Abnormalities Oftaste and Smell After Head Trauma

Total Page:16

File Type:pdf, Size:1020Kb

Abnormalities Oftaste and Smell After Head Trauma J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.37.7.802 on 1 July 1974. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1974, 37, 802-810 Abnormalities of taste and smell after head trauma PAUL J. SCHECHTER AND ROBERT I. HENKIN' From the Section on Neuroendocrinology, National Heart and Lung Institute, - National Institutes of Health, Bethesda, Maryland 20014, U.S.A. SYNOPSIS Abnormalities of taste and smell were studied in 29 patients after head trauma. These abnormalities included decreased taste acuity (hypogeusia), a distortion of taste acuity (dysgeusia), decreased smell acuity (hyposmia), and a distortion of smell acuity (dysosmia). This syndrome can occur even after minimal head trauma and can begin months after the moment of injury. The patients exhibited a significant decrease in total serum zinc concentration (patients, 77 + 3 Vg/100 ml, mean + 1 SEM, vs controls, 99 + 2 jg/100 ml, P> 0-001) and a significant increase in total serum copper concentrations (113 + 4 Cug/100 ml vs 100 + 2 [ug/100 ml, P <0-001) compared with control subjects. Symptoms of hypogeusia, dysgeusia, and dysosmia are frequent sequelae of head injury and are important to the patients and to their care after trauma. Protected by copyright. Loss of olfactory acuity after trauma to the head disturbances (Mifka, 1965). Usually decreased is a well-recognized phenomenon and has been taste acuity has been reported to be accom- estimated to occur in 1.3% to 65% of all head panied by decreased olfactory acuity. In the injuries (Laemmle, 1931; Sumner, 1964). Blows majority of cases return of taste acuity has been to the occiput have been reported as more likely reported in the course of time, suggesting that to produce loss ofsmell, presumably by a contre- this abnormality is more amenable to correction coup effect, than blows to the forehead or other than post-traumatic smell loss (Sumner, 1967). sites on the head (Sumner, 1964) and even trivial No relationship between severity of head injury injuries have been shown to result in olfactory and the occurrence or duration of taste loss has sensory deficits (Sumner, 1964). In addition, been previously reported (Sumner, 1967). distortion of odours has been described after Distorted taste sensations have been reported head trauma (Leigh, 1943; Sumner, 1964, 1967). to accompany post-traumatic taste loss (Sumner, Spontaneous recovery of olfactory acuity has 1967). The incidence of distortion of either taste http://jnnp.bmj.com/ been claimed in 8% to 3900 of patients suffering or smell or both in patients with post-traumatic from post-traumatic loss of smell (Leigh, 1943; taste loss has been estimated to be between 6% Sumner, 1964). and 33%o (Leigh, 1943; Sumner, 1964, 1967). On the other hand, abnormalities of taste However, the presumed diagnosis of 'anos- sensation after head injury have received much mia' or 'ageusia' has been made in these studies less attention and have been reported to occur on the basis ofclinical subjective reports, without less frequently than do olfactory disorders. The quantitative measurements to specify the degree first description of taste loss after head trauma or extent of the taste or smell losses. on September 23, 2021 by guest. was made by Ogle in 1870. Since that time, addi- In this paper we present data on 29 patients tional cases of post-traumatic taste loss have who experienced abnormalities of taste and been described in the literature. The incidence of smell after head trauma. Quantitative estimates this condition has been estimated to be approxi- of the losses of taste and smell were made. The mately 0-40/o of all head injuries, a much lower relationship ofthe sensory losses to alterations in incidence than that for post-traumatic olfactory trace metal metabolism will be discussed. I Address for correspondence: Dr Robert I. Henkin, Section on Neuroendocrinology, Experimental Therapeutics Branch, National METHODS Heart and Lung Institute, Bldg 10, Room 7N262, Bethesda, Maryland 20014, U.S.A. On the bases of careful evaluation of symptoms of 802 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.37.7.802 on 1 July 1974. Downloaded from Taste and smell changes after head trauma 803 approximately 400 patients with taste and smell com- Phantosmia Intermittent or persistent odour, plaints we have described alterations in taste and pleasant or unpleasant, perceived when no apparent smell perception as follows (Henkin, 1971): odorant is present. ABNORMALITIES OF TASTE Hypogeusia Decreased to taste sweet, sour bitter tastants. Heterosmia Inappropriate smell of consistent ability salt, and/or nature associated with odorants. This smell is Ageusia Inability to detect or recognize any tastant unusual and unexpected but not necessarily foul or (operationally defined as inability to detect or recog- obnoxious. nize saturated solutions of NaCl or sucrose, 500 mM HCI, or 8 M urea). MEASUREMENT OF TASTE AND SMELL ACUITY Taste acuity was measured by determining detection and Dysgeusia General description of any distortion of recognition thresholds for representatives of the salt, normal taste perception. sweet, sour, and bitter taste qualities by a forced- choice, three-stimulus drop technique (Henkin et al., Cacogeusia Abhorrent, obnoxious taste produced 1963; Henkin et al., 1971). Sodium chloride was used by oral introduction or mastication of food or as representative of the salt taste quality; sucrose, for drink. Foods most commonly eliciting this symptom sweet; HCl, for sour; and urea, for bitter. 'Detection are eggs, meats, poultry, fish, garlic, onions, threshold' was defined as the lowest concentration of tomatoes, coffee, chocolate, and most foods fried in solute consistently detected as different from water. oil or fat. 'Recognition threshold' was defined as the lowest concentration of solute consistently recognized correctly as salty, sweet, sour, or bitter. Taste thresh- Phantogeusia Intermittent or persistent taste per- Protected by copyright. ceived in the oral cavity independent of external olds were measured on one to four separate occa- stimuli. This taste may be salty, sweet, sour, bitter, sions in each subject. The lowest detection and metallic, or indescribably obnoxious. recognition thresholds were used for analysis when- ever more than one measurement was obtained. Heterogeusia Inappropriate consistent taste quality Olfactory acuity was measured by determining produced by oral introduction or mastication of food detection and recognition thresholds for the vapours or drink. This quality is unusual and unexpected but of pyridine in water and for nitrobenzene and thio- not necessarily obnoxious-for example, all food phene in mineral oil by a forced-choice, three- tastes salty or sweet. stimulus sniff technique (Henkin et al., 1971; Marshall and Henkin, 1971). Smell thresholds were ABNORMALITIES OF SMELL Hyposmia General de- measured on one to three separate occasions. The crease in olfactory acuity. lowest threshold was used for analysis whenever more than one measurement was obtained. Anosmia Inability to detect or recognize any vapour at primary or accessory areas of olfaction MEASUREMENTS OF METAL METABOLISM Serum con- (Henkin, 1967b). centrations of zinc and copper and 24 hour urinary http://jnnp.bmj.com/ excretion of these metals were determined. Blood and Type I hyposmia Inability to detect or recognize urine samples were collected in metal-free tubes and any vapour at primary area of olfaction but main- plastic containers, respectively, as previously de- tenance of acuity at accessory areas of olfaction scribed (Meret and Henkin, 1971). Measurements of (Henkin, 1967b). zinc and copper were carried out by atomic absorp- tion spectrophotometry on an IL Model 153 atomic Type II hyposmia Decreased acuity at primary area absorption spectrometer by a method described of olfaction with maintenance of acuity at accessory previously (Meret and Henkin, 1971). on September 23, 2021 by guest. areas of olfaction (Henkin, 1967b). SUBJECTS The experimental subjects were 29 Dysosmia General description of any distortion of patients, 17 males and 12 females, mean age 49 normal smell perception. years (range: 22 to 76 years), 28 Caucasians and one Negro (Table 1). These patients were referred to the Cacosmia Abhorrent, obnoxious smell produced Taste and Smell Clinic at the Clinical Center of the by the inhalation of odorants. Odorants which National Institutes of Health by their personal most commonly elicit this symptom are from per- physicians for evaluation of subjective complaints fumes, soaps, automobile exhaust, hair sprays, and referable to taste and/or smell abnormalities. The from most foods which elicit cacogeusia. mean duration of symptoms at the time these J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.37.7.802 on 1 July 1974. Downloaded from 804 Paul J. Schechter and Robert L Henkin t3 O H [+1+1+1+1+l1+ +1 +1+1+! I + + q Q' 0i ++ ++++++I*++++++ ++ + ++++++++ +1 I! 02In II I+++I I+I+++I + +1 +1+1+11+ + m :s IA bo ++ ++II+I+I++III+ I+ + ++I+I+++ t- 4-0 6. 110 0 C40 6L ..-;;E E. E -;. m=e 40 Protected by copyright. m0o mo X voooo o t!o om - 4t 0 0 szCq -.+ I +e..++±N+ ++ ++ ++ + +++ +++ + 4'. 1. I1 1 Q 1 1 1 M 1 -LI1 1 $'' I I I I I I I I I ' .*4Y* ) . http://jnnp.bmj.com/ 0. ~ .'0 E E E E E E E EE EE E E E E E E E EE E E E E E E E E E EE EE E E-4 _ " _N E-0-4 _-. EEN.EE.o.- " _" _- 0- " _-- " _* _ __4 0- 0- 0. -* 40 -41 --41 4-4 -411 -+4~ 14t-4~! -41 -lm C4lmOe ~NM - - -- o-~el N ol e4 iN.: encl on September 23, 2021 by guest. a o o0 0 o m C o 't t No N 'ICO 00 w 0N 'I4 'O0 mO 0o W) n It In'I tnv" N " - It It 1t " \D 't c Cd Yd x ; -t064jttm L4 " 2244~ ..i i Cj~ 3 3 -j.4-u6 -~ 2ci:.004.0 ~ m~e ~~" a;E HoM0;w vi 6 F2 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.37.7.802 on 1 July 1974.
Recommended publications
  • ANXIETY DISORDERS Date of Publication: Jan
    Disease/Medical Condition ANXIETY AND ANXIETY DISORDERS Date of Publication: Jan. 31, 2019 (Anxiety disorders include “generalized anxiety disorder”; “social anxiety disorder” [formerly known as “social phobia”]; “separation anxiety disorder”; “selective mutism”; “agoraphobia”; “substance abuse/medication-induced anxiety disorder”; “specific phobias” [also known as “simple phobias”, which include claustrophobia, blood phobia, needle phobia, and dental phobia1]; and “panic disorder”.) Is the initiation of non-invasive dental hygiene procedures* contra-indicated? No, unless the patient/ client displays signs/symptoms of anxiety or an anxiety disorder that pose a risk to himself/herself or the dental hygienist during procedures (e.g., markedly elevated heartrate with comorbid heart disease, inability to sit still, etc.). Is medical consult advised? — No, if anxiety disorder has been previously diagnosed and is well controlled. — Yes, if anxiety disorder is newly suspected or poor control of previously diagnosed anxiety disorder is suspected. — Yes, if severe xerostomia is suspected to be related to antidepressant or benzodiazepine use (which may improve if an alternative medication is a consideration). Is the initiation of invasive dental hygiene procedures contra-indicated?** No, unless the patient/ client displays signs/symptoms of anxiety or an anxiety disorder that pose a risk to himself/herself or the dental hygienist during procedures (e.g., markedly elevated heartrate with comorbid heart disease, inability to sit still, etc.). Is medical consult advised? ....................................... See above. Is medical clearance required? .................................. No, unless: — a panic attack has previously occurred in the dental/dental hygiene setting; or — severe leukopenia (i.e., reduced white blood cell count, and hence immunosuppression) is suspected with tricyclic antidepressant (TCA) or monoamine oxidase inhibitor2 (MAOI) medication use.
    [Show full text]
  • Head Start Early Learning Outcomes Framework Ages Birth to Five
    Head Start Early Learning Outcomes Framework Ages Birth to Five 2015 R U.S. Department of Health and Human Services Administration for Children and Families Office of Head Start Office of Head Start | 8th Floor Portals Building, 1250 Maryland Ave, SW, Washington DC 20024 | eclkc.ohs.acf.hhs.gov Dear Colleagues: The Office of Head Start is proud to provide you with the newly revisedHead Start Early Learning Outcomes Framework: Ages Birth to Five. Designed to represent the continuum of learning for infants, toddlers, and preschoolers, this Framework replaces the Head Start Child Development and Early Learning Framework for 3–5 Year Olds, issued in 2010. This new Framework is grounded in a comprehensive body of research regarding what young children should know and be able to do during these formative years. Our intent is to assist programs in their efforts to create and impart stimulating and foundational learning experiences for all young children and prepare them to be school ready. New research has increased our understanding of early development and school readiness. We are grateful to many of the nation’s leading early childhood researchers, content experts, and practitioners for their contributions in developing the Framework. In addition, the Secretary’s Advisory Committee on Head Start Research and Evaluation and the National Centers of the Office of Head Start, especially the National Center on Quality Teaching and Learning (NCQTL) and the Early Head Start National Resource Center (EHSNRC), offered valuable input. The revised Framework represents the best thinking in the field of early childhood. The first five years of life is a time of wondrous and rapid development and learning.The Head Start Early Learning Outcomes Framework: Ages Birth to Five outlines and describes the skills, behaviors, and concepts that programs must foster in all children, including children who are dual language learners (DLLs) and children with disabilities.
    [Show full text]
  • Taste Alteration in COVID-19: a Rapid Review with Data Synthesis Reveals Significant Geographical Differences
    medRxiv preprint doi: https://doi.org/10.1101/2020.09.11.20192831; this version posted September 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . Taste alteration in COVID-19: a rapid review with data synthesis reveals significant geographical differences By Nicola Cirillo Melbourne Dental School, The University of Melbourne, 3053 Carlton, Victoria, Australia *Address for Correspondence: Prof. Dr. Nicola Cirillo Melbourne Dental School The University of Melbourne 720 Swanston Street, Carlton 3053 Victoria, AUS Tel/fax. +61 03 9341 1473 e-mail: [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.09.11.20192831; this version posted September 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . Abstract To facilitate a timely understanding of the differences in the prevalence of gustatory disturbances (GD) in individuals infected with SARS-CoV-2, we undertook a rapid systematic review of articles published in the repository of the National Library of Medicine (MEDLINE/PubMed) and medRxiv from their inception until September 3, 2020. The minimum requirements for completing a restricted systematic review were met.
    [Show full text]
  • Parosmia Due to COVID-19 Disease: a 268 Case Series
    Parosmia due to COVID-19 Disease: A 268 Case Series Rasheed Ali Rashid Tikrit University, College of Medicine, Department of Surgery/ Otolaryngology Ameer A. Alaqeedy University Of Anbar, College of Medicine, Department of Surgery/ Otolaryngology Raid M. Al-Ani ( [email protected] ) University Of Anbar, College of Medicine, Department of Surgery/Otolaryngology https://orcid.org/0000-0003-4263-9630 Research Article Keywords: Parosmia, COVID-19, Quality of life, Olfactory dysfunction, Case series Posted Date: May 10th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-506359/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Although parosmia is a common problem in the era of the COVID-19 pandemic, few studies assessed the demographic and clinical aspects of this debilitating symptom. We aimed to evaluate the socio-clinical characteristics and outcome of various options of treatment of individuals with parosmia due to COVID- 19 infection. The study was conducted at two main Hospitals in the Ramadi and Tikrit cities, Iraq, on patients with a chief complaint of parosmia due to COVID-19 disease. The study involved 7 months (August 2020-February 2021). Detailed demographic and clinical characteristics and treatment options with their outcome were recorded and analyzed. Out of 268 patients with parosmia, there were 197 (73.5%) females. The majority were from age group ≤ 30 years (n = 188, 70.1%), housewives (n = 150, 56%), non-smokers (n = 222, 82.8%), and associated with dysgeusia (n = 207, 77.2%) but not associated with nasal symptoms (n = 266, 99.3%).
    [Show full text]
  • Treating Dysosmia, from Saline to Surgery
    日鼻誌47!:51~52,2008 特別講演2 TREATING DYSOSMIA, FROM SALINE TO SURGERY Donald A. Leopold, MD, FACS University of Nebraska Medical Center, Omaha, Nebraska, United States of America The sense of smell begins with airflow through the nose. The exact path of this airflow has only recently been investigated. Some of this data comes from models, both life size and enlarged models using measurements of airflow. Additional information comes from computerized airflow models of the nasal cavities. The neural pathways of olfaction begin with the olfactory receptors high in the nasal cavity. After transduction from the chemical to the electrical information, this information is transferred through the olfactory bulb and into the central brain. Patients typically present with one of three different types of dysosmia. The first is simply a decreased ability to perceive smells(hyposmia and anosmia). The two remaining types of dysosmia relate to distortions of perceived smells. One of these(parosmia)is a distortion of smell odorants that are actually in the environment. The third type is theperceptionofanodorwhenthereisnoodorantintheenvironment(phantosmia or hallucination). The clinical task of the physician seeing these patients is to decide on the etiology of the problem and to recom- mend therapy if possible. The clinical history is one of the best tools the clinician has, but the physical examination, sensory testing and imaging can also be helpful. Diagnostic categories for these patients are many, but the most com- mon include nasal inflammatory disease for about a third of these patients, the losses that occur after an upper respira- tory infection in about 25 percent of the patients and head trauma in about 15 percent of patients.
    [Show full text]
  • Introduction to Arthropod Groups What Is Entomology?
    Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders,
    [Show full text]
  • Smell and Taste Loss Recovery Time in COVID-19 Patients and Disease Severity
    Journal of Clinical Medicine Article Smell and Taste Loss Recovery Time in COVID-19 Patients and Disease Severity Athanasia Printza 1,* , Mihalis Katotomichelakis 2, Konstantinos Valsamidis 1, Symeon Metallidis 3, Periklis Panagopoulos 4, Maria Panopoulou 5, Vasilis Petrakis 4 and Jannis Constantinidis 1 1 First Otolaryngology Department, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] (K.V.); [email protected] (J.C.) 2 Otolaryngology Department, School of Health Sciences, Democritus University of Thrace, Dragana, 387479 Alexandroupoli, Greece; [email protected] 3 First Department of Internal Medicine, AHEPA Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 4 Department of Internal Medicine, School of Health Sciences, Democritus University of Thrace, Dragana, 387479, Alexandroupoli, Greece; [email protected] (P.P.); [email protected] (V.P.) 5 Laboratory of Microbiology, School of Health Sciences, Democritus University of Thrace, Dragana, 387479 Alexandroupoli, Greece; [email protected] * Correspondence: [email protected] or [email protected] Abstract: A significant proportion of people infected with SARS-CoV-2 report a new onset of smell or taste loss. The duration of the chemosensory impairment and predictive factors of recovery are still unclear. We aimed to investigate the prevalence, temporal course and recovery predictors in patients who suffered from varying disease severity. Consecutive adult patients diagnosed to be infected with SARS-CoV-2 via reverse-transcription–polymerase chain reaction (RT-PCR) at two Citation: Printza, A.; coronavirus disease-2019 (COVID-19) Reference Hospitals were contacted to complete a survey Katotomichelakis, M.; Valsamidis, K.; reporting chemosensory loss, severity, timing and duration, nasal symptoms, smoking, allergic Metallidis, S.; Panagopoulos, P.; rhinitis, chronic rhinosinusitis, comorbidities and COVID-19 severity.
    [Show full text]
  • SPRAVATO® Esketamine Hydrochloride DATA SHEET
    SPRAVATO® esketamine hydrochloride DATA SHEET 1. PRODUCT NAME SPRAVATO® esketamine hydrochloride 32.3mg (equivalent to 28mg esketamine) nasal spray 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each single use nasal spray device delivers two sprays, one spray into each nostril. Total volume of drug product per device to be delivered is 0.2 mL containing a total of 32.3 mg of esketamine hydrochloride (equivalent to 28 mg of esketamine). For the full list of excipients, see Section 6.1 List of Excipients. 3. PHARMACEUTICAL FORM Nasal spray, solution. Clear, colourless, aqueous solution. 4. CLINICAL PARTICULARS 4.1 Therapeutic Indications SPRAVATO in conjunction with an oral antidepressant, is indicated for: - treatment resistant depression (Major Depressive Disorder in adults who have not responded adequately to at least two different antidepressants of adequate dose and duration to treat the current depressive episode). - rapid reduction of depressive symptoms in patients with Major Depressive Disorder who have acute suicidal ideation or behaviour. SPRAVATO is not indicated to prevent suicide or in reducing suicidal ideation or behaviour (see section 4.4. Special Warnings And Precautions For Use) 4.2 Dose and method of administration In patients with TRD, SPRAVATO should be administered in conjunction with a newly initiated oral antidepressant (AD) therapy. In patients with MDSI, SPRAVATO should be administered in conjunction with standard of care therapy. During the Phase III MDSI clinical program, standard of care oral AD treatment (either AD monotherapy or AD plus augmentation therapy) was initiated or optimised. Important Considerations Prior to Initiating and During Therapy SPRAVATO must be administered under the direct supervision of a healthcare provider.
    [Show full text]
  • Second Edition
    COVID-19 Evidence Update COVID-19 Update from SAHMRI, Health Translation SA and the Commission on Excellence and Innovation in Health Updated 4 May 2020 – 2nd Edition “What is the prevalence, positive predictive value, negative predictive value, sensitivity and specificity of anosmia in the diagnosis of COVID-19?” Executive Summary There is widespread reporting of a potential link between anosmia (loss of smell) and ageusia (loss of taste) and SARS-COV-2 infection, as an early sign and with sudden onset predominantly without nasal obstruction. There are calls for anosmia and ageusia to be recognised as symptoms for COVID-19. Since the 1st edition of this briefing (25 March 2020), there has been a significant expansion of literature on this topic, including 3 systematic reviews. Predictive value: The reported prevalence of anosmia/hyposmia and ageusia/hypogeusia in SARS-COV-2 positive patients are in the order of 36-68% and 33-71% respectively. There are reports of anosmia as the first symptom in some patients. Estimates from one study for hyposmia and hypogeusia: • Positive likelihood ratios: 4.5 and 5.8 • Sensitivity: 46% and 62% • Specificity: 90% and 89% The US Centres for Disease Control and Prevention (CDC) has added new loss or taste or smell to its list of recognised symptoms for SARS-COV-2 infection. To date, the World Health Organization has not. Conclusion: There is sufficient evidence to warrant adding loss of taste and smell to the list of symptoms for COVID-19 and promoting this information to the public. Context • Early detection of COVID-19 is key to the ongoing management of the pandemic.
    [Show full text]
  • Taste and Smell Disorders in Clinical Neurology
    TASTE AND SMELL DISORDERS IN CLINICAL NEUROLOGY OUTLINE A. Anatomy and Physiology of the Taste and Smell System B. Quantifying Chemosensory Disturbances C. Common Neurological and Medical Disorders causing Primary Smell Impairment with Secondary Loss of Food Flavors a. Post Traumatic Anosmia b. Medications (prescribed & over the counter) c. Alcohol Abuse d. Neurodegenerative Disorders e. Multiple Sclerosis f. Migraine g. Chronic Medical Disorders (liver and kidney disease, thyroid deficiency, Diabetes). D. Common Neurological and Medical Disorders Causing a Primary Taste disorder with usually Normal Olfactory Function. a. Medications (prescribed and over the counter), b. Toxins (smoking and Radiation Treatments) c. Chronic medical Disorders ( Liver and Kidney Disease, Hypothyroidism, GERD, Diabetes,) d. Neurological Disorders( Bell’s Palsy, Stroke, MS,) e. Intubation during an emergency or for general anesthesia. E. Abnormal Smells and Tastes (Dysosmia and Dysgeusia): Diagnosis and Treatment F. Morbidity of Smell and Taste Impairment. G. Treatment of Smell and Taste Impairment (Education, Counseling ,Changes in Food Preparation) H. Role of Smell Testing in the Diagnosis of Neurodegenerative Disorders 1 BACKGROUND Disorders of taste and smell play a very important role in many neurological conditions such as; head trauma, facial and trigeminal nerve impairment, and many neurodegenerative disorders such as Alzheimer’s, Parkinson Disorders, Lewy Body Disease and Frontal Temporal Dementia. Impaired smell and taste impairs quality of life such as loss of food enjoyment, weight loss or weight gain, decreased appetite and safety concerns such as inability to smell smoke, gas, spoiled food and one’s body odor. Dysosmia and Dysgeusia are very unpleasant disorders that often accompany smell and taste impairments.
    [Show full text]
  • Medical Terminology Abbreviations Medical Terminology Abbreviations
    34 MEDICAL TERMINOLOGY ABBREVIATIONS MEDICAL TERMINOLOGY ABBREVIATIONS The following list contains some of the most common abbreviations found in medical records. Please note that in medical terminology, the capitalization of letters bears significance as to the meaning of certain terms, and is often used to distinguish terms with similar acronyms. @—at A & P—anatomy and physiology ab—abortion abd—abdominal ABG—arterial blood gas a.c.—before meals ac & cl—acetest and clinitest ACLS—advanced cardiac life support AD—right ear ADL—activities of daily living ad lib—as desired adm—admission afeb—afebrile, no fever AFB—acid-fast bacillus AKA—above the knee alb—albumin alt dieb—alternate days (every other day) am—morning AMA—against medical advice amal—amalgam amb—ambulate, walk AMI—acute myocardial infarction amt—amount ANS—automatic nervous system ant—anterior AOx3—alert and oriented to person, time, and place Ap—apical AP—apical pulse approx—approximately aq—aqueous ARDS—acute respiratory distress syndrome AS—left ear ASA—aspirin asap (ASAP)—as soon as possible as tol—as tolerated ATD—admission, transfer, discharge AU—both ears Ax—axillary BE—barium enema bid—twice a day bil, bilateral—both sides BK—below knee BKA—below the knee amputation bl—blood bl wk—blood work BLS—basic life support BM—bowel movement BOW—bag of waters B/P—blood pressure bpm—beats per minute BR—bed rest MEDICAL TERMINOLOGY ABBREVIATIONS 35 BRP—bathroom privileges BS—breath sounds BSI—body substance isolation BSO—bilateral salpingo-oophorectomy BUN—blood, urea, nitrogen
    [Show full text]
  • Unifying the Motor & Non-Motor Features of Parkinson's Disease
    Unifying the Motor & Non-motor Features of Parkinson’s Disease Ali Shalash Professor of Neurology Chair of Ain Shams Movement Disorders Group Department of Neurology, Ain Shams Univeristy Cairo, Egypt AGENDA 1. Motor and non-motor Symptoms 2. Pathophysiology of Motor & NMS 3. Relation To Disease Course 4. NMS in motor subtypes 5. Motor & NMS fluctuation 6. Treatment of Motor & NMS: links Parkinson’s Disease • PD prevalence 1 % of populations older than 65 years (Abbas et al., 2018) • From 1990 to 2015, the number of with PD patients doubled to over 6 million, and double again to over 12 million by 2040 (Dorsey et al, 2018) • Aging populations, increasing longevity, decreasing smoking rates, and the by- products of industrialization MDS Clinical Diagnostic Criteria for PD Postuma et al 2015 MDS Clinical Diagnostic Criteria for PD Postuma et al 2015 Non-motor Symptoms of PD • Neuropsychiatric symptoms • Autonomic dysfunction • Depression up to 50-70 % • Drooling • Anxiety up to 60 % • Orthostatic hypotension 30–58% • Apathy 60 % • Urinary dysfunction • Psychosis up to 40% • Erectile dysfunction • Impulse control and related disorders • Gastrointestinal dysfunction 25–67% • Dementia, 24% to 40%. • Excessive sweating • Cognitive impairment 20-25% (other • Others than dementia mainly mild cognitive impairment) • Pain 30–85% • Fatigue 50% • Disorders of sleep and wakefulness • Olfactory dysfunction 90% • • Sleep fragmentation and insomnia Ophthalmologic dysfunction • Rapid eye movement sleep behavior disorder 65 % • Excessive daytime sleepiness Pathophysiology of Motor & NMS Neuropathology of PD: Motor Symptoms Two major pathologic processes: (a) premature selective loss of dopamine neurons: 30–70% cell loss ⇢ motor symptoms. (b) the accumulation of Lewy bodies, composed of α-synuclein Poewe, W.
    [Show full text]