Martian atmospheric circulation? • Key processes affecting Martian climate? • The Martian climate and circulation in context…..comparative planetary circulation regimes? Books? • D. G. Andrews - Intro….. • J. T. Houghton - The Physics of Atmospheres (CUP) ALSO • I. N. James - Introduction to Circulating Atmospheres (CUP) • P. L. Read & S. R. Lewis - The Martian Climate Revisited (Springer-Praxis) Ground-based observations Percival Lowell Lowell Observatory (Arizona) [Image source: Wikimedia Commons] Mars from Hubble Space Telescope Mars Pathfinder (1997) Mars Exploration Rovers (2004) Orbiting spacecraft: Mars Reconnaissance Orbiter (NASA) Image credits: NASA/JPL/Caltech Mars Express orbiter (ESA) • Stereo imaging • Infrared sounding/mapping • UV/visible/radio occultation • Subsurface radar • Magnetic field and particle environment MGS/TES Atmospheric mapping From: Smith et al. (2000) J. Geophys. Res., 106, 23929 DATA ASSIMILATION Spacecraft Retrieved atmospheric parameters ( p,T,dust...) - incomplete coverage - noisy data..... Assimilation algorithm Global 3D analysis - sequential estimation - global coverage - 4Dvar .....? - continuous in time - all variables...... General Circulation Model - continuous 3D simulation - complete self-consistent Physics - all variables........ - time-dependent circulation LMD-Oxford/OU-IAA European Mars Climate model • Global numerical model of Martian atmospheric circulation (cf Met Office, NCEP, ECMWF…) • High resolution dynamics – Typically T31 (3.75o x 3.75o) – Most recently up to T170 (512 x 256) – 32 vertical levels stretched to ~120 km alt.
    [Show full text]
  • Chapter 9 : Air Mass Air Masses Source Regions
    4/29/2011 Chapter 9 : Air Mass • Air masses Contain uniform temperature and humidity characteristics. • Fronts Boundaries between unlike air • Air Masses masses. • Fronts • Fronts on Weather Maps ESS124 ESS124 Prof. Jin-Jin-YiYi Yu Prof. Jin-Jin-YiYi Yu Air Masses • Air masses have fairly uniform temperature and moisture Source Regions content in horizontal direction (but not uniform in vertical). • Air masses are characterized by their temperature and humidity • The areas of the globe where air masses from are properties. called source regions. • The properties of air masses are determined by the underlying • A source region must have certain temperature surface properties where they originate. and humidity properties that can remain fixed for a • Once formed, air masses migrate within the general circulation. substantial length of time to affect air masses • UidilidliliUpon movement, air masses displace residual air over locations above it. thus changing temperature and humidity characteristics. • Air mass source regions occur only in the high or • Further, the air masses themselves moderate from surface low latitudes; middle latitudes are too variable. influences. ESS124 ESS124 Prof. Jin-Jin-YiYi Yu Prof. Jin-Jin-YiYi Yu 1 4/29/2011 Cold Air Masses Warm Air Masses January July January July • The cent ers of cold ai r masses are associ at ed with hi gh pressure on surf ace weath er • The cen ters o f very warm a ir masses appear as sem i-permanentit regions o flf low maps. pressure on surface weather maps. • In summer, when the oceans are cooler than the landmasses, large high-pressure • In summer, low-pressure areas appear over desert areas such as American centers appear over North Atlantic (Bermuda high) and Pacific (Pacific high).
    [Show full text]
  • History of Frontal Concepts Tn Meteorology
    HISTORY OF FRONTAL CONCEPTS TN METEOROLOGY: THE ACCEPTANCE OF THE NORWEGIAN THEORY by Gardner Perry III Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June, 1961 Signature of'Author . ~ . ........ Department of Humangties, May 17, 1959 Certified by . v/ .-- '-- -T * ~ . ..... Thesis Supervisor Accepted by Chairman0 0 e 0 o mmite0 0 Chairman, Departmental Committee on Theses II ACKNOWLEDGMENTS The research for and the development of this thesis could not have been nearly as complete as it is without the assistance of innumerable persons; to any that I may have momentarily forgotten, my sincerest apologies. Conversations with Professors Giorgio de Santilw lana and Huston Smith provided many helpful and stimulat- ing thoughts. Professor Frederick Sanders injected thought pro- voking and clarifying comments at precisely the correct moments. This contribution has proven invaluable. The personnel of the following libraries were most cooperative with my many requests for assistance: Human- ities Library (M.I.T.), Science Library (M.I.T.), Engineer- ing Library (M.I.T.), Gordon MacKay Library (Harvard), and the Weather Bureau Library (Suitland, Md.). Also, the American Meteorological Society and Mr. David Ludlum were helpful in suggesting sources of material. In getting through the myriad of minor technical details Professor Roy Lamson and Mrs. Blender were indis-. pensable. And finally, whatever typing that I could not find time to do my wife, Mary, has willingly done. ABSTRACT The frontal concept, as developed by the Norwegian Meteorologists, is the foundation of modern synoptic mete- orology. The Norwegian theory, when presented, was rapidly accepted by the world's meteorologists, even though its several precursors had been rejected or Ignored.
    [Show full text]
  • Weather Numbers Multiple Choices I
    Weather Numbers Answer Bank A. 1 B. 2 C. 3 D. 4 E. 5 F. 25 G. 35 H. 36 I. 40 J. 46 K. 54 L. 58 M. 72 N. 74 O. 75 P. 80 Q. 100 R. 910 S. 1000 T. 1010 U. 1013 V. ½ W. ¾ 1. Minimum wind speed for a hurricane in mph N 74 mph 2. Flash-to-bang ratio. For every 10 second between lightning flash and thunder, the storm is this many miles away B 2 miles as flash to bang ratio is 5 seconds per mile 3. Minimum diameter of a hailstone in a severe storm (in inches) A 1 inch (formerly ¾ inches) 4. Standard sea level pressure in millibars U 1013.25 millibars 5. Minimum wind speed for a severe storm in mph L 58 mph 6. Minimum wind speed for a blizzard in mph G 35 mph 7. 22 degrees Celsius converted to Fahrenheit M 72 22 x 9/5 + 32 8. Increments between isobars in millibars D 4mb 9. Minimum water temperature in Fahrenheit for hurricane development P 80 F 10. Station model reports pressure as 100, what is the actual pressure in millibars T 1010 (remember to move decimal to left and then add either 10 or 9 100 become 10.0 910.0mb would be extreme low so logic would tell you it would be 1010.0mb) Multiple Choices I 1. A dry line front is also known as a: a. dew point front b. squall line front c. trough front d. Lemon front e. Kelvin front 2.
    [Show full text]
  • NWS Unified Surface Analysis Manual
    Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV.
    [Show full text]
  • 11 General Circulation
    Copyright © 2017 by Roland Stull. Practical Meteorology: An Algebra-based Survey of Atmospheric Science. v1.02 “Practical Meteorology: An Algebra-based Survey of Atmospheric Science” by Roland Stull is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. View this license at http://creativecommons.org/licenses/by- nc-sa/4.0/ . This work is available at https://www.eoas.ubc.ca/books/Practical_Meteorology/ 11 GENERAL CIRCULATION Contents A spatial imbalance between radiative inputs and outputs exists for the earth-ocean-atmosphere 11.1. Key Terms 330 system. The earth loses energy at all latitudes due 11.2. A Simple Description of the Global Circulation 330 to outgoing infrared (IR) radiation. Near the trop- 11.2.1. Near the Surface 330 ics, more solar radiation enters than IR leaves, hence 11.2.2. Upper-troposphere 331 there is a net input of radiative energy. Near Earth’s 11.2.3. Vertical Circulations 332 poles, incoming solar radiation is too weak to totally 11.2.4. Monsoonal Circulations 333 offset the IR cooling, allowing a net loss of energy. 11.3. Radiative Differential Heating 334 The result is differential heating, creating warm 11.3.1. North-South Temperature Gradient 335 equatorial air and cold polar air (Fig. 11.1a). 11.3.2. Global Radiation Budgets 336 This imbalance drives the global-scale general 11.3.3. Radiative Forcing by Latitude Belt 338 circulation of winds. Such a circulation is a fluid- 11.3.4. General Circulation Heat Transport 338 dynamical analogy to Le Chatelier’s Principle of 11.4.
    [Show full text]
  • Catastrophic Weather Perils in the United States Climate Drivers Catastrophic Weather Perils in the United States Climate Drivers
    Catastrophic Weather Perils in the United States Climate Drivers Catastrophic Weather Perils in the United States Climate Drivers Table of Contents 2 Introduction 2 Atlantic Hurricanes –2 Formation –3 Climate Impacts •3 Atlantic Sea Surface Temperatures •4 El Niño Southern Oscillation (ENSO) •6 North Atlantic Oscillation (NAO) •7 Quasi-Biennial Oscillation (QBO) –Summary8 8 Severe Thunderstorms –8 Formation –9 Climate Impacts •9 El Niño Southern Oscillation (ENSO) 10• Pacific Decadal Oscillation (PDO) 10– Other Climate Impacts 10–Summary 11 Wild Fire 11– Formation 11– Climate Impacts 11• El Niño Southern Oscillation (ENSO) & Pacific Decadal Oscillation (PDO) 12– Other Climate / Weather Variables 12–Summary May 2012 The information contained in this document is strictly proprietary and confidential. 1 Catastrophic Weather Perils in the United States Climate Drivers INTRODUCTION The last 10 years have seen a variety of weather perils cause significant insured losses in the United States. From the wild fires of 2003, hurricanes of 2004 and 2005, to the severe thunderstorm events in 2011, extreme weather has the appearance of being the norm. The industry has experienced over $200B in combined losses from catastrophic weather events in the US since 2002. While the weather is often seen as a random, chaotic thing, there are relatively predictable patterns (so called “climate states”) in the weather which can be used to inform our expectations of extreme weather events. An oft quoted adage is that “climate is what you expect; weather is what you actually observe.” A more useful way to think about the relationship between weather and climate is that the climate is the mean state of the atmosphere (either locally or globally) which changes over time, and weather is the variation around that mean.
    [Show full text]
  • Horse Latitudes
    HORSE LATITUDES Introduction The Horse Latitudes are located between latitude 30 and latitude 35 north and south of the equator. The region lies in an area where there is a ridge of high pressure that circles the Earth. The ridge of high pressure is also called a subtropical high. Wind currents on Earth, USGS Sailing ships in these latitudes The area between these latitudes has little precipitation. It has variable winds. Sailing ships sometimes while traveling to distant shores would have the winds die down and the area would be calm for days before the winds increased. Desert formation on Earth These warm dry conditions lead to many well known deserts. In the Northern Hemisphere deserts that lie in this subtropical high included the Sahara Desert in Africa and the southwestern deserts of the United States and Mexico. The Atacama Desert, the Kalahari Desert and the Australian Desert are all located in the southern Horse Latitudes. Two explanations for the name There are two explanations of how these areas were named. This first explanation is well documented. Sailors would receive an advance in pay before they stated on a long voyage which was spent quickly leaving the sailors without money for several months while aboard ship. Sailors work off debt When the sailors had worked long enough to again earn enough to be paid they would parade around the deck with a straw-stuffed effigy of a horse. After the parade the sailors would throw the straw horse overboard. Second explanation about horses The second explanation is not well documented.
    [Show full text]
  • Awio20 Fmee 251219 Tropical Cyclone Center / Rsmc La Reunion / Meteo-France
    AWIO20 FMEE 251219 TROPICAL CYCLONE CENTER / RSMC LA REUNION / METEO-FRANCE BULLETIN FOR CYCLONIC ACTIVITY AND SIGNIFICANT TROPICAL WEATHER IN THE SOUTHWEST INDIAN OCEAN DATE: 2020/12/25 AT 1200 UTC PART 1: WARNING SUMMARY: Bulletins WTIO22 FMEE n°008/4 and WTIO30 FMEE n°8/4/20202021 issued at 06 UTC on Moderate Tropical Storm CHALANE. Next warnings will be issued at 12 UTC. PART 2 : TROPICAL WEATHER DISCUSSION: The basin remains in a Monsoon Trough (MT) pattern, axed along 10°S. At the western edge, the tropical storm CHALANE is now evolving autonomously with respect to the MT. East of 70°E, in addition to the Area of Disturbed Weather which has been followed for several days but which is in the Indonesian zone, a new area of enhanced low levels vorticity is monitored within the MT southeast of the Chagos archipelago. Moderate tropical storm CHALANE north of the Mascarene Islands: Position at 100 UTC: 16.1°S / 55.3°E Maximum wind over 10 minutes: 35 kt Estimated central pressure: 997 hPa Forward motion: West-Southwestwards at 8 kt For more information, please refer to bulletins WTIO22 and WTIO30 issued at 06Z and followings. Area of Disturbed Weather near the North-Eastern boarder of the basin : An area of vorticity is still present in the Indonesian area around 9S/94E according to the BOM's Tropical Cyclone Outlook for the Western Region (IDW10800). The latest ASCAT swaths show that the surface wind circulation is no longer closed. The minimum is under the influence of a strong easterly shear.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Ocean Circulation and Climate: a 21St Century Perspective
    Chapter 13 Western Boundary Currents Shiro Imawaki*, Amy S. Bower{, Lisa Beal{ and Bo Qiu} *Japan Agency for Marine–Earth Science and Technology, Yokohama, Japan {Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA {Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA }School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii, USA Chapter Outline 1. General Features 305 4.1.3. Velocity and Transport 317 1.1. Introduction 305 4.1.4. Separation from the Western Boundary 317 1.2. Wind-Driven and Thermohaline Circulations 306 4.1.5. WBC Extension 319 1.3. Transport 306 4.1.6. Air–Sea Interaction and Implications 1.4. Variability 306 for Climate 319 1.5. Structure of WBCs 306 4.2. Agulhas Current 320 1.6. Air–Sea Fluxes 308 4.2.1. Introduction 320 1.7. Observations 309 4.2.2. Origins and Source Waters 320 1.8. WBCs of Individual Ocean Basins 309 4.2.3. Velocity and Vorticity Structure 320 2. North Atlantic 309 4.2.4. Separation, Retroflection, and Leakage 322 2.1. Introduction 309 4.2.5. WBC Extension 322 2.2. Florida Current 310 4.2.6. Air–Sea Interaction 323 2.3. Gulf Stream Separation 311 4.2.7. Implications for Climate 323 2.4. Gulf Stream Extension 311 5. North Pacific 323 2.5. Air–Sea Interaction 313 5.1. Upstream Kuroshio 323 2.6. North Atlantic Current 314 5.2. Kuroshio South of Japan 325 3. South Atlantic 315 5.3. Kuroshio Extension 325 3.1.
    [Show full text]