andevaluation TheDutchandUSpracticecompared Msc.Thesis FugroIngenieursbureauBV DelftUniversityofTechnology

P.R.M.Ammerlaan 2007 Picturefrontpage:LeveesalongtheSanJoaquinRiveratReclamationDistrict17;01292007 P.R.M.Ammerlaan ii Leveesandleveeevaluation TheDutchandUSpracticecompared Msc.Thesis P.R.M.Ammerlaan Studentnumber:1017446 August2007 Committee: Prof.drs.ir.J.K.Vrijling(TUDelft,HydraulicEngineeringdep.) Ir.M.T.vanderMeer(FugroIngenieursbureauBV/TUDelft,GeoEngineeringdep.) Dr.ir.P.H.A.J.M.vanGelder(TUDelft,HydraulicEngineeringdep.) Ir.J.Nijman(FugroIngenieursbureauBV) DelftUniversityofTechnology FugroIngenieursbureauBV Delft,the Leidschendam/Nieuwegein,theNetherlands

Preface

ThisreportisthefinalversionofmymasterthesisforHydraulicEngineeringatDelftUniversityof Technologywiththetitle:“Leveesandleveeevaluation,theDutchandUSpracticecompared”. Animmediatequestionthatwillriseisprobably:“Whatisalevee?”IntheNetherlandsweare familiarwiththeworddikeasatranslationoftheDutch‘dijk’.Theworddikeissometimesused intheUS,butinCaliforniaaswellasLouisianaleveesisthepreferredword,derivedfromthe FrenchwordlevéeandintroducedinNewOrleansbytheFrenchinthe17 th century.Iwill thereforeonlyspeakofleveesinthisreportandwillnotusetheworddike.Thisleveesubject wassuggestedtomebyFugroIngenieursbureauBVintheNetherlandsandtheysupportedme duringthisthesisandofferedmethechancetolearnaboutleveesandleveeevaluationinthe US.Ihavespent9weeksintheFugroWestinc.officeinOakland,Californiaandhavebeento Houston,BatonRougeandNewOrleansaswelltotalkaboutandseelevees.Thefinalresultof thepast10monthsisareportwhichisnotonlytheoretical(chapter7isatheoretical/empirical studyofthemechanismpiping),butisalsoaverybroadintroductiontoleveesandlevee evaluationintheNetherlandsaswellasintheUS,especiallyCaliforniaandgivesanoverviewof thedifferencesandsimilarities.Ihopethatforthatreasonpeoplewhoareinterestedinan exchangeofknowledgebetweentheUSandtheDutchleveeswillusemyreportasafirststart. Themoretheoreticalpartofthisthesisishopefullytriggeringpeopletostudythemechanism pipingmorecloselyandcriticallylookatthecurrentdesignandevaluationcriteriainthe NetherlandsaswellastheUSA. Iwouldliketothankthepeoplewhosupportedmeduringmythesis:ProfessorHanVrijlingand PietervanGelderfrommyuniversityfortheircommentsandsupport,MartinvanderMeerfrom FugroforgivingdirectionsandcriticalcommentsandJobNijmanfromFugroforhissupport beforeandduringmyvisittotheUS. PatriciaAmmerlaan August,2007

v

Summary

TheCentralValleyandSacramentoSanJoaquinDeltainCaliforniaareidentifiedasextremely vulnerabletomajorflooddisastersofthesizeasthe2005NewOrleansflood.Withitslowlying andriversflowingintoadeltathispartofCaliforniashowssomeremarkablesimilarities withtheNetherlands.ThefirstgoalofthisreportwastoidentifythevulnerabilitiesoftheCentral ValleyandDeltafloodprotectionsystemandtocomparethemtotheDutchwaterdefense system.Asecondgoalwasthentofocusonimportantweaknessesordifferences,trytofindout theirbackgroundand/orcomeupwithrecommendationsonhowtoimprovethem. ThisCentralValleyreceivesrunofffromtheSierraNevadaMountains,whichisdrainedmainlyin theSacramentoRiverandtheSanJoaquinRiver,passingdenselypopulatedareaswiththecities StocktonandSacramento.TheseriversdrainintheDelta,whichisthecenterofalargenorth southwaterdeliverysystemMorethan22millionpeople(2/3oftheCalifornianpopulation)partly relyondrinkingwaterandirrigationwaterfromtheDelta.Morethan3,800kmofleveesprotect theCentralValleyandDelta,againstfloods.TheCentralValleyandDeltaleveesaresupposedto providea100yearfloodprotectionandincurrentevaluationprogramthisisraisedtoa200year level.Thereisnofederalfloodprotectionstandard.This100yearprotectionisarequirement fromtheFederalEmergencyManagementAgency(FEMA),whocarriesouttheNationalFlood InsuranceProgram(NFIP). TheRiverleveesintheCentralValleyaresubjecttoseasonalfloodsinspring,whenmeltingsnow intheSierraNevadaincreasesrunoff,whiletheDeltaleveesholdbackwatertheentireyear. AlthoughtheDeltaissituatedinarelativelyprotectedarea,shelteredfromtheocean,tidal influencesandwindwaveactionsfromtheSanFranciscoBaycanstillharmthearea.Fromnone ofthe162deltaleveebreachesoflastcenturyanindicationwasfoundthatitwascausedbya seismicevent.However,therearepeoplethatbelievethatoneofthemostimportantthreatsto thedeltaisanearthquake,especiallyincombinationwithhighwaterlevels. Iftheleveesfail,ormaybebetter:whentheleveesfailintheDeltaand/oralongtherivers,the consequencesareenormous.Riverleveefailureswillmainlybedestructivetourbanareas. Sacramentoalonehasalreadymorethan450,000inhabitants.WhenleveesintheDeltafail,salt waterwillbedrawnintothearea.Notonlypeople,speciesandinfrastructurewithintheDeltawill beharmedbythesaltwater,butalsothepeoplethatrelyondrinkingandirrigationwaterfrom theDelta. Theleveesaredegradingfromandsubsidence.Thechangingclimateandgrowing populationwillaskmorefromthosealreadyvulnerablelevees.Plansaredevelopedtoimprove thefloodprotectionintheCentralValleyandDelta.Mostoftheseplansarenowgatheredunder “FloodSAFECalifornia”,aninitiativeoftheDWR(DepartmentofWaterResources)ofCalifornia. Evaluationoftheurbanleveesisacurrentlyrunninginitiativefinancedwithstatebonddebts. 25%oftheNetherlandsissituatedbelowmeansealevel.Andintotal60%oftheDutchland areawouldbefloodeddailywithoutlevees,dunesandbarriers.Mostoftheeconomicactivityand urbanizationisinthispartofthecountry.TheDutchwaterdefensesaredividedinprimarywater defensesandregionalwaterdefenses.Thewaterlevelsagainstthoseprimarywaterdefenses, protecting53dikeringareas,areinfluencedbythe,waves,stormsurgesand/orriver dischargesfromtheNorthSeaandtheRiversandRhine.Theyhavetobeabletoresista waterlevelwithanoccurrenceof1:10,000peryearto1:1,250peryear,dependingoneconomic

vii

consequenceswithinthedikeringarea.Regionalwaterdefensesliewithinthesedikeringareas andoftenencirclepolderswitharegulatedwaterlevel.Waterlevelsattheregionalleveesare keptrelativelyconstant.LargeinfrastructureworkshavebeenbuilttoprotecttheDutchpolders. StormsurgebarriersasintheWesternScheldtandtheNieuweWaterwegareexamplesofthis. AnotherexampleistheclosurebetweentheWaddenSeaandLakeIJssel,whichwasbuiltto protectpeoplelivingalongtheformerZuyderSeaagainststormsurges. Buttheclimateischangingandfloodsseemtooccurmoreoftenthantheydidbefore.Main driversofanincreasedfloodriskarethechangingclimate,whichleadstosealevelrise, increasingriverdischargesandincreasingwetanddryperiods.Asintherestoftheworld populationgrowthandeconomicgrowthmakethatthedamagefloodscauseisincreasing. OneoftheinitiativestodealwithfloodrisksinthefutureistheFLORISproject,FloodRisksand SafetyintheNetherlands(orinDutch:VNK).Itintendstogetmoreinsightinthechancesof floodingandtheconsequencesofaflood.AnotherinitiativeistheRoomfortheRiverproject, establishedafterthe1993and1995extremeriverwaterlevels;goalistofindnewsolutionsfora betterprotectionagainstthewaterfromthelargerivers. IntheFloodProtectionActisstatedthateach5yearsleveeauthoritieshavetoreportonthe conditionsoftheprimarywaterdefensesfollowingtheprescriptionsfromtheministry,the ‘Voorschifttoetsenopveiligheid’(VTV).Thereisnolegislation(yet)ontheregionalwater defenses.HowaleveeisevaluatedintheNetherlandsdependsontheexpectedfailure mechanismsinanarea.Macroinstabilityofthelevee,piping,overtoppingandmicroinstability arethemainmechanismsconsideredinaleveeevaluation.Othermechanisms,whichare evaluateddependingonthelocalleveeconditions,areinstabilityoftheforeland,instabilityofthe revetment,instabilitybyinfiltrationanderosionatovertopping,heaveandhorizontalslidingat foundation.Foreachofthemechanismsaprocessfromsimpletoadvancedisused,basedona groundmodelandevaluationmethods.Fromthebasicsoilresearchthatisprescribed,borings combinedwithsoundingsandlabtests,agroundmodelisdevelopedandtheleveeisdividedinto sectionswithequalcharacteristics.Whenaleveesectionisexpectedtobevulnerabletoacertain failuremechanismwithasimpleevaluation,moreextensivesoilresearchonthespecificlocation andmoredetailedoradvancedmodelsareused.Whenafterseveralstepsaleveestillseems vulnerable,thatleveesectionisrejected.Improvementsarenecessary. Theleveeisthenevaluatedundernormativeconditions.Oftenthisistheconditionwith normativehighwater,combinedwithwaveandwindsetup.Butprecipitationisalsosometimesa normativeconditionorasituationofrapiddrawdownafterhighwater.Thelattertwoconditions areimportantintheevaluationofthemacrostabilityofthelevee.Loadscausedbytrafficonthe leveearealsotakenintoaccount.Thestabilityoftheleveeisevaluatedwithcomputerprogram MStab,withwhichBishopisapplied,amethodofslicesforcircularslideplanes.Ifaweaktop layerispresentbehindthelevee,whichisoftenthecaseintheNetherlands,anupliftcalculation isalsomadeusingforexampleUpliftVaninMStab. Piping,whichistheformingofapipeunderaleveecausedby(concentrated)seepageflow,is evaluatedfirstbydoinganupliftcheck.Theweightoftheblanketisthencomparedtothe upliftingpressureoftheseepageflowundernormativehighwaterconditions.Ifthepressuresin theseepagecarryingsandlayerareabletolifttheblanket,ruptureoftheblanketispossible, resultinginaconcentratedseepageflow.Ifa(critical)pipewillformisthendeterminedwiththe Blighformulaand/ortheSellmeijerformula. TheUShasnofederalestablishedguidanceforleveeevaluation.Themethodsthatareusedin leveeevaluationarepartiallywithdrawnfromtheLeveeDesignManualoftheArmyCorpsof Engineers(USACE,2000)andoftencombinedinsomesortofStandardOperatingProcedure (SOP).ThedesignandanalysisproceduresforleveesintheUnitedStatesarecloselyrelatedto proceduresforearth. TheprincipalcausesofleveefailureinCaliforniaareleveethroughseepageand/orunder seepage,waveinducederosion,floodinducederosion,currentinducederosion,staticinstability, leveeinstabilityduetosuddendrawdownandseismicinducedfailures.Agroundmodelismade fromstandardleveeinvestigation,asprescribed,andcrosssectionsaredevelopedtomodelthe failuremechanismsthatareimportantforthespecificlevee.Whenafirstevaluationisfinishedit canbefollowedbymoresoilresearchandagainevaluation.LoadsimportantinCalifornialevee viii Summary

evaluationareearthquakeloads,normativehighwaterlevelscombinedwithwavesanda situationofrapiddrawdown.AstabilityevaluationisperformedinUTEXAS4orSlope/Wusing Spencer’smethodofslices.Differentloadingconditionsofearthquakescombinedwithcertain waterlevelsareconsidered. Thevulnerabilitytosandboilsandpipingisdeterminedbycalculatingthemaximumexitgradient atthetoeoftheleveeandcompareittothecriticalexitgradientof0.5.Thiscriticalexitgradient wasdeterminedfromanunderseepageresearchalongtheMississippiinthe1950s.Theexit gradientisdefinedasthephreaticheadintheseepagecarryingsandlayerdividedbythe thicknessofthe(impermeable)toplayer.Thephreaticheadisdeterminedusingblanket equations. FromtheabovesomesimilaritiesanddifferencesbetweentheDutchandUSwaterdefense systemsandleveeevaluationmethodscanbefound.Theyareshortlymentionedhere.Bothhave aflatlowlyingDeltaandlandbelowmeansealevelischaracteristic.Elevationsreachuntil almost8mbelowmeansealevel.SystemsofriversflowingintoaDeltaaresomewhatthesame: theSanJoaquinRiverandSacramentoRiverintheCentralValleyandtheRiversMeuseand RhineintheNetherlands.Ifwecomparerecentfloodsagainsimilaritiesarefoundasforexample theCentralValleyRiverfloodof1997andthe1993/1995RhineandMeuseriverfloodswhich werebothcausedbyfloodwavesfromtheriversandwherepipingwasoneofthemain problems.Butthereisalargedifferenceinthelevelofprotectionthatisprescribedinthe NetherlandsandintheUS.Awaterlevelwithaprobabilityofexceedanceof1/100or1/200per yearisthecurrentdesignlevelinCalifornia,whileintheNetherlandsthedesignwaterlevelhasa probabilityofexceedanceof1/10,000to1/1,250peryear,forprimarywaterdefenses.The acceptedprobabilityofexceedanceintheUSwasanarbitrarychosenvalue.Floodinsurance, whichisobligatoryinareaswithalessthan1/100protection,isrelatedtothissafetylevel.Inthe Netherlandspeoplecannotbuyfloodinsurance.Anotherdifferenceisthattheeconomicdamage intheNetherlandswouldbemainlylimitedtothefloodedareaitself,whileintheDeltain CaliforniaaflooddoesnotonlydirectlyaffectpeopleintheDeltaitself,butitalsoindirectly influencestherestofCalifornia,thatdependsonfreshwaterfromtheDelta. OnthelevelofleveeevaluationaninterestingdifferenceisthatintheUSdesigndocumentsare currentlyusedforevaluation,whiletheDutchhavespecialevaluationdocuments.Adifferencein thestabilityevaluationwithintheDWRleveegeotechnicalevaluationscomparedtotheDutch methodsisthatupliftisnotmentionedintheevaluation.AnotheroneisthatintheUSthe situationofrapiddrawdownisperformedwithpartlyundrainedparameters,whileintheDutch stabilityevaluationalwaysdrainedparametersareused.Whilethereisnotsuchalargeriskto seismicshakingintheNetherlandsasinforexampleCalifornia,thereisnoseismicevaluationin theNetherlands,whileitisperformedinCalifornia.Butthemostinterestingseemsthedifference betweenhowpipingisevaluatedintheUSandtheNetherlandsandthiswasthereforechosenas asubjectforfurtherresearch. Pipingcanbecomeaproblematlocationswhereathicksandlayerisoverlainbyanimpermeable blanket.TocomparetheformulasusedintheUSandDutchpipingevaluation,twostepsinthe pipingprocessaredistinguished.Thefirststepisupliftandpossibleruptureoftheblanket.This stepismodeledinbothevaluations,thoughconclusionsaredifferent.Ifuplift/ruptureispossible aleveeintheUSisimmediatelyrejected,whileintheNetherlandsthenstep2isapplied.Step2 isaboutmovementofthesandparticles.AleveeintheNetherlandsisonlyrejectedifwith formulasfromBlighorSellmeijerisfoundthatacriticalpipecandevelopwhichformsathreatto stabilityofthelevee.IntheUStheexitgradientwaschoseninsuchawaythatitincludes heavingofthesandparticlesandthustheformationofsandboils. Inbothpipingevaluationssafetyisimplemented.Thisisdoneintwoways:intheparameter choice,witha20%differencebetweentheNetherlandsandtheUS,andanoverallsafetyfactor appliedwithintheformula,whichintheupliftandSellmeijerformulaintheNetherlandsis1.2.In theUSa1.6safetyisappliedonthetheoreticalexitgradientof0.8,resultinginacriticalexit gradientof0.5.The0.8wasbasedonaconstantblanketthickness,whichlimitstheapplication ofthe0.5criteriontoareasthathaveablanketlayerwithavolumeweightabove17.6kN/m 3. CasesfromtheMississippiresearchwereusedtoquantifythedifferencesbetweenthecriteria. FromthisbecameclearthatL/Hvalues(theavailableseepagelengthdividedbythewaterlevel differenceatthelandsideandwatersideofthelevee)atwhichboilsoccurattheMississippiRiver

ix

(L/H ≈43)donotmatchthevaluesofL/HatwhichproblemsareexpectedintheNetherlandswith thecurrentpipingevaluationmethods(L/H ≈max.18).Thisismainlycausedbyadifferent definitionofthecriticalsituationinbothcountries.ThecriticalsituationintheNetherlandsis failureoftheleveebecauseofexcessivegrowthofthepipe,whilethecriticalsituationintheUS isoccurrenceofsandboils,whichisboundedbyacriticalexitgradientof0.5.Inthe1956 researchsituationsweredescribedwherepipingreallywasbecomingcritical.L/Hvaluesofthese locationsareclosertotheDutchcriterion,butarenotallregardedasunsafewiththeDutch method.Thiscouldbecausedbytheuncertaintyintheparametersused,whilenotenoughdata fromthesecaseswasavailable,butitalsoleadstoquestionsabouttheDutchcriteria.Sellmeijer canidentifycriticalsituationsaboveL/H=18,butwithintheDutchevaluationrulesthisisnot allowed:Blighisthenassumednormative. OthercausesofdifferencesbetweentheDutchandUSanswerstothecasestudiescanbe relatedtothefactthatconditionsalongtheMississippiRiveraredifferentthanconditionsalong theDutchrivers,whileallMississippicasesarefurtherupstreamthantheborderofthe Netherlandsis.LimitationsoftheDutchmethodsarenotdescribedtogetherwiththemethods. Aninterestingresultfromthecasesisthatthereisabandwidthofabout3.5betweenthe L/H( ≈43)wheresandboilsoccurintheMississippiandtheL/H( ≈18)wherethepipeisbecoming criticalforthestabilityofthelevee.TheL/Hofabout43seemslikeareasonablecriterionfor leveedesign:nosandboilsareallowed.TheL/Hofabout18ismoreappropriateforlevee evaluationonly:acriticalpipeisnotallowed.Theresultofimplementingthiswouldbethat seepagebermsintheNetherlandswouldhavetobecomefarlargerthantheycurrentlyare. AnoverallconclusionisthatthediscussiononhowtobestmodelpipingintheNetherlandsas wellastheUSisnotsolvedyet.Cautiousnessisrecommendedaswellasfurtherresearch. FurtheronanexchangeofknowledgebetweentheDutchandUSleveespecialistsonvarious subjectsconcerningwaterdefensescouldbeusefulforboththeAmericanleveesastheDutch levees!Cooperationbetweenthetwocountriesshouldbestimulatedandwelcomed.

x Content

PREFACE ...... V

SUMMARY ...... VII

LISTOFFIGURES ...... XV

LISTOFTABLES...... XVII

LISTOFABBREVIATIONS ...... XIX

LISTOFSYMBOLS ...... XXI

1 INTRODUCTION...... 1

1.1 RESEARCHSUBJECT ...... 1 1.2 PROBLEMDEFINITION ...... 2 1.3 RESEARCHOBJECTIVES ...... 2 1.4 OUTLINEOFTHESIS ...... 2 2 DESCRIPTIONCENTRALVALLEYANDDELTA...... 5

2.1 INCREASEDATTENTIONFORFLOODPROTECTION ...... 5 2.2 CENTRAL VALLEYAND DELTAFLOODPROTECTIONSYSTEM ...... 7 2.2.1 Levees ...... 7 2.2.2 Riskbasedfloodprotectionandfloodinsurance...... 8 2.2.3 Stressevents ...... 9 2.2.4 Strength:failuremechanismsandleveedesign...... 12 2.2.5 Inspection,maintenanceandleveeevaluation ...... 14 2.2.6 Driversofincreasingfloodrisks ...... 14 2.2.7 Dealingwithincreasingfloodrisks:Initiatives ...... 16 2.2.8 Organizationsinvolvedinfloodpolicy ...... 16 2.3 HISTORY ...... 18 2.3.1 Introduction...... 18 2.3.2 FirstfloodprotectionalongtheMississippiRiver1719 ...... 18 2.3.3 LowerMississippiValleyfloods1849 ...... 19 2.3.4 FirstfloodprotectionintheCentralValley1850 ...... 20 2.3.5 SacramentoValleyRiverfloods1862...... 21 2.3.6 MississippiRiverfloods1870sto1890s ...... 21 2.3.7 Mississippiflood1927...... 22 2.3.8 Nationwidefloods1935/1936 ...... 22 2.3.9 1972failureoftheBrannanIslandlevee,California...... 23 2.3.10 Floodsof1986...... 23 2.3.11 CaliforniaRiverfloods1997 ...... 23 2.3.12 JonesTract2004 ...... 23 2.3.13 NewOrleans2005...... 25 3 DESCRIPTIONNETHERLANDS...... 27

3.1 WHYFLOODPROTECTION ? ...... 27 3.2 DUTCHWATERDEFENSESYSTEM ...... 28 3.2.1 Primarywaterdefensesandregionalwaterdefenses ...... 28 3.2.2 Riskbasedleveedesign...... 28

xi

3.2.3 Loads:Hydraulicboundaryconditions ...... 30 3.2.4 Strength:failuremechanismsandleveedesign...... 31 3.2.5 Inspectionandmaintenancelevees...... 33 3.3 THREATSANDINITIATIVES ...... 33 3.3.1 Threats:driversofchange...... 33 3.3.2 Dealingwithincreasingfloodrisks:initiatives ...... 35 3.3.3 Organizationsinvolvedinwaterdefensepolicy ...... 35 3.3.4 DisasterManagement...... 37 3.3.5 Afteraflood ...... 37 3.4 HISTORYOF DUTCHFLOODCONTROL ...... 38 3.4.1 Overview ...... 38 3.4.2 Firstprotectionagainstfloods300100BC...... 38 3.4.3 Floodsof838and1014AD...... 39 3.4.4 Zuyderzeefloods1170and1196 ...... 39 3.4.5 St.Elisabethfloods1404/1421...... 40 3.4.6 St.FelixfloodandAllerheiligenflood1530and1570...... 40 3.4.7 Riverfloods1861 ...... 41 3.4.8 Christmasflood1717,Stormsurgeof1916 ...... 41 3.4.9 SeaFlood1953 ...... 42 3.4.10 MeuseandRhineriverfloods1993and1995...... 43 3.4.11 Wilnis2003...... 44 4 DUTCHLEVEEEVALUATION...... 47

4.1 BACKGROUND ...... 47 4.1.1 Legislation ...... 47 4.1.2 Cases ...... 47 4.2 LEVEEEVALUATIONPROCESS ...... 48 4.2.1 Failuremechanisms...... 48 4.2.2 Frombasicinvestigationtoadvancedmodeling...... 50 4.2.3 Asappliedincases...... 51 4.3 LOADSAND GROUNDMODEL ...... 52 4.3.1 Introduction...... 52 4.3.2 Loads ...... 52 4.3.3 Groundmodel...... 53 4.3.4 Asappliedincases...... 54 4.4 MACROSTABILITYEVALUATION ...... 56 4.4.1 Whyevaluationoftheleveestability?...... 56 4.4.2 Howtomodelthelevee? ...... 56 4.4.3 Stabilityevaluation...... 57 4.4.4 Casestudies ...... 59 4.5 EVALUATIONOFTHEPIPINGMECHANISM ...... 59 4.5.1 Whypipingevaluation? ...... 59 4.5.2 Dutchexplanationofthepipingmechanism...... 59 4.5.3 Pipingevaluation...... 60 4.5.4 Uplift...... 61 4.5.5 Bligh ...... 61 4.5.6 Sellmeijer ...... 62 4.5.7 Howtodeterminethehydraulicheadbeneaththetopstratum? ...... 63 4.5.8 Asappliedincasestudies...... 63 5 USLEVEEEVALUATION ...... 65

5.1 BACKGROUND ...... 65 5.1.1 Evaluationguidance ...... 65 5.1.2 Cases ...... 65 5.2 LEVEEEVALUATIONPROCESS ...... 67 5.2.1 Failuremechanismsandmodeling...... 67 5.2.2 Asappliedincases...... 68 5.3 LOADSANDGROUNDMODEL...... 68 5.3.1 Loads ...... 68 xii Content

5.3.2 Groundmodel...... 69 5.3.3 Asappliedincasestudies...... 70 5.4 STABILITYEVALUATION ...... 71 5.4.1 Methods ...... 71 5.4.2 Stabilityevaluation...... 71 5.4.3 Asappliedincasestudies...... 72 5.5 SEEPAGEANDPIPINGEVALUATION ...... 73 5.5.1 Whyseepageevaluation? ...... 73 5.5.2 Underseepageandpiping...... 74 5.5.3 Evaluation ...... 74 5.5.4 Criticalsituation:backgroundofi c=0.5...... 75 5.5.5 Blanketequations ...... 77 5.5.6 Incasestudies: ...... 78 6 NETHERLANDSVERSUSCENTRALVALLEY,CALIFORNIA...... 81

6.1 COMPARISONWATERDEFENSESYSTEMS ...... 81 6.1.1 Similarities...... 81 6.1.2 Differences ...... 84 6.2 COMPARISONLEVEEEVALUATIONMETHODS ...... 84 6.2.1 Conclusion...... 87 7 SANDBOILSANDPIPING...... 89

7.1 THEORIES US AND DUTCHPIPINGCRITERIA ...... 89 7.1.1 Problemschematization...... 89 7.1.2 Formulasandprocesses ...... 90 7.2 SAFETY ...... 92 7.3 MISSISSIPPICASESVS .US AND DUTCHRULES ...... 95 7.4 POSSIBLESOURCESFORDIFFERENCES ...... 100 8 CONCLUSIONSANDRECOMMENDATIONS ...... 105

8.1 CONCLUSIONS ...... 105 8.1.1 ConclusionscomparisonwaterdefensesystemsNetherlands/CaliforniaCentralValley... 105 8.1.2 Conclusionscomparisonleveeevaluationmethods...... 105 8.1.3 Conclusionspipingevaluationmethods...... 106 8.2 RECOMMENDATIONSFORFURTHERRESEARCH ...... 107 8.2.1 Fornow...... 107 8.2.2 Futureresearch: ...... 107 LITERATURE ...... 109

APPENDICES...... 113

APPENDIX 1. DETERMINATIONOF D70 FORCALCULATIONS ...... 115 APPENDIX 2. DAMAGE MISSISSIPPICASES ...... 117 APPENDIX 3. SLOPE /W VERSUS MS TAB ...... 119

xiii

List of figures

Figure1.1CaliforniaCentralValley(greenarea)withSacramentoSanJoaquinDelta(DWR,2005)...... 1 Figure1.2Schematizedworkapproach ...... 3 Figure2.1MapoftheCentralValleyandSacramentoSanJoaquinDeltabelowmeansealevel(DWR, 20063;Ingebritsen,2000)...... 5 Figure2.2Saltintrusionmodelaftermagnitude6.5earthquake(UCDavis,2006) ...... 6 Figure2.3ProjectleveesintheCentralValleyandDelta(DWR,2007) ...... 7 Figure2.4ApproximatelengthofleveesandtheirsubdivisionintheCentralValleyandDelta...... 8 Figure2.5FloodprotectionlevelsofAmerica’smajorrivercities(SAFCA,2007) ...... 8 Figure2.6FEMAcertificationprocess(Fugro,2007)...... 9 Figure2.7AverageAnnualPrecipitationCaliforniaandDelta(OCS,2005) ...... 10 Figure2.8Deltamajorinflows;meanandmaximummeasuredriverflows(modifiedfromUCDavis,2006) ...... 11 Figure2.9EarthquakefaultsneartheCentralValleyanddamagepotentialzonesintheDelta(Mount, 2005) ...... 12 Figure2.10TypicalcrosssectionofDeltalevees(UCDavis,2006)...... 12 Figure2.11LeveefailuremechanismsimportantfortheCentralValley...... 13 Figure2.12Examplesofleveestandards ...... 14 Figure2.13Deltasubsidence(Mount,2005)...... 15 Figure2.14Organizationsinvolvedinflooddefensepolicy...... 17 Figure2.15MapoftheUnitedStateswiththeMississippiDeltaandCaliforniaCentralValley(Welt Atlas.de,2006) ...... 18 Figure2.16Naturallevees(Berkeley,2006) ...... 19 Figure2.17TheDeltaandBayin1848and1994(USGS,2006)...... 20 Figure2.18MississippiRiverCommissionleveedesign(Rogers,2006) ...... 21 Figure2.19Extentofthe1927Mississippiflood(Barry,2002) ...... 22 Figure2.202004UpperJonesTractleveefailure(Reid,2005) ...... 24 Figure2.21FloodfightsJanuary2006(UCDavis,2006)...... 24 Figure3.1Netherlandsaboveandbelowmeansealevel(Deltawerken.com,2006)...... 27 Figure3.2Differenceprimarywaterdefensesandregionalwaterdefenses(STOWA,2004) ...... 28 Figure3.3The53Dutch‘dikeringareas’withtheiraimedsafetylevel(VNK,2005)...... 29 Figure3.4MeanmonthlydischargesRiversRhineandMeuse(natuurdichtbij.nl,2006) ...... 31 Figure3.5GeologicalmapoftheNetherlands(TNONITG,2006)...... 31 Figure3.6Failuremechanismssoilstructures(TAW,1998) ...... 32 Figure3.7Leveedesignprocess(TAW,1999) ...... 32 Figure3.8Firstleveedesign ...... 33 Figure3.9ExpectedfuturemeanmonthlydischargesRiversMeuseandRhine.Theblacklinerepresents thecurrentmean,thebluelinegivesthehighestestimatefor2100(MNP,2005) ...... 34 Figure3.10Examplesofcreating‘roomfortheriver’(TAW,1998)...... 35 Figure3.11Publicsectorinvolvedinfloodpolicyandprotection ...... 36 Figure3.12TheDutch12Provinces(left)and27WaterBoards(right)(Provincies.nl,2006; Waterschappen.nl,2006)...... 36 Figure3.13TheshapeoftheNetherlandsaround0and800AD(Huisman,1998)...... 38 Figure3.14DutchWindmills(Huisman,1998) ...... 39 Figure3.15TheshapeoftheNetherlandsaround1500and1900AD(Huisman,1998)...... 40

xv

Figure3.16Reclaimedareas12001970andtheclosuredam,ZeelandDeltaandBiesboscharea (modifiedfromHuisman,1998)...... 41 Figure3.17Leveebreachesandinundatedareas;pictureofembankmentbreachZeeland1953 (Deltawerken.com,2006) ...... 42 Figure3.18TheDeltaProjectwithtwopicturesoftheEasternScheldtStormSurgeBarrierandapicture oftheMeaslandtBarrier(Huisman,1998;Deltawerken.com,2006)...... 43 Figure3.19DryweatherleveefailureatWilnis(RIVM,2004) ...... 44 Figure4.1Locationofcasestudies(modifiedfromVNK,2005)...... 47 Figure4.2Evaluationchart(modifiedfromMin.V&W,2004)...... 50 Figure4.3Lossofstabilityinacircularplane(TAW,2000)...... 56 Figure4.4Methodofsliceswithacircularslipsurface(Verruijt,2001)...... 56 Figure4.5Upliftmechanism(Geodelft,2006)...... 57 Figure4.6MacrostabilitychartDutchleveeevaluation(modifiedfromTAW,2001) ...... 58 Figure4.7Stepsinpipingprocess(TAW,1999_2) ...... 59 Figure4.8Pipingevaluationchart ...... 60 Figure4.9SchematizedleveeprofileBligh(modifiedfromFugro,2004)...... 61 Figure4.10TheSellmeijermodeltests(TAW,1999_2) ...... 63 Figure4.11StandardDutchleveefromcasestudieswithparametersimportantforpiping ...... 64 Figure5.1LocationofReclamationDistrict17(DWR,2006) ...... 66 Figure5.2LocationsMississippiunderseepageresearch(googleearth,2007)...... 67 Figure5.3LeveefailuremechanismsimportantforCentralValley ...... 67 Figure5.4OverallworkflowchartDWRproject(UGF,2007)...... 70 Figure5.5MacrostabilitychartDWRleveeevaluation,withoutdynamicstability ...... 72 Figure5.6SandboilsinCalifornia,1997(UCDavis,2006)...... 73 Figure5.7Sandboilwhichcausedaleveetofailin1993(Mansur,2000)...... 73 Figure5.8USinterpretationofpiping(Ozkan,2003)...... 74 Figure5.9FlowchartpipingmodelingfirstGERDWRproject ...... 75 Figure5.10Upwardgradientrelatedtoseverityofseepagein1950;CasesMississippiat16locationsfrom Caruthersville,toBatonRouge,Louisiana(USACE,1956) ...... 76 Figure5.11ReproductionofFigure5.10...... 76 Figure5.12RegularlyobservedblanketcasealongMississippiRiver(USACE,1956)...... 78 Figure5.13TypicalcrosssectionofMississippilevee(Mansur,2000)...... 78 Figure6.1SizeoftheNetherlandscomparedtothesizeofCalifornia...... 81 Figure6.2DeltaCaliforniaandNetherlandsbelowsealevel(redsquaresrepresentthesamesurface area) ...... 82 Figure6.31997CentralValleyRiverflood(left)andRiverMeuseflood1995(Reid,2005)...... 83 Figure6.4JonesTractleveefailure2004(Reid,2005)andWilnisleveefailure(Geodelft,2004)...... 83 Figure6.5NewOrleansleveebreachand1953Zeelandleveebreach(Fas.org,2007;Deltawerken.com, 2006) ...... 83 Figure7.1Schematizedprofileseepageanalysis ...... 89 Figure7.2Dutchvs.USvulnerabilitytosandboilsorpiping ...... 91 Figure7.3Correlationbetweenthecomputedgradientandobservedgradient ...... 92 Figure7.4Observedgradientsatsandboillocationsfittedwithanormaldistribution...... 93 Figure7.5TheUS33%percentilevs.theDutch5%percentile,forasafeparameterchoice ...... 94 Figure7.6ComparisonofupliftsafetyNetherlandsandUS...... 95 Figure7.7ObservedL/HinMississippiRivercasesfrom1950...... 95 Figure7.8CrosssectionTrotters51leveerepresentativeforstation50/36+50 ...... 97 Figure7.9CrosssectionLowerFrancisleveerepresentativeforstation145 ...... 98 Figure7.10CrosssectionBatonRougeleveerepresentativeforstation79106 ...... 99 Figure7.11DifferencecriticalsituationUSandNetherlands(modifiedfromTAW,1999_2) ...... 100 Figure7.12Criticalboillocationsfrom1937combinedwithL/Hestimatesandobservationsfromother locationsin1937,1945and1950(datafromUSACE,1956)...... 101 Figure7.13ResultofusingL/H=43fordesigninsteadofL/H=18 ...... 103

xvi

List of Tables

Table2.1SummaryofflowsonmajorinflowstoDelta(DWR,20052)...... 11 Table2.2ImportantandrecentfloodsintheUSandCalifornia...... 18 Table3.1Safetyclassesfortheprimarywaterdefenses...... 29 Table3.2Safetyclassesforregionalwaterdefenses(STOWA,2004)...... 30 Table3.3SelectionofDutchfloodsthathadanimpactonwaterdefensepolicy ...... 38 Table4.1FailuremechanismsimportantintheDutchevaluation(modifiedfromMin.V&W,2004) ...... 48 Table4.2Otherfailuremechanismsthatneedattention(modifiedfromMin.V&W,2004)...... 49 Table4.3Failuremechanismsassessedandstepstakenincasestudies...... 51 Table4.4LoadsincludedintheDutchleveeevaluation(modifiedfromTAW,2000) ...... 52 Table4.5Globalmethodtoprepareagroundmodel(modifiedfromFugro,1998)...... 53 Table4.6Developmentofgroundmodelincases ...... 55 Table4.7SummaryofthemostimportantmethodsinMStab(Geodelft,2006)...... 57 Table4.8CreepfactorsusingBligh(modifiedfromTAW,1999_2) ...... 62 Table5.1Loadswhichareandwhicharenotinvolvedinleveeevaluation...... 69 Table5.2Proposedinvestigationtoprepareagroundmodel ...... 69 Table5.3Exitgradientvs.seepageconditiontrends(USACE,2005) ...... 77 Table5.4ConditionsonwhichtheMississippiinvestigationwasfounded(modifiedfromUSACE,2002) . 79 Table6.1ComparisonofcomputerprogramsusedintheUSandDutchstabilitycalculations(Pockoski, 2000) ...... 86 Table7.1DutchandUScriterionforuplift ...... 90 Table7.2Step2informulas...... 91 Table7.3Criterionforleveerejection/approval...... 92 Table7.4TheestimatedeffectofthedifferencebetweenUSandDutchparameterchoice...... 94 Table7.5ThetotalsafetyfactortotranslatetheMississippicasestoDutchcriteria ...... 96 Table7.6QuantifyingTrotters51criticalsituation ...... 102 Table7.7Comparison(seepage)conditionsMississippi/Dutchriverlevees...... 102

xvii

List of abbreviations

DRMS DeltaRiskManagementStrategy DWR DepartmentofWaterResources FEMA FederalEmergencyManagementAgency IPO InterProvincialConsultation(inDutch:InterProvinciaalOverleg) MinofV&W MinistryofTransport,PublicWorksandTransport(inDutch:Ministerievan VerkeerenWaterstaat) NAP ReferenceWaterLevel(inDutch:NormaalAmsterdamsPeil) NHW NormativeHighWaterorprojectflood(inDutch:MHW,MaatgevendHoog Water) NFIP NationalFloodInsuranceProgram SOP StandardOperatingProcedure TAW TechnicalAdvisoryCommitteefortheFloodDefenses(inDutch:Technische AdviescommissievoordeWaterkeringen) USACE UnitedStatesArmyCorpsofEngineers VTV PrescribedLeveeSafetyEvaluation(inDutch:VoorschriftToetsenVeiligheid)

xix

List of symbols

c= Factor[]

Ccreep = Bligh’screepfactor[]

Cv= Variationcoefficient[] d= Thicknessofpervioussubstratum[m]

dsand = Thicknessofthesandlayer[m] D= Thicknessofblanket[m]

D70 = 70percentvalueofthegraindistributionofthesand[m] g= Gravity[m/s 2]

hp= Thelevelofthetopofthesandlayer[m+NAP]

hx= HeadBeneathtopstratumatdistancexfromlandsideleveetoe[m]

h0= Headbeneathtopstratumatlandsideleveetoe[m] H= Netheadonlevee[m]

Hc= Criticalheadonlevee[m] H= Headdifferenceonlevee[m]

H c= Criticalheaddifference[m] i= Upwardgradient[]

i0= Exitgradientattoeofthelevee[]

kbl = Verticalpermeabilityofriversidetopstratum[m/day]

kf= Horizontalpermeabilityofpervioussubstratum[m/day] L= Seepagelengthhorizontal[m]

LBligh = CriticalseepagelengthaccordingtoBligh[m]

L2= Lengthofleveeatbase[m]

L3= Lengthofblanketatlandsideofthelevee[m] n= Numberofyears[] p= Waterpressure[kN/m2] P= Probabilityofexceedanceofacertainwaterlevelinnyears[1/year]

Pi= Probabilityofinundationinyeari[1/year] r= Reducedinterestrate,whichistheinterestreducedbyinflationandincreasedwith economicgrowth[]

Ri= Riskoffloodinginyeari[euros/year]

Si= Damageinyeari[euros]

xxi

T= Floodprotectioninyears[years] TR= TotalRisk[euros]

x1= Distancefromlandsideleveetoetoeffectiveseepageentrance[m]

x3= Distancefromlandsideleveetoetoeffectiveseepageexit[m]

zb= Thicknessoflandsidetopstratum/blanket[m]

zt= Criticalthicknessoftheblanket[m] γ= Safetyfactor[]

γtot = Totalsafetyfactor;combinationofparametersafetyandoverallsafety[]

γp= Saturatedweightofthesand[kN/m3] 3 γw,s = Thewetvolumeweightofthetoplayer[kN/m ]

γw= Volumeweightofwater[kN/m3]=10kN/m3 γ’= Submergedunitweightoftheblanketsoil[kN/m3] θ= Frictionangleofthesandgrains[ °] κ= Intrinsicpermeabilityofthesandlayer[m2] = Meanofadataset η= Dragfactor(coefficientofWhite)[] σ= Standarddeviation σ’= Effectivestress[kN/m2]

φs= Hydraulicheadinthewaterbearinglayer[m+NAP]

φs,c = Phreaticheadinthetoplayer[m+NAP] ν= Kinematicviscosity[m 2/s]

xxii 1 Introduction

Afterthe2005disasterinNewOrleans,CaliforniawasidentifiedasAmerica’snextareatosuffer fromamajorflooddisaster.(ReidR.L,2005) SituatedbetweentheSierraNevadamountainrangeandthePacificOceancoastalmountainsthe CentralValleyandtheSacramentoSanJoaquinDelta(referredtoastheDelta)werealready attackedbyfloodsseveraltimesduringthelastdecades. ThischapterisanintroductiontotheMasterthesisleveesandleveeevaluationandwillpresent theobjectivesandoutlineoftheresearch.

1.1 Research subject

Areadescription California’sCentralValley,situatedbetweentheSierraNevadaandthecoastalmountainranges, covers111,300km²ofland.Morethan3,800kmofleveesprotecttheurbanareasalongthe SacramentoandSanJoaquinRiverandtheagriculturalareasintheDelta(Figure1.1).(ReidR.L, 2005)

Figure1.1CaliforniaCentralValley(greenarea)withSacramentoSanJoaquinDelta(DWR,2005)

1

River levees Theriverleveessuffermostfromthefloodseason,startingeachNovember,causedbyheavy rainsandmeltingsnowfromtheSierraNevada.InJanuary1997amajorfloodcausedthree deadpeople.120,000peoplehadtoabandontheirhomes.Suchmajorfloodsoccur approximatelyonceinadecade,causedbynumerousfailinglevees;30in1997.Theleveesare supposedtoprovideprotectionagainstawaterlevelwithaprobabilityofexceedanceof1/100 peryear. The Delta IntheDeltatheproblemsaredifferent.Thoseleveeshavetoholdbackwaterduringthewhole year:saltwaterfromtheSanFranciscoBay.TheDeltaisanareaofaround60islands,situated belowsealevel.TheSanJoaquinandSacramentoRivercarrytheirhugequantitiesofwater throughthisDeltatotheSanFranciscoBay.Evenduringdryweatherfloodscanoccurinthis area,likethe2004dryweatherleveefailureinUpperJonesTract,whichintotalcostabout$100 million.Thisisjustoneoftheapproximately160breachesoflastcentury. Other problems Butthefloodingofurbanareasandfarmlandisnottheonlyproblem.23millionpeoplein southernCaliforniarelyonfreshwatersuppliedbyahugenorthsouthtransportingsystem.The Deltaprotectsthissystemfromsaltwaterintrusion,causedbytidalactionfromtheSanFrancisco Bay.Inwinterandspringthehighriverflowwillpreventsaltintrusionduringfloods.Butwhena floodoccursduringlowriverflowtheresultscouldbeterribleforthewatertransfersystem. Waterwillbecomemuchtosalinetobeusedfordrinkingwaterandirrigation.(Ingebritsen, 2000)

1.2 Problem definition

InonesentencetheprobleminCaliforniacanbedefined: California’sCentralValleyandDeltaareextremelyvulnerabletoamajorflooddisaster,whichwill notonlyaffecturbanareasbutwillalsoendangerthedrinkingwatersupplyforthewholeof southernCalifornia

1.3 Research objectives

ItseemsasiftheCentralValleywithherriversandDeltasystemwithitslowlyingpoldersand leveesfoundedonpeatsoilshassomeremarkablesimilaritieswiththeDutchsystem.It wouldthereforebeveryinterestingtocomparethesesystemsandseeiftherearewaysinwhich thesesystemscould‘helpeachother’infindingsolutions.Becausewaterdefensesneverprovide a100%safety,butwedefinitelywantthemtobesafeenough. Thefirstobjectiveofthisresearchis: FindoutthevulnerabilitiesoftheCaliforniaValleyandDeltawatersystemandcomparethemto theDutchsituationinaqualitativeandaquantitativeway. Andthesecondobjective: FocusonimportantweaknessesordifferencesoftheCaliforniaandDutchwaterdefensesystem, findoutabouttheirbackgroundandgiverecommendationsonhowtoimprovethem.

1.4 Outline of thesis

TogetanimpressionofthesimilaritiesanddifferencesbetweentheDutchandCalifornianwater defensesystemstheyarefirstdescribedseparatelyinchapters2and3.Howisdealtwithflood risksandleveesisdiscussed,togetherwiththehistoricalbackgroundandimportantfloods. BecauseofthecurrentattentioninCaliforniafortheleveesandleveeevaluationprograms,a moredetaileddescriptionofleveeevaluationisgiveninchapters4and5.

2 Introduction

Thesedescriptionsaresupportedbycasestudies,whichhavetwofunctions.Thefirstfunctionis tosupportthedescriptionandthesecondistogiveexamplesofcomputations.TheDWRproject iscaseexampleforCalifornia.Thefocusofthisprojectiscurrentlyonevaluationoftheurban levees,whichprotecturbanareasfromflooding.CaseexamplesfortheDutchmethodsarean evaluationoftheLakeMarkenlevees,EemsCanalleveesandIslandofDordrecht.Allofwhich wereevaluatedbyFugroIngenieursbureauBV.

CentralValleyandDeltawater Dutchwaterdefensesystem Chapters2 defensesystem and3

Chapters4 USleveeevaluation Dutchleveeevaluation and5

ComparisonofUSandNetherlands Chapter6

SeepageandPiping Chapter7

ConclusionsandRecommendations Chapter8 Figure1.2Schematizedworkapproach

Thecomputationsaresupportivetothecomparisonbetweentheleveesandleveeevaluation systemsinchapter6.Oneofthemostinterestingdifferencesistheevaluationofpiping.Seepage andpipingevaluationisthereforemorethoroughlycomparedanddiscussedinchapter7, supportedbyaseepagestudyfrom1956alongtheMississippiRiverinthesoutheastoftheUS. Chapter8containsconclusiveremarksonthedifferencesandsimilaritiesofthewaterdefense systemsandleveeevaluationmethodsandgivesrecommendationsforfurtherresearchandfor evaluationaswellintheNetherlandsasintheUS.

3

2 Description Central Valley and Delta

NotmanypeoplewillimmediatelythinkofleveeswhentalkingabouttheUnitedStatesof America(US)orCalifornia.ThischapterprovidesininsightinwhyCaliforniahaslevees(2.1). Whatlevelofprotectionandagainstwhichthreatsaretheysupposedtoprovide?Organizations involvedinfloodpolicyandinitiativestopreventfuturedisastersarementionedaswell(2.2)The lastparagraphisadescriptionofriverfloodsandstormsurgesthatinfluencedfloodprotectionin theUnitedStates,logicallyincludingtheNewOrleansfloodof2005.

2.1 Increased attention for flood protection

ThestateofCaliforniaisthemostpopulousoftheUS.36millioninhabitantsliveonalandarea of400,000m 2.TheCentralValleyisalowlyingflatareastretchingfor600kmfromnorthto south,borderedintheeastandwestbytheSierraNevadaandthecoastalmountainranges.This CentralValleyreceivesrunofffromtheSierraNevada,whichisdrainedmainlyintheSacramento RiverandtheSanJoaquinRiver,passingdenselypopulatedareaswiththecitiesStocktonand Sacramento.Theseriversjoininthe738,000acres(2,952km 2)largeSacramentoSanJoaquin Delta,referredtoastheDelta.

Figure2.1MapoftheCentralValleyandSacramentoSanJoaquinDeltabelowmeansealevel(DWR,2006 3;Ingebritsen,2000)

5

TheDeltaisthecenterofalargenorthsouthwaterdeliverysystem.ItreceivesRunofffromthe wholeCentralValley,whichis40%ofCalifornia’sStatearea.Morethan22millionpeople(2/3of theCalifornianpopulation)partlyrelyondrinkingwaterfromtheDeltaanditsuppliesirrigation waterfor7,000,000acresofagriculture. TheDeltaitselfconsistsofnearly60islandsandisthelargestestuarysystemoftheAmerican WestCoast.1,100miles(1770km)oflevees,surroundtheislandslying46.5metersbelowsea level.Locallytheelevationsevenreach8mbelowmeansealevel.Theleveesshouldprotectthe Deltalandareaandits500,000inhabitantsagainstriverfloodsandstormsurges.Thelandusein theDeltaismainlyagricultural:538,000acresarefarmland.Openwatercoversabout60,000 acresandurbanandcommercialpropertiescompriseroughly64,000acres.Theremainderofthe Deltaconsistsofundevelopednaturalvegetation.(DWR,20052) CurrentlythereisanincreasedattentionfortheCentralValleyandDeltalevees.Thereare severalreasonsforthis.OneofthemisthatcourtdecisionsstatedthattheStateisliablefor floodrelateddamagecausedbyaleveefailure.FurtheronKatrinahascreatedtheawareness thatanequaltragedycouldeasilycometoCalifornia(DWR,20052;Harder,2006). Iftheleveesfail,ormaybebetter:whentheleveesfailintheDeltaand/oralongtherivers,the consequencesareenormous.Riverleveefailureswillmainlybedestructivetourbanareas. Sacramentoalonehasalreadymorethan450,000inhabitants.Andurbanizationalongtherivers israpidlyincreasing.Peoplewilldrown,housesandinfrastructurewillbedestroyed. WhenleveesintheDeltafail,saltwaterwillbedrawnintothearea(Figure2.2).Notonlypeople, speciesandinfrastructurewithintheDeltawillbeharmedbythesaltwater,butalsothepeople thatrelyondrinkingandirrigationwaterfromtheDelta.In2004oneleveebreachalready causedatemporaryshutdownofthewatersupplyinfrastructure(see2.3.12)Theexpectationis thatmoreleveefailures,asaresultofthefirstbreachorofanearthquake,willcauseashut downofallwaterfacilitiesforayearorlonger.The250specieslivingintheDeltawillbe threatened,becauseofislandsthatwillstayfloodedandcauseachangeinthetidalprism.More than3,000homeswillbedestroyed,togetherwith2ports,2majorhighways,arailroadandgas andoilpipelines.(UCDavis,2006)

Figure2.2Saltintrusionmodelaftermagnitude6.5earthquake(UCDavis,2006)

6 Description Central Valley and Delta

2.2 Central Valley and Delta flood protection system

2.2.1 Levees

Morethan3,800kmofleveesprotecttheCentralValleyandDeltaareasagainstflooding. Approximately2,600kmoftheseleveesarefederalprojectleveesalongtheSacramentoandSan JoaquinRiversystems.TheyarepartoftheCentralValleyfloodcontrolsystem,whichalso includesreservoirs,overflowweirsandbypasschannels,allforwhichtheStateDepartmentof WaterResources(DWR)isresponsible.(DWR,2005)(SeeFigure2.3andFigure2.4)

Delta

Figure2.3ProjectleveesintheCentralValleyandDelta(DWR,2007)

TheDeltaislandsareprotectedby1,700kmofearthenlevees.Onlyabout440km,onefourth,is partofthe2,600kmofprojectlevees.Themaintenanceoftheseleveesisdonebylocal ReclamationDistrictsandtheyareinspectedandevaluatedbytheDepartmentofWater Resources.ThreefourthsoftheleveesintheDeltaarenonprojectlevees,forwhichlocal maintenancedistrictsareresponsibleandwhicharelocallyorprivatelyownedlevees.Thereis howevernodistinctiontowhatoutsidewatertheleveesaresubject.Bothprojectandnonproject leveeswithintheDeltahavetodealwithfluctuatingriverdischargesandtidalwaterlevels. (DWR,1995) Theprojectleveescanagainbedividedinurbanleveesandrurallevees.Urbanleveesare definedasleveesthatprotectmorethan10,000people.Theyprotectforexamplethecityof Sacramentowith450,000inhabitants.Ofthe2,600kmofprojectlevees2,050kmarerural leveesand550kmareurbanlevees.(Fugro,2007)

7

Figure2.4ApproximatelengthofleveesandtheirsubdivisionintheCentralValleyandDelta

2.2.2 Risk based flood protection and flood insurance

TheCentralValleyandDeltaleveesaresupposedtoprovidea100yearfloodprotection.Thisisa protectionagainstafloodwithaprobabilityof0.01toappearinayear.WithP=Probability, T=floodprotectioninyearsandn=numberofyearsthefollowingformulacanbeused:

n = − − 1  P 1 1  T  (21) Itmeansthatduringa30yearperiodthereisa26%chancetoafloodlargerthanthe100year floodlevel.(Mount,2005) FloodlevelstandardsarenotuniformoverthewholeUnitedStates.AscanbeseeninFigure2.5 theprotectionofAmerica’smajorrivercitiesvariesfrom500yearprotectionto100year protection.Sacramento,situatedalongtheSacramentoRiver,hasthelowestprotectionofall thesecities.Thereisnofederalfloodprotectionstandard.A100yearprotectionisthegeneral protectionlevelintheUSAforriversaswellasthecoast.(RIVM,2004)

Figure2.5FloodprotectionlevelsofAmerica’smajorrivercities(SAFCA,2007)

This100yearprotectionisarequirementfromtheFederalEmergencyManagementAgency (FEMA),whocarriesouttheNationalFloodInsuranceProgram(NFIP).This100yearlevelisa nationalstandard,arbitrarydefinedafterthe1968FloodInsuranceActwasestablished.The FEMAdoesnotbuild,developordesignlevees,buthasdevelopedcriteriatobecomeorstaya NFIPapprovedleveefollowingthechartofFigure2.6.Peoplelivingbehindarejectedlevee,in the100yearfloodplainhavetoinsurethemselvesagainstfloods.FloodHazardBoundaryMaps

8 Description Central Valley and Delta

givetheboundariesofthe1percentannualchancefloodplainwithinitisobligatorytopurchase floodinsurance.ToapproveorrejectleveestheFEMAusesthefollowingcriteria: Designcriteria:withaminimumfreeboardabovedesignlevel(100yearlevel)andrequirements onembankmentprotection,embankmentfoundationandstability,settlementandinterior drainage.(Alldatathatprovesthattheleveefulfillsthecriteriahastobecertifiedbyaregistered professionalengineer). Operationsplanandcriteria:operationsofclosureanddrainagesystemsmustbeunder supervisionofanapproved(federal)agency. Maintenanceplansandcriteria:anextensivemaintenanceplanundersupervisionofanapproved (federal)agencyhastobepresent.(FEMA,2002)

Figure2.6FEMAcertificationprocess(Fugro,2007)

NotallleveesintheCentralValleyandDeltaarecertifiedatthismoment.Mostofthelevees withintheFloodControlProjectsare,butmostofthenonprojectleveesintheDeltaarenot. Leveesthatarenotcertifiedarereasonablyexpectednottoprotectthecommunitiesagainsta 100yearwaterlevel.Oncealeveeiscertified,provinggoodmaintenanceisenoughtokeepthe leveecertified.Withnew,morestringentrulesFEMAusestoday,thegreaterpartofthelevees areexpectedtoberejected.AndFEMAisconsideringaregularrecertificationoflevees.(DWR, 1995)

2.2.3 Stress events

Climate TheCentralValleyofCaliforniaissituatedaroundlatitude40 onorthandhasahotMediterranean climate.Summersarehotanddry,withtemperaturesinthemidandupper30 osandoccasional heatwavesupuntil48oC.Wintersarecoolandfoggy,butitonlyfreezesveryoccasionally.Rain ismosttypicalforthewinterandspringseasons.ThenorthernSacramentoValleygetsmorerain

9

thanthesouthernSanJoaquinValley.TheaverageannualprecipitationintheSacramentoValley isabout15to30inches,whichis380to760mmayear.TheSanJoaquinValleygetsabout5to 15inches,125to380mmayear.TheDeltagetssomethinginbetweenthosetwo,ascanbe seeninFigure2.7.(OCS,2005)

Figure2.7AverageAnnualPrecipitationCaliforniaandDelta(OCS,2005)

Hydraulicboundaryconditions Leveesaredesignedtoprotectagainstoutsidewater.Themostimportantfunctionofaleveeis thereforethatithastobeabletowithstandhydraulicboundaryconditionswithanacceptable chanceofappearance. AllCentralValleyandDeltaleveesdealwithflooddischargesfromtherivers.Figure2.8and Table2.1summarizethemostimportantmeanandmaximummeasuredDeltaflowsasof2006. TheUSACEestimated100yearfloodelevationsfortheDeltain1986.Newstudiesarecurrently performedtogetabetterestimationofflowsandwatersurfaceelevations.TheSacramento Riverfloodcontrolsystemhasadesignflowof17,000m 3/s,ofwhich80%isdirectedtotheYolo Bypassatperiodsofhighwater.PartofthewaterpassestheDeltaonitswaytotheSan FranciscoBayandPacificOceanandpartistransportedtosouthernCaliforniaashousehold waterandirrigationwater.WhenthesnowintheSierraNevadamelts,fromJanuarytoJune,the riverdischargespeak.Warmspringstormscanspeedupthisprocessandcauseextremeriver discharges.Winterandspringfloodsarethereforeofteninducedbystorms.TheSacramento Riverismostdangerousatheavywinterrainsandwarmwinterweathercausingrapidsnowmelt. TheSanJoaquinRiveralsopeaksfromrainfallandsnowmelt,butoftenlaterthanthe SacramentoRiver,ascanbereadfromTable2.1.(Reid,2005;DWR,20052)

10 Description Central Valley and Delta

AlthoughtheDeltaissituatedinarelativelyprotectedarea,shelteredfromtheocean,tidal influencesandwindwaveactionsfromtheSanFranciscoBaycanstillharmthearea.A2004 floodintheDelta(see2.3.12)forexampletookplaceatlowriverdischargesandspringtide, whichprovesthatinfluencesfromtheoceanandbaycanbenormative.

SacramentoRiver andYoloBypass 1,534/13,890m 3/s

Cosumnes and Mokelumne Rivers 55/2,780m 3/s

Meantidalinflow/ outflow9,600m 3/s /9,300m 3/s

SanJoaquin River200/ 2,140m 3/s

Figure2.8Deltamajorinflows;meanandmaximummeasuredriverflows(modifiedfromUCDavis,2006) Table2.1SummaryofflowsonmajorinflowstoDelta(DWR,20052) PeakFlowof MeanFlowduringHigh Record2 FlowMonths (second DateofPeak HighFlow (Standarddeviation) highest) Flowof Station Months1 (m3/s) (m3/s) Record Sacramentoat January– 1,073(7%) 3,300(3,250) Feb19,1986 Freeport March (Jan3,1997) SanJoaquin February 200(6%) 2,140(1,277) Jan5,1997 RivernrVernalis June (Mar7,1983) Mokelumne January– 24(12%) 150(144) Mar8,1986 Riverat June (Jan22,1997) Woodbridge CosumnesRiver January– 31(11%) 2,630(1,280) Jan2,1997 atMichiganBar April Feb17,1986) YoloBypassnr January 461(5%) 10,590(10,110) Feb20,1986 Woodland February (Jan3,1997)

11

Seismicevents Fromnoneofthe162deltaleveebreachesoflastcenturyanindicationwasfoundthatitwas causedbyaseismicevent.However,therearepeoplethatbelievethatoneofthemost importantthreatstothedeltaisanearthquake,especiallyincombinationwithhighwaterlevels. Nooneknowsexactlywhattheeffectsofanearthquakewillbe;theleveeshavenever significantlybeentestedtothat.TheDeltaliesinthevicinityofearthquakefaultsthatare capableofproducingsignificantgroundshaking.Toestimatetheriskoffailureasaconsequence ofanearthquake,damagepotentialzoneswereidentifiedbyTorresin2000,basedonlocal knowledgeandgeotechnicalinformation.Earthquakescaninducesettlementsandliquefaction. Tallleveesonunstablesoilsarethemostvulnerableforthesemechanisms.Areaswiththese characteristicsthereforehavethehighestdamagepotential,asshowninFigure2.9.(Mount 2005)

Figure2.9EarthquakefaultsneartheCentralValleyanddamagepotentialzonesintheDelta(Mount,2005)

2.2.4 Strength: failure mechanisms and levee design

Leveedegrading Theriverleveeswerebuiltintheperiodofthemid1800suntilthe1960s.Thematerialusedwas hydraulicfilldredgedfromtherivers,whichoriginatedfromupstreamminingactivities.This materialishighlyperviousandbadlycompacted.Notmuchisknownabouttheconstructionand natureoftheclayandsandyfoundationmaterial.Poorconstruction,seepage,erosionand deferredmaintenancemaketheseleveesveryvulnerablenowadays.

Figure2.10TypicalcrosssectionofDeltalevees(UCDavis,2006)

12 Description Central Valley and Delta

GettingintotheDeltaonefinds100yearsoldlevees,foundedonweakpeatsoils,whichare underlainbyliquefiablesands(Figure2.10).Aswellastheupstreamriverlevees,materialused forleveeconstructionisoftenbadlycompactedhydraulicfill,butitiscombinedwithlocalpeat material.Decompositionandconsolidationofthepeatmaterialdegradestheselevees.(Reid, 2005) Failuremechanisms ThemechanismsthatcancauseleveefailureandthatarementionedinreportsabouttheCentral ValleyandDeltaleveesare:(DRMS,2006;USACE,2002) • Leveethroughseepageand/orunderseepage(piping) • Pipingthroughcracksoranimalburrowinthelevees • Waveinducederosiononbothwaterandlandsideslopes • Floodinducedovertopping • Currentinducederosion • Staticinstability • Leveeinstabilityduetosuddendrawdown • Seismicinducedfailures(deformationduetoliquefaction) Astandardoperatingprocedure(SOP)oftheSacramentodistrictcategorizesthemostimportant failuremechanismsasinFigure2.11.Overtoppingtakesplacewhenthewaterlevelexceedsthe leveeheightorwhenwavesovertopthelevee.Astandardfreeboardof3ft(0.9m)abovethe normativewaterlevelisusedasastandardtoevaluatethecrestheight.Surfaceerosionisa regularobservedmechanism,especiallyalongtheCentralValleyrivers.Duringthemid19 th centurytheriverprofileswereadjustedtoflushthehydraulicminingsediment,whichclockedthe riversandcausedfloods.Nowadaystheminingsedimentisgoneandtheriverserodethe embankments.Internalerosion(piping)isdividedinseepagethroughtheembankmentand underseepage.Slideswithintheleveeembankmentorthefoundationsoilscanbeinducedby waterpressures,butalsobyearthquakes.Theearthquakeinducedfailuresareonlyshortly mentionedintheSacramentoSOP,butitisoneofthemostimportantthreats,especiallyforthe Deltalevees.(USACE,2003)

Figure2.11LeveefailuremechanismsimportantfortheCentralValley

Leveedesign AleveedesignmanualfromtheUSArmyCorpsofEngineers(USACE,2000)givesstepsthatcan befollowedwhendesigningalevee.Thereisnostandarddesign,becauseofthedifferencein foundationconditions,propertyvaluesandavailablesoilsperregion.Whatisprescribedisthe preliminaryresearchthatshouldbedoneandhowtopreventleveeseepageandstability problems.A1Von2Hslopeisforexamplethesteepestslopeallowedforconstruction,whilefor asandlevee1Von5Hisconsideredflatenoughtopreventdamagefromseepage.Thecrown widthshouldbeatleast3.06to3.66m(10to12ft),butdependsagainonthecircumstances. Compactedfillsarepreferredabovehydraulicfill,althoughthelattercouldbeusedfor agriculturallevees,wherefailurewillnotendangerthatmanylives.Figure2.12showslevee standardsasusedbydifferentorganizations,asforexampleFEMA.ThePL99standardrefersto aPublicLaw,inwhichaminimumstandardforrepairassistanceafterdamagewasestablished. (Reid,2005)

13

Figure2.12Examplesofleveestandards

2.2.5 Inspection, maintenance and levee evaluation

MethodstoevaluatetheperformanceoftheleveesintheUnitedStatesaresetbytheUSACEand describedinseveraldocuments.Seepageandmacrostabilityarethemainissuesdealtwithin thiscontext,includingfieldevaluationandlabtestmethods.TheFEMAcriteriaforlevee certificationarelikelytodefertotheseguidelines,whiletheUSACEfromorigincertificatedthe leveesunderFEMANFIPregulations.Togetleveecertificationitisthereforeadvisabletousethe theUSACEmethods.(Fugro,2007) Inspection,maintenanceandemergencyresponsepreparationsaredailyDWRfloodmanagement activities.AsstatedinUSACE’sStandardOperationandMaintenanceManual,eachmaintaining districtisrequiredtoperformadetailedinspectionevery90days,includingpriortoandjustafter thefloodseason.TheresultsoftheseinspectionshavetobereportedtotheDWR,whocombines themandhandsaquarterlyandyearlyreporttotheReclamationBoard.(Reid,2005) ConstructionofleveesisnormallypaidforbytheUSACE.WhiletheWaterResources DevelopmentActof1986requiresthemtosharethesecostswithlocalnonfederalsponsors,the ReclamationBoardandlocalleveedistrictsalsopaytheirshare.Butmaintenanceisentirelypaid forbylocalorganizations.WithintheDeltathereisaDeltaLeveeMaintenanceProgram,because ithasastatewidebenefit.Butsincesummer2006fundingofthemaintenanceoftheseleveesis lefttothelocalsaswell. ThereisaPublicLawwhichrequiresminimumstandardsforassistance(seeFigure2.12).If projectleveesmeetthoseminimumstandards,theUSACEwillhelprepairaleveeintheeventof damage.ButthenonprojectleveesarenotinspectedbytheUSACEorDWR.Anditisnoteasy togetfinancialsupportfromtheUSACEfortheselevees,unlessaleveedistrictisformed.(Reid, 2005)

2.2.6 Drivers of increasing flood risks

Inthefutureanincreasedpotentialforleveefailurecanbeexpectedifnoinitiativesarestarted. Thispotentialiscausedbothbydriversofchange,whichcauseachangeinloadonthelevees andstrengthofthelevees.Climatechange,astillincreasingpopulation,economicgrowthand degradationofleveesduetosubsidenceanderosionarethemainfactors,whichnotonlycause anincreasingfailureriskbutwillalsoleadtomoredamageifafloodoccurs.

14 Description Central Valley and Delta

Load Climatechanges:anexpectedtemperatureriseof3to10.6degreesFahrenheittowardstheend ofthecentury,dependingonemissionsandorefrequentandmoreseverestormsareexpected. Thesechangeswillleadto: Sealevelrise:LastcenturythesealevelalongCalifornia’scoastrosewith18cm.Ifnoactionis undertakenthesealevelwillrisewithanadditional55to88cmbytheendofthiscentury.Flood stagesintheDeltawillriseandduringlowrunoffseasonsthesaltintrusionwillincrease. BackwatereffectswillalsoincreasewaterlevelsupstreamoftheDeltaandputmorepressureon theriverlevees. Changesinrunoffconditions:Thetimingandintensityofprecipitationisexpectedtochange togetherwithincreasedstormintensity.Thetrendforfloodflowsistobehigherthananticipated andstrongwindsinopenwatercancausehigherwaterlevelsreferredtoasfetch.TheSierra Nevadasnowpackisexpectedtoreduce30%to90%thiscentury,decreasingtheApriltoJuly runoffoftheriverspouringintheDelta.Extremelywetandextremelydryperiodswillleadto morefloodprotectionproblems. Strength Lackofmaintenance:asmentionedbeforemaintenancebudgetsfromtheStateandfederal sponsorshavebeencutdown.Ifnolocalmoneyisraisedtomaintainthealreadyvulnerable levees,deterioration,especiallyduetoerosion,willincreaserapidlyandadisasterisjustamatter oftime. Subsidence:oxidationandconsolidationoforganicrichsoilscausesubsidence.Atthismoment someislandsarealready8mbelowmeansealevelandtheysubsidewithapproximately3to5 cm/year.SubsidenceoftheislandsreducesthestabilityoftheleveesascanbeseeninFigure 2.13.(Mount,2005)

Figure2.13Deltasubsidence(Mount,2005)

15

Damage California’spopulationisalreadyapproaching37million.44millioninhabitantsareexpectedin 2020and55millionin2050accordingtotheCaliforniaDepartmentofFinance.Thismeansthat theurbanwaterdemandwillgrow,increasingpressureontheDeltawaterdeliverysystem.If somethinghappenstothetransportsystem,morepeoplewillbeaffectedbythis. ThepopulationoftheDeltaitselfisalsostillincreasing.Urbanizationalongtheriversand developmentinthedeltawillcausemoreandmorevictimsandmoredamageincaseofaflood. Environmentalconcerns:ecosystemneedsarerising,partlybecauseoftheincreasingpopulation.

2.2.7 Dealing with increasing flood risks: Initiatives

ThedamagehurricaneKatrinacausedinNewOrleanshasacceleratedthedevelopmentof initiativesinCalifornia.PlansaredevelopedtoimprovethefloodprotectionintheCentralValley andDelta.Mostoftheseplansarenowgatheredunder“FloodSAFECalifornia”,aninitiativeofthe DWRofCalifornia.Themaingoalsofthisinitiativeare(DWR,2007):

• ReducefloodrisktoCalifornians,theirhomesandproperties;

• Developasustainablefloodmanagementsystem;

• Reducetheconsequencesoffloodswhentheydooccur. Themostimportantinitiativesintheabovecontextare: EmergencyLeveeErosionRepairProject:Thisprojectwasstartedinearly2006afterGovernor ArnoldSchwarzeneggerdeclaredastateofemergencyforCalifornia’sleveesystem.TheDWR initiallyidentified29criticalerosionsitesintheSacramentoRiverfloodcontrolsystem,whichhad toberepaired.TheDWRassistedbytheUSACErepairedthesesitesin2006,fundedbyaState AssemblyBillandsomemoneyfromtheUSACE.Another4siteswereaddedinlate2006.Repairs consistofplacingsoilandrockandnaturalvegetationandwood.(DWR,20062) DeltaRiskManagementStrategy(DRMS):Thetaskswithinthisprojectaretoevaluatecurrent andfuturedeltarisks,identifyconsequences,identifyriskreductionmeasures,includinglevee upgradesandlandusechangesandtoevaluatealternativestrategiestoreducetherisk.An introductiontothisprojectwaswrittenin2005andtheInitialTechnicalFrameworkdescribing themethodologytoanalyzethefragilityoftheDeltaleveesisnowinitssecondphase.(DRMS, 2006) Taskorder17:Geotechnicalinvestigationandevaluationoftheurbanlevees.Geotechnicalfirms areinvolvedinthisproject,overseenbytheDWR.Californiahasrecognizedtheurgentneedto upgradethedeterioratedleveesystemsintheSacramentoandSanJoaquinvalleysandis startingnowwiththeleveesthatareofthehighestpriority:theurbanlevees,whichprotect highlypopulatedareasasSacramento,Stockton,MarysvilleandYuba. StatebonddebtsofNovember2006:Twobondsthathavebeenrewardedandmakeitpossible toevaluateandimproveleveesintheCentralValleyandDelta.Morethan4billionUSdollarsare availableforfloodcontrolandlevees. DeltaVisionProcess:Initiatedtoencompassandintegratemanyseparateplanningeffortsandto developlongtermstrategiesforasustainableDelta

2.2.8 Organizations involved in flood policy

TherearenumerousinstancesinvolvedintheUSfloodpolicyfromfederalinstitutestolocal organizations.InFigure2.14themostimportantorganizationsarelinkedwiththeirsupervising organization,sortedperlevel.Mostofthemarealsoshortlydescribedinthisparagraph. FederalEmergencyManagementAgency(FEMA):isaformerindependentagency,whichbecame partoftheDepartmentofHomelandSecurityin2003.Itisafederalagencywhichistaskedwith respondingto,recoveringfromandmitigatingagainstdisasters.FEMAforexampleprovides FloodInsuranceRateMaps,whichgiveanindicationabouttheareaswherefloodinsuranceis obligatory.

16 Description Central Valley and Delta

Figure2.14Organizationsinvolvedinflooddefensepolicy

UnitedStatesGeologicalSurvey(USGS):USGSisascientificfederalagency.Theirmaintasksare measuring,analyzingandmappingofnaturalresourceconditions.Theyforexamplemonitor streamflowsandprovidegeologicalmapsanddata. BureauofReclamation(Federal);U.S.DepartmentoftheInterior:Establishedin1902,the BureauofReclamationisbestknownforthedams,powerplants,andcanalsitconstructedinthe 17westernstates.Today,Reclamationisacontemporarywatermanagementagencywitha StrategicPlanoutliningnumerousprograms,initiativesandactivitiesthatwillhelptheWestern States,NativeAmericanTribesandothersmeetnewwaterneedsandbalancethemultitudeof competingusesofwaterintheWest. UnitedStatesArmyCorpsofEngineers(USACE):USACEistheengineeringbranchofthearmy, whichsupportsin5areas:waterresources,environment,infrastructure,homelandsecurityand warfighting.RelatedtofloodstheUSACEinspectsprojectlevees.Theyprovideengineering manualsforleveedesignandrelatedengineeringandhastheauthoritytofightfloodstosave livesorprotectpropertywheneverthedistrictcommanderissuesadeclarationofemergency. DepartmentofWaterResources(DWR):EachstatehasitsownDWR.TheDWRofCalifornia operatesandmaintainstheStateWaterProject,includingtheCaliforniaAqueduct.The departmentalsoprovidesdamsafetyandfloodcontrolservices,assistslocalwaterdistrictsin watermanagementandconservationactivities,promotesrecreationalopportunities,andplans forfuturestatewidewaterneeds.TheDWRinspectsandevaluatesmaintenanceofthestate’s federallydesignedprojectlevees. TheStateReclamationBoard,underSection8609oftheWaterCode,hastheauthorityto designatefloodwaysintheCentralValley.Itwasestablishedin1911todevelopandoverseea singlefloodcontrolplanfortheCentralValley.TheBoardisadministrativelypartofCalifornia’s DWR,butitmaintainsseparateandindependentdecisionmakingpowers.Inpartnershipwiththe ArmyCorps,theStateReclamationBoardrepairedriverleveeerosionsitesonaregularbasis throughtheearly1980susingtheSacramentoRiverBankProtectionProject.(Reid,2005) ReclamationandLeveeDistricts:maintainthe1,100nonprojectmilesintheDeltaandsome projectlevees.(DWRisresponsibleforchannelmaintenanceoftheSacramentoRiverFlood ControlProject;localagenciesareresponsibleformaintenanceofthechannelsoftheSan JoaquinRiversystem) CALFEDBayDeltaAuthority:partnershipbetweenstateandfederalagenciesinvolvedin protectingtheecosystemencompassingSanFranciscoBayandtheDelta. DeltaProtectionCommission:Todevelopalongtermresourcemanagementplanforanarea designatedastheDeltaprimaryzone;EstablishedbytheDeltaProtectionActin1992(California WaterCodeSection12220);haslanduseplanningjurisdictionovertheprimaryzone. CaliforniaWaterCommission:ServesasapolicyadvisorybodytothedirectorofWaterResources onallCaliforniawaterresourcesmatters.

17

2.3 History

2.3.1 Introduction

BecausethisreportmainlydealswiththefloodcontrolintheCentralValleyandSacramentoSan JoaquinDeltainthestateofCalifornia,aviewontheAmericanhistoryoffloodprotectionis describedaroundthehistorythispartoftheUnitedStates.Floodcontrolactivismoriginatedin theSacramentoandMississippiRivervalleys(O’Neill,2006).Therefore,togiveanideaofthe developmentoffloodprotectionmethodsandfederalinitiatives,floodsinthelowerMississippi Rivervalleyswillalsobementioned,forexamplethe2005floodofNewOrleans.Thisdisaster againfocusedattentionontheimportanceoffloodprotection,notonlyintheUnitedStates,but alsointheNetherlands.Table2.2liststhemostimportantandriverfloodsandstormsurgesfor thedevelopmentofthecurrentfloodpolicyandexposesthedangertofloodsintheCentral ValleyandDeltatoday. Table2.2ImportantandrecentfloodsintheUSandCalifornia Importantandrecentfloods ImpactonUSorCaliforniafloodpolicy Mississippifloods1949 SwampandOverflowLandActsof1949and1950 SacramentoValleyRiverfloods1860s Courtdecisiontooutlawdumpingofminingdebris EstablishmentoftheMississippiRivercommission MississippiRiverfloods1870sto1890s andMRCstandardleveedesign Nationwidefloods1935and1936 FloodControlAct1936 1986Riverfloods Stateliableforflooddamage 1997CentralValleyfloods UpperJonesTractleveefailure2004 NewOrleansflood2005hurricane Increasedattentiononleveesandlevee Katrina evaluation

Figure2.15MapoftheUnitedStateswiththeMississippiDeltaandCaliforniaCentralValley(WeltAtlas.de, 2006)

2.3.2 First flood protection along the 1719

BeforetheEuropeancolonistsarrivedintheUnitedStates,therivershaditsnaturalcourseand wereboundedbynaturallevees.Duringgreatfloodsthewatercouldeasilyoverflowthelarge floodplains.ButsoonafterEuropeansettlement,wetlandsintheeasternpartsofAmericawere reclaimed.Atthattimetheswamplandswereregardedasannoying:theywereasourceof

18 Description Central Valley and Delta

diseasesandarestrictiontooverlandtraveling.Handdugditchesdrainedthewetlands.Asthe populationgrew,moreandmorewetlandswereconverted.(USGS,1997)

Figure2.16Naturallevees(Berkeley,2006)

ThefirstknownfloodprotectionworksoftheUnitedStatesdatefromjustafter1717,whenthe FrenchsettledinsoutheastAmerica.ItwasJeanBaptisteLeMoynewhomovedthecapitalofhis colonyfromsterilelandstothefertilegroundsalongthelowerMississippiRiverandthuscreated NewOrleans.HehadtoprotecthistownintheMississippiDeltawetlandsagainstriverfloodsand thereforeheconstructedleveesontopofthenaturalriverlevees(Figure2.16).By1727the leveewasalreadylongerthan1.5kmandhadaheightofalmostameter.Landholderswere responsiblefortheirmaintenance.The1735flood,whichlastedsixmonths,destroyedmostof theleveesandshowedthatnotalllandholdersmaintainedtheirpieceofleveeproperly.Only slowly,newleveeswerebuiltbytheslavesofthelandowners.Weaklevees,builttonostandard, weremorearulethanexception.(Cowdrey,1977)Whilethecitylaylessthanameterabovesea levelperiodicfloodingfromtheMississippiriverbetweenAprilandAugustdominatedthearea, togetherwithfloodingandwinddamagecausedbyhurricanesfromJuneuntilOctober.The deltaicplanewasalsosubjecttosettlementsof0.5to3meterspercentury.(Berkeley,2006) From1803,whenthestateofLouisianawaspurchasedfromtheFrenchtotheUnitedStates,the UnitedStatesArmyCorpsofEngineers(USACE)playedanimportantroleinformingthe MississippiDeltatothedesiresoftheinhabitants.TheUSACEwasestablishedin1775,when engineerswereneededtosupportthearmyintheAmericanRevolution.Thefirsttaskswereto fortifykeyinfrastructureduringwars,suchasharborsandtobuilddefensesagainsttheBritish alongtheseacoast.Constructingofseacoastfortificationscontinuedastheengineers’primary responsibility.WithanActoftheCongresstheArmyCorpswaspermanentlyestablishedin1802. SoontheUSACEwasauthorizedbythegovernmenttoimprovenavigationontherivers.

2.3.3 Lower Mississippi Valley floods 1849

TheMississippidrains¼oftheUnitedStateswaterfromawatershedareaofapproximately 3,237,500km 2.Itisthethirdlargestriverwatershedintheworldandbyfarthelargestriverof theUnitedStates.NowonderthatmostfloodrelatedpolicywasestablishedafteraMississippi RiverfloodorafterhurricanesthatinitiatedeastAmericanfloods.(Berkeley,2006) Togetherwithlandexpansionthepopulationgrewfrom7.2millionin1810to12.8millionin 1830.TheMississippirivervalleyhad1.4millionwhitesettlersby1810and2.6millionby1820. Settlersweremovingwestwardandcreatedafurtherlargescaleconversionofwetlands.Inthe meanwhilelandownersorganizedthemselvesinleveeboardstocoordinatefloodcontrol.The statesorlocalgovernmentssupportedtheseboardsbycreatinglocalleveedistricts.Riverside andbacklandlandownershadtopaytaxes,butittookdecadesbeforeallwhobenefitedfromthe leveespaidthosetaxes.Butleveequalityoftenremainedpoor,asnolawconcerningtheshape

19

andsizeofriverswasenforced.Topreventsabotageindividuallandownersorleveedistrict officialspatrolledtheirleveesduringtimesofhighwater.(O’Neill,2006) AfterthesteamboatinventionregulartrafficwasusingtheMississippiRiver.TheArmyCorps recommendednavigationalimprovementsandfloodprotectionworks.The1824Riversand HarborActsuppliedinthismanner,butonlygrantedthenavigationalpart.Butduringthelate 1820sandinthe1830sthefundingforriverprojectswasreducedandleftoverhundredfederal waterprojectsunfinished.Thelegislatorsweremoreinterestedintemporarydredgingoperations thaninexpensivestructuralprojects.Riveractivistskeptondemandingforchannelandharbor improvements,whilethosefromtheMississippiDeltakeptonaskingforfloodcontrol. In1849and1850severefloodingfromtheMississippiRiverinundatedlargepartsoftheriver basinandtheMississippiDelta(27millionacres).Alevee25kmupstreamfromNewOrleanshad brokeandflooded220cityblockswith2.7mofwater.12,000citizenshadtobeevacuated. (Berkeley,2006)ThisfloodfinallyledtothefirstSwampandOverflowLandAct,whichconveyed theownershipoftheDeltamarshesfromthefederalgovernmenttotheState,whichfromthen wasgrantedtoreclaimwetlandsandbuiltlevees.In1950and1951thisActwasextendedto otherstates,includingCalifornia.(O’Neill,2006)

2.3.4 First flood protection in the Central Valley 1850

Inthelate18 th centurythefirstEuropeancolonistsreachedtheCentralValley.Beforethatthe NativeAmericans,CalifornianIndians,hadalreadylivedthereforabout15,000years.Thetotal populationofwhatisnowcalledtheStateofCaliforniacountedabout300,000before colonization.PeopleintheValleymainlylivedfromfishingandhunting.Sacredmissionscaused theSpanishtosettlethemselvesinwhattheycalledNewSpaininthe1770s.Inthisperioda declineofabout75%ofthenumberofnativepeopletookplaceduetodiseases.From1800 expeditionstotheCentralValleyledtothediscoveryandnamingoftheSacramentoRiverand theSanJoaquinRiver. SooncitieswerefoundedinSpanishCaliforniaofwhichLosAngeleswasoneofthefirstones. TheinhabitantsconsistedofIndians,Africans,Spaniardsandmixesofthose.Toprovidefood agriculturalareaswereexpandedandcattlegrazedthelargeareassurroundingthecities.In 1848CaliforniawasseizedbytheUnitedStatesandofficiallyenteredtheUnionin1850. AmericansdiscoveredCaliforniainthefollowingdecades.Aftergoldwasfoundin1848,extensive goldminingactivitiesattractedforeigners.ButEasternAmericansalsodiscoveredtheagricultural potentialoftheCentralValley.Richsoilsanddrysummersmadetheregionidealforwheatand grainproduction.

Figure2.17TheDeltaandBaywetlandsin1848and1994(USGS,2006)

20 Description Central Valley and Delta

BeforetheDeltahaditscurrentperformancetheareaconsistedoftidalmarsheswithanetwork ofchannelsandislands.OftheCentralValleyabout4millionoutofthe13millionacreswere estimatedtobetidalwetlandsbefore1850(seeFigure2.17).Sedimentofthesemarshplatforms consistedofinorganicmaterialfromthewatershedandorganicmaterialfromtules(plants)from themarshesitself.WiththeSwampandOverflowlandActof1850developmentoftheCentral Valleystarted.Farmersfirstbegandikinganddrainingoftheriverfloodplainareas.Development intheDeltabeganinthelate18 th century.Thetidalmarsheswerealsoreclaimedtobeusedas agriculturalland.Topreventtheagriculturallandfromfrequentflooding,leveeswerebuilt, mostlybyChineselaborersandfarmers.(DWR,1995)(USGS,1997)

2.3.5 River floods 1862

Becauseofthegoldmining,settlingintheCentralValleydevelopedsoquicklythatthesettlers hadoftennoideaofthedevastatingpoweroftheSacramentoRiver,whichhadthelargestfast risingfloodsoftheUnitedStatesatthattime.Soonfloodsbecameevenworsewhenupstreamin theAmericanandFeatherRivers,intheSacramentoRivervalley,goldminingwasexpanding. Techniquesevolvedandledtodevelopmentofnozzlestoblastawaydepositswithwater pressure.Dumpedminingdebrissiltedupriversandcausedriverfloodsthatmadethefarmers angry.InJanuary1862agreatriverfloodputSacramentoin3metersofwater.Late1861heavy rainscombinedwiththechokedriverbedsbyminingdebriscausedthisflood.Morefloodshadto followthisone,forexampleinMarysvillein1875,beforegovernmentactionwastaken.Acourt decisionthatoutlawedthedumpingin1884hadtoimprovethesituation.(O’Neill,2006)Bythat timemostofCalifornia’sswamplandwasinprivateownershipandsteampowereddredgeswere usedtoimprovetheleveeswithalluvialmaterialfromtheriver,whichoriginatedfromthe upstreamminingactivities.

2.3.6 Mississippi River floods 1870s to 1890s

InthemeanwhilefloodsalongtheMississippiRiverwereoccurringalmostyearly.Finally,aftera floodin1874,theMississippiRiverCommissionwasestablishedbyanactofcongressin1879. ThetaskofthiscommissionwastoimprovesafenavigationthroughtheMississippiRiverand preventdestructivefloods.Theydidthisbybuildingfloodcontrolstructuresintheupstreampart oftheMississippiRiverandbyredirectingandnarrowingtheriver. Butafloodin1890provedthatthechangesalongandupstreamoftheriver,probablyimproved navigation,butwerecertainlynotpreventingfloods.Theyhadonlymadethesituationworse. Morethan80kmofleveewasdestroyedduringthisfloodandtheRiverCommissionhadto changeitscourse.The1890floodwasadoptedasthedesignlevelforlevees.Mostofthelevees hadtoberaisedandthereforealeveestandardwasdeveloped.Leveeswereenlargedandraised withwidelyavailablehydraulicfill(seeFigure2.18).Acrownwidthof2.4mandaslopeof1:3 wereprescribed.(Rogers,2006)

Figure2.18MississippiRiverCommissionleveedesign(Rogers,2006)

21

2.3.7 Mississippi flood 1927

Figure2.19Extentofthe1927Mississippiflood(Barry,2002)

Inearly1927theMississippiValleyfloodedagainafterextensiverainfall:45cmin48hours.It createdthelargestdestructioneverfromariverfloodintheUnitedStates.246leveebreaches causedtheinundationof70,000km 2withadepthofabout10m(Figure2.19).Atleast246 peoplewerekilled,whileothersreportsmentionmorethan1,000drownedpeople.Aleveejust upstreamofNewOrleanswasdynamitedtoprotectthecityNewOrleansandpreventdrowning ofevenmorepeople.Aleveebreachfurtherupstreamlaterthatdaymadetheblowup unnecessary.Unfortunatelyvillagesupstreamhadalreadybeendestroyed.Ittooksixmonthsfor theMississippitoreturntoitsoriginalsize.TheUShadnofederaldisasterresponseagencyat thatmoment.InsteadtheRedCrosshelpedthegovernmentwithtrainedvolunteers,supported bydonations.TheUSCoastGuard,NavyandArmyquicklyrespondedandwiththeirhelp.One personwasestablishedbythepresidenttobeinchargeoftherescueoperation,whichmadethe responseveryquickandefficient,butgavethatonepersonmaybetoomuchpower.(Kosar, 2005)

2.3.8 Nationwide floods 1935/1936

Costlyfloodsin1907and1913hadalreadyledtoestablishmentoftheHouseCommitteeon FloodControlin1916andthe1917FloodControlAct.ThisActwasfirstonlyaimedtocontrol floods,butafterthe1927floodsitwasexpandedextensively.Nationwideseriesoffloodsfinally leadtothe1936FloodControlAct,thefirstnationwidefloodcontrolprogram. InthemeanwhiletheCentralValleyProjectwasstartedinCalifornia.Itconsistedofconstruction oflargedamandaqueductconstructionstotransportmassivequantitiesofwaterfromnorthto south,startedin1937.ItwasalsoabenefittofarmersintheCentralValleywhocouldirrigate fromthatwater. In1968theFloodInsuranceActwasestablished,whichenablespersonstopurchasean insuranceagainstphysicaldamageorlossofpropertycausedbyfloodsintheUnitedStates.Itis theonlynaturalhazardforwhichthefederalgovernmentprovidesinsurance.

22 Description Central Valley and Delta

2.3.9 1972 failure of the Brannan Island levee, California

InJune1972adryseasonleveefailurecausedinundationofthe7,500acres(3,040ha)Brannan IslandintheSacramentoSanJoaquinDelta.SaltwaterwasdrawnintotheDeltasystemand contaminatedthedrinkingwatersupplyandirrigationwater.Waterexporthadtobestoppedfor severalweeks.500,000acrefeetoffreshwaterwereusedtoflushthesystem.Afterthisfailure itwasrecognizedthataDeltaLeveeProgramwasnecessary.Withthe1973FloodDisaster ProtectionActCalifornia’sDeltaLeveeProgramwasafact.Leveemaintenancecouldfromthen besupportedbytheState.InthecourseoftimethisprogramevolvedintotheDeltaLevees MaintenanceSubventionsProgramandtheSpecialFloodControlProjects,priortosomeother components.FromtheSubventionsProgramreclamationdistrictscanapplyyearlyforgrant funds,basedontheirownmaintenanceplan.TheDWRreviewstheseplansandwithapproval fromtheReclamationBoardagreeswiththeReclamationDistrictsonthereimbursementwitha maximumof65%ofthetotalcosts.TheSpecialProjectsprogramwasestablishedtoaccomplish projectsofspecificinteresttotheState.Grantsfromthisprogramareforexampleusedforlevee improvements,emergencypreparednessandstudiessupportivetoDeltafloodcontrol.(DWR, 20063;DWR,2005)

2.3.10 Floods of 1986

Afterthe1986floodevent,causedbywarmwinterstorms,theStatelegislaturedevelopedtarget elevationsandcrosssectionsforleveesthroughouttheDelta(Mount,2005).TheSacramento RiverFloodControlProjectwasstartedtoevaluate1,059milesofleveesalongtheSacramento River.Thisproject,carriedoutbytheCorpsofEngineers,lasteduntil2003.89milesneeded significantrepairs,ofwhichmosthavebeencompleted.Butthecriteriausedinthoseevaluations areoutdatedandtheCorpshasrecentlydevelopednewseepagedesigncriteria.(DWR,2005; USACE,2005) AnotherresultfromthisfloodwastheawarenessthattheStatecanoftenbeheldresponsiblefor flooddamage.Acase“PaternovsStateofCalifornia”wasstartedafterthe1986floodandlasted until2003whencourtdecisionstatedthatwhentheStatehadacceptedandoperatedtheflood defensesystems,evenwhentheydidnotconstructitthemselves,theywerestillresponsiblefor thestructuralintegrity.(DWR,2005)

2.3.11 California River floods 1997

In1997theriverleveesalongtheSanJoaquinandSacramentoRiversproved,justlikein1986, nottobesustainableagainstextremeriverdischarges.InJanuaryofthatyearwarmtropical stormscausedmeltingoftheSierraNevadasnow,whichwasaccompaniedbyheavyrainfall.The runoffposedaheavyloadontheriverlevees.The30leveebreachesthatweretheresultwere mainlyseepagefailures.Thefloodforcedmorethan120,000peoplefromtheirhomesand damagedordestroyedabout30,000residentialand2,000businessproperties.Sixpeoplewere killed.InresponsetothesedamagingfloodsinCalifornia’sCentralValley,theCorpsofEngineers convenedaLeveeSeepageTaskForce.Resultsfromtheirstudyrecentlyledtonew,sharpened designcriteriaforunderseepage.Othernewplansandfundsthatweremadeavailableafterthis floodwereagainreducedinthefollowingdryyearswhentheStatefacedafiscalcrisis.(USACE, 2005)(UCDavis,2006)(DWR,2005)

2.3.12 Jones Tract 2004

AtJune3 rd ,adryweatherDeltaleveefailureatJonesTractsurprisedlocalauthorities.Thelevee, foundedonpeat,suddenlyfailedofareasonwhichisstillnotknown.Theevidencegotwashed awaywiththeupcomingspringtide.Itcausednearly$100millioninemergencyresponseand waterpumpingcosts.Thewatersupplyinfrastructurewasshutdownforseveraldays.11,000 acreswerefloodedbyonlyoneleveebreach.Severalotherleveesalmostfailed.

23

Figure2.202004UpperJonesTractleveefailure(Reid,2005)

Lastcenturymorethan140leveefailurescausedinundationoftheislands,mostofthemduring floodseason.ThemostrecentfloodfightsinJanuary2006(Figure2.21)areanexampleofhow fragiletheDeltasystemistoday.

Figure2.21FloodfightsJanuary2006(UCDavis,2006)

24 Description Central Valley and Delta

2.3.13 2005

ThepreviousparagraphsfocusedonfloodsintheCaliforniaCentralValleyandDelta,butinthe meanwhiletheMississippiRivervalleyhadsufferedfrom“TheGreatFlood”in1993,whichwas theworstsincethe1927floodandinundated840,000km2.Itwasanationwidefloodalso affectingtheMidwestoftheUSAandtheMissouriRivertributaries.Itwasatthatmomentthe mostcostlynationwideflood:damagewasestimatedtobeabout15billionUSdollars.(DWR, 20063) Butbetterrememberedtodayandmoreinfluencingtothecurrentfloodpoliciesisthe2005New Orleansflood.Onthe29 th ofAugust,2005,astormsurgecausedbyhurricaneKatrinaledto numerousleveefailures,thefloodingof75%ofthemetropolitanareasofNewOrleansandthe deathofmorethan1,300people.Thedamageisintheorderof$200billion,whichisthemost costlyengineeringcatastropheinhistory.Morethan450,000peoplehadtoevacuate.(Berkeley, 2006) Theleveesmainlyfailedbecauseofovertopping,whichledtoerosionandfailingoftheflood wallswithinandontopofthelevees.Floodwallswereoftentooshallowandcouldnotprevent underseepageproblemsaswell.Someotherleveeswereonlyconstructedoutoflocallydredged materialwhichwashighlyerodable.Theseleveeswereeasilywashedaway.Therewerealso problemswithtransitionalstructuresbetweendifferentflooddefensesystems.TheBerkeley investigationteamconcludedthat,althoughthestormsurgewasquitestrong,theleveesfailed becauseofshortcomingsintheleveesystems.Backgroundfortheseshortcomingsisformedby organizationalandinstitutionalproblemsbetweengovernmentalandlocalinstanceswhichwere jointlyresponsiblefordesign,construction,operationandmaintenanceofthefloodprotection systems.(Berkeley,2006) ThedisasterinNewOrleanshasagainfocusedtheattentionontheimportanceofawell designedandmaintainedflooddefensesystemandontheresponsetosuchadisaster.New Orleanshadalreadybeenfloodedafterahurricanebeforein1915,1940,1947,1965and1969. Afterthe1965stormsurge,causedbyhurricaneBetsy,anewfloodprotectionsystemwas authorized.ThisprojectwasnotfinishedyetwhenKatrinaarrived.Projectstopreventsimilar disastersinthefuturehavenowbeenstarted. ItwasthiscatastrophiceventthatalsocreatedtheawarenessinCaliforniathatanequaldisaster couldhappentothemandtocalloutastateofemergency.

25

3 Description Netherlands

TheNetherlandsisfamousforitswaterandwaterdefenses.Thereisadmirationforstructures liketheEasternScheldtstormsurgebarrier,butatthesametimepeopledonotunderstandwhy theDutcharelivingbelowsealevel.Thischapterwillgivesomeinsightinthehowandwhyof theDutchwaterdefenses(3.1and3.2).Similarastopreviouschapteraimedfloodrisks, assessedthreatsthattheflooddefensesareexposedtoandinitiativestoguaranteesafetyinthe futurearedescribed.Organizationsrelatedtoflooddefensesarealsomentioned.Inthelastpart themostinterestingordevastatingfloodsofthepastarediscussed.

3.1 Why flood protection?

Figure3.1Netherlandsaboveandbelowmeansealevel(Deltawerken.com,2006)

TheNetherlands,inwesternEurope,is41,526km 2large,includingLakeIJsselandtheWadden Sea(Figure3.1).Ofthetotallandarea,approximately34,000km 2,25%issituatedbelowmean sealevel,withamaximumof6.7m.65%ofthecountrywouldbefloodeddailywhentherewere noleveesanddunes.Abouthalfofthe16.3millioninhabitantsoftheNetherlandslivebelowsea levelsurroundedbylargeinfrastructureworksandprosperouseconomicareassuchasthemain portsSchipholairportandthePortofRotterdam. ToprotectthecountryagainstfloodsfromtheriversMeuse,andRhineandfromstorm surgesfromtheNorthSea,WaddenSeaandLakeIJssel,waterdefensesarebuilt.(Huisman, 1999)

27

3.2 Dutch water defense system

3.2.1 Primary water defenses and regional water defenses

TheDutchwaterdefensesaredividedinprimarywaterdefensesandregionalwaterdefenses. Theprimarywaterdefenseshaveadirectwaterretainingfunctiontooutsidewater,forexample theSea,LakeIJsselandthelargerivers.Theyprotect53dikeringareasandhaveatotallength of3,600km(MinV&W,2006).Theyincludethecoastaldunes,theriverlevees,sealeveesand theLakeIJsselclosuredamandstormsurgebarriersinthesouthwesternpartofthecountry. Thewaterlevelagainstthosewaterdefensesareinfluencedbythetide,waves,stormsurges and/orriverdischarges.Regionalwaterdefensesareallwaterdefensesthatarenotprimary defensesandhaveatotallengthof14,000km.Examplesofregionalwaterdefensesarecanal leveesand‘boezemkaden’,whichsurroundpolders.MostofthedikeringareasasinFigure3.3 enclosepoldersystemswithafixedpolderwaterlevel.Thosepolderswithpolderditchesdrain ontheregionalwaters,whichintheirturndrainonlakes,riversordirectlyonthesea.Therefore theregionalwaterlevelsdonotfluctuatedmuch.Regionalwaterdefensesconstantlyholdback water,incontrasttotheprimarywaterdefenses.(Figure3.2)(RIVM,2004)

Figure3.2Differenceprimarywaterdefensesandregionalwaterdefenses(STOWA,2004)

3.2.2 Risk based levee design

Thesafetyagainstfloodingisbasedonchanceofflooding,duetoovertoppingorleveebreaches, andondamagedeterminedbylossofhumanlife,ifquantifiable,andeconomicconsequences: Risk=ChanceoffloodingxDamage

Thecapitalizedriskcanbederivedas:(Vrijling,2002) = R0 P 0 S 0 (31) With: R0=Riskoffloodinginyear0[Euros/year] P0=Probabilityofinundationinyear0[1/year] S0=Damageinyear0[Euros] Thismeansthattheriskinyearzeroistheprobabilityoffloodinginyearzeromultipliedbythe damageinyearzero.Theriskinyear1isthen: PS R = 1 1 (32) 1 ()1+ r Where: r=thereducedinterestrate,whichistheinterestreducedbyinflationandincreasedwith theeconomicalgrowth[] Oringeneral:

28 Description Netherlands

PS R = i i (33) i ()()+ + + 1r1 1 r 2 ....(1 r i ) With: ri=Thereducedinterestrateofyeari[] Ri=Riskinyeari[euros/year] Pi=Probabilityofinundationinyeari[1/year] Si=Damageinyeari[euros}

Orwithr=constant,P i=constantandS i=constant:

= PS Ri (34) ()1+ r i

TheTotalRisk(TR)isthen: ∞ ∞ = =PS = PS TR∑ R i ∑ i (35) i=0 i = 0 ()1+ r r

Inthelate1950stheprobabilityoffloodingwassetto1:125,000years,whichwasconvertedto awaterlevelwitha1:10,000chanceofappearanceperyearfortheseawaterdefensesalong theNorthSeacoast:thenormativehighwater(NHW).Theotherprimarywaterdefenseshavea lowersafetylevel,becausetheyprotectanareawithlesseconomicvalue.Thesafetystandards forallprimarywaterdefensesaredefinedintheFloodProtectionAct(1996)andvaryfrom 1:10,000peryearto1:1,250peryear.(Figure3.3)(Table3.1)(RIVM,2004)

Figure3.3The53Dutch‘dikeringareas’withtheiraimedsafetylevel(VNK,2005) Table3.1Safetyclassesfortheprimarywaterdefenses

29

Primarywaterdefenses Probabilityofexceedanceperyear Riverdefensesupstream 1/1,250 Riverdefensesdownstream 1/2,000 SeadefensesZeeland,LakeIJsselandNorth 1/4,000 ofNetherlands SeadefensesalongthecoastofHolland 1/10,000

IntheFloodProtectionAct,theregionalwaterdefensesarenotmentioned.Forthesewater defensestheIPOstandardsareused,whichisaninterprovincialassembly,writtenin1993.The IPOstandardsdonotgiveuniformrulesonwhichsafetyisrequired.Waterboardscanproposea requiredsafetyfromthesestandards,whichthenhastobeestablishedbytheProvince.To determineifaleveeissafeenough,eachpolderhastobeclassifiedinoneofthe5safetyclasses (Table3.2).Thesafetylevelistheprobabilityofexceedanceofthe‘boezem’waterlevelperyear. Theprobabilityoffailure(chanceofflooding)issmallerthantheprobabilityofexceedanceofthe normativewaterlevel.Fortheregionalwaterlevelsthisdifferenceisaboutafactor0.2.Forthe primarywaterdefensesthattheprobabilityoffailureisapproximately0.10.01timesthe probabilityofexceedanceofthenormativehighwater.(STOWA,2004)(TAW,1993) Table3.2Safetyclassesforregionalwaterdefenses(STOWA,2004) SafetyclassRegionalwaterdefenses Probabilityofexceedanceperyear I 1/10 II 1/30 III 1/100 IV 1/300 V 1/1,000

3.2.3 Loads: Hydraulic boundary conditions

Climate TheNetherlandsisborderedbytheNorthSeainthewestandWaddenSeainthenorth,crossed bylargeriversastheRhine,Meuse,IJsselandScheldtandfilledwithlakes.LakeIJssel,byfar thelargestlakewascreatedbyclosingofthewithaclosuredam.Withamean temperatureof9.4 oCandameanprecipitationof750mm/year,thecountryhasahumid, temperateclimatewithwarmsummers.Thewindisdominantlywestwithameanwindspeedof 3.5m/s. Hydraulicboundaryconditions Themostimportantloadsontheleveesarehydraulicboundaryconditions.Thesehydraulic boundaryconditionsareusedtodesignnewleveesandtoevaluatethesafetyofexistinglevees. Theyvaryforriverlevees,seadefensesandlakelevees.Forsealeveestideandwindsetupare combined.Measurementsareextrapolatedtothedesiredchanceofappearancetodeterminethe NormativeHighWater.ModelslikeWAQUAareusedtodeterminetheNHWbetweentwo measurementstations.TheDutchcoastissubjecttoamaximumtidalrangeofabout4mand windsetupofmaximumabout3m.Windwaves,seiches,localwaterriseduetowindgustsand oscillationsandexpectedsealevelrisearealsotakenintoaccount.Thesignificantwaveheight forwaverunupcanbeuptonearly10m. Atthe(upstream)riverwaterlevelsaremainlydeterminedbyincomingdischarges.Tworivers arementionedhere:theriversMeuseandRhine.TheMeuseismainlyaprecipitationriver,with extremedischargesinwinter(Figure3.4).ThemaximumdischargemeasuredintheMeuseis 3,120m 3/sanddatesfrom1993.LeveesalongtheMeuseshouldbeabletowithstanda dischargeof3,800m 3/satBorgharen,wheretheMeusehasjustenteredthecountry.(RWS, 2001) TheRiverRhineisamixedriver.PrecipitationandsnowmeltfromtheAlpsinfluencethe dischargesintheRiverRhine,whichthereforepeaksinwinterandspring(Figure3.4).The maximumdischargeevermeasuredintheRhineis12,600m 3/sin1926.Currentlythelevees

30 Description Netherlands

shouldbeabletoretain16,000m 3/s,measuredatLobith,wheretheRhineentersthe Netherlands.(RWS,2001) AgainextrapolatedmeasurementscombinedwithmodelresultsdeterminetheNormative DischargeandthereforetheNHW.Sometimeswindwavesaretakenintoaccount.Downstream riverleveeswillbesubjecttotideandwindsetup.Windwaves,localwaterriseandoscillations canagainbecomeimportanthere.

Figure3.4MeanmonthlydischargesRiversRhineandMeuse(natuurdichtbij.nl,2006)

Otherloads: Butthereareotherloadsthatcanaffectaleveeforexampleiceload,collisionfromaship, vandalism,treesoranimalsthatcauseholesandtrafficontopofthelevee.Theseloadsareoften notspecificallytakenintoaccountindesignandleveeevaluations.

3.2.4 Strength: failure mechanisms and levee design

Figure3.5GeologicalmapoftheNetherlands(TNONITG,2006)

Howresistantaleveeisdependsonitsshapeanddimensions,forexampletheleveewidth,slope andheight.Italsodependsonthesoilcharacteristicsoftheleveeandtheleveebase.Whether theleveeisconstructedwithhighlyperviousbadcompactedsandorfromclayinfluencesthe resistanceagainstforexampleseepage.IntheNetherlandsmostleveescontainclayora combinationofsandandclay.Clayformsawaterprooflayerontopoftheleveeorwithinthe heartofthesoilstructure.Regionalleveeswereoftennotdesignedandcanthereforecontain

31

undesirablematerialsaspeat.Beneaththeleveeconstructionaclaylayerisoftenpresentwith belowthatasandlayer,whichaswilllaterbeexplained,influencetheresistanceofalevee againstpiping.Figure3.5showsasimplifiedgeologicalmapoftheNetherlandswiththemost importantdeposits.

Figure3.6Failuremechanismssoilstructures(TAW,1998)

Butagainstwhichforcesormechanismsdoesaleveehavetoberesistant?Forceshavealready beenmentionedandthemostimportantfailuremechanismsthatcanbeinitiatedbytheseforces areshowninFigure3.6.Thesefailuremechanismsrepresentsituationswheretheleveeisno longerabletoperformitsmainfunction:retainingwater.Thiscouldalreadybethecasewhen theleveeisnotyetbreached,forexamplewhentheleveeisovertopped. Forthedesignofnewleveesaswellasforexistingleveesthemostimportantfailuremechanisms areusedtoevaluatewhethernounexpectedfailurescouldoccurduringextremeconditions.The processforanewleveeorleveeimprovementisexplainedinFigure3.7.Thisprocessisiterative. Firstastandardleveedesignwillbeused(Figure3.8).Thisdesignwillbeoptimizedusingthe expectedfailuremechanismsforlevees.

Figure3.7Leveedesignprocess(TAW,1999)

TheheightofaprimarysoilstructuredependsontheNormativeHighWaterlevel(NHW)forthat specificlocation,which,fortheprimarywaterdefensesisrevisedevery5years.Theconstruction heightofaleveeisNHWlevelwithafreeboardofatleast0.5mandexpectedsettlementsofthe leveeandlocalsubsidenceintheplanperiod(normally50years)addedtothat.Thefreeboard consistsofwaverunup,expectedlocalwaterlevelriseduetoforexamplewindgustsand expectedsealevelriseduringtheplanperiod.Theouterslopehastobe1:5forasealeveeand

32 Description Netherlands

1:4foralakelevee.Theinnerslopeisatleast1:3.Thetopwidthofaleveeshouldbeatleast2 m,butitshouldbemoreifaroadisconstructedontop.(TAW,1999)

Figure3.8Firstleveedesign

Whendesigningalevee,notonlydimensionsareimportant.Onehastothinkaboutwhatsoils areusedandwhichprotectionisnecessary.IntheNetherlandsclayispreferredforlevees,or sandincombinationwithclay.Grassandstonerevetmentsarecommonlyusedtoprotectthe leveeagainsterosionandvandalismbyanimalsandpeople.

3.2.5 Inspection and maintenance levees

Toguardthesafetyofthewaterdefenses,itisnecessarytoregularlyevaluatetheirconditions. IntheFloodProtectionActisstatedthateach5yearsleveeauthoritieshavetoreportonthe conditionsoftheprimarywaterdefensesfollowingtheprescriptionsfromtheministry,the ‘Voorschifttoetsenopveiligheid’(VTV).Leveeauthoritiesareresponsibleforleveeevaluationsin theirregion,forwhichtheyoftenhireengineeringcompanies.Leveeauthoritiesinthiscontext areoftentheWaterBoards(90%),butforwaterdefensesnotborderingland(forexamplethe ClosureDam)theState,oftenaRijkswaterstaatdepartment(see3.3.3),isresponsible(10%). (Huisman,1998) Thefirsttwoevaluationreportswerefinishedin2001and2006.Accordingtothe2006report 24%oftheprimaryleveesanddunesarenotsafeandof32%noopinioncouldbegiven.Less thanhalftheprimarywaterdefenses,44%,aresafeaccordingtothe2006evaluations.Basedon resultsfromthereportsafloodprotectionplanisestablished,inwhichimprovementsforthe weaksectionsareproposed.(Min.V&W,2006) Inthemeantimetheleveeauthoritiesaresupposedtohaveamanagementplanorregister.In thisplaninstrumentsaregiventotheleveemanager,whoisresponsibleforthedaytoday managementofthewaterdefenses.Ayearlyvisualinspectionispartofthisplan. Asmentionedbefore,thereisnolegislation(yet)ontheregionalwaterdefenses.TheIPO standards,writtenin1993canbeusedtodeterminethesafetyofregionalleveesagainst flooding.Thesafetyoftheregionalwaterdefensesisaresponsibilityofthewaterboards. Methodsusedarelikelytoresemblethemethodsusedfortheprimarywaterdefenses.Thefirst andlastsystematicevaluationonpartoftheregionalwaterdefensesdatesfrom1993.Onlyfor 1,730kmoutofthe14,000kmsufficientdatawasavailabletogiveareliableindicationofthe leveeconditions.About20%ofthe1,730kmdidnotmeettherequirements.(TAW,1993;RIVM, 2004) Managementandmaintenanceoftheregionalwaterdefensesisaresponsibilityofthewater boards.Periodicvisualinspectionisusedtodeterminethecurrentstateofthelevees.Thisvisual inspectionfocusesonchangingdimensionsofthelevees(reductioninheight,deformations)and onleveedamagesascracks,wetspotsandanimalandtreeholes.Basedontheseinspections maintenanceorrepairactivitieswilltakeplaceorfurtherinvestigationisdone.(TAW,1993)

3.3 Threats and initiatives

3.3.1 Threats: drivers of change

Theclimateischangingandfloodsseemtooccurmoreoftenthantheydidbefore.Butwhat effectdoestheclimatehaveontheoccurrenceoffloods?Andisitonlythatthewaterlevels

33

becomemoreextreme,oraretheleveesgettingmorefragileaswell?Atthesametimeoneflood causesmoredamagenowadaysthanitusedto.Butwhichfactorsdrivethischange?Somefacts: Loads Thechangingclimateisthemaindriver.LastcenturythemeantemperatureintheNetherlands hasincreasedwith1˚C.Continuationofthistrendwillexposein:(MNP,2005)

• Sealevelrise,predictedbetween20cmand110cmforthiscentury,willposeanextra pressureontheDutchseadefenses.Lastcenturythesealevelrisewas20cm.

• Increasingriverdischarges;dryersummersandwetterwinterswillcauseachangein meandischargesandpeakdischarge(seeFigure3.9).Designdischargeswillhavetobe adjustedtothat:theRhineto18,000m 3/sandtheMeuseto4,600m 3/s.

• Increasingwetperiods;thenatureandfrequencyofstormsandheavyrainswillchange, whichwillinduceforexamplelargerwaveheightsorachangeinthetimingofpeak dischargesattherivers.

Figure3.9ExpectedfuturemeanmonthlydischargesRiversMeuseandRhine.Theblacklinerepresentsthe currentmean,thebluelinegivesthehighestestimatefor2100(MNP,2005)

Strength Butthechangingclimatealsohasaninfluenceonthestrengthoftheleveesforexample:

• Increasingperiodsofdrought;driedoutsoilscanmakeleveesmorevulnerable; especiallypeatisvulnerable,whileitsvolumeweightcanevengetbelowtheweightof water

• Ongoingsubsidence;willgetworseindryperiods.Thelast1000yearsthepeatsubsoils havesubsidedabout23m.Duetodewateringindryperiodstheoxidationofpeatcan increaseto1cmayear.

• Extremelywetperiodscausethesoilsintheleveetobecomesaturated,whichmakes themheavierandmorevulnerabletoinstabilities. Damage Thedamagethatfloodscauseisalsoincreasing,thisasaresultof:

• Populationgrowth;theDutchpopulationstillincreases,especiallyinfloodproneareas.A floodwilltakemorelivesanddestroymoreproperty.

34 Description Netherlands

• Economicgrowth;thestillongoingeconomicgrowthwillresultinhighervulnerabilityto economicandsocialdisaster.

3.3.2 Dealing with increasing flood risks: initiatives

TheEconomicdamagesandlossoflife,mentionedinlastparagraph,arenotscaledtothe currentsituation.1960valuesarestillusedtoestimatetheconsequencesofaflood.New methodsaredevelopedtotakethisintoaccount.TheFLORISproject,FloodRisksandSafetyin theNetherlands(orinDutch:VNK)intendstogetmoreinsightinthechancesoffloodingandthe consequencesofaflood.TheFLORISprojectwasinitiatedbyRijkswaterstaatandexecuted undertheauspicesofDWW.Theeconomicoptimumisstillofthe1960sstandards,butdoesnot sufficeanymore.FLORISwassetuptocomeupwithnewcomputationalmethodstodetermine theriskoffloodinginsteadofprobabilityofexceedanceofawaterlevel,tosupplementthe1960 knowledge.Futurechangesineconomicvalue,populationgrowthandclimatechangeswillbe takenintoaccount.Fromeachdikeringtheprobabilityoffloodingandtheweaklinksare identified.TheconsequencesoffloodingareestimatedandputinaGISmaptogiveabetter impressionofthecostsandbenefitsofinvestmentsinsafetyagainstfloods.(VNK,2005) AnotherinitiativeistheRoomfortheRiverproject,establishedafterthe1993and1995extreme riverwaterlevels;goalistofindnewsolutionsforabetterprotectionagainstthewaterfromthe largerivers.Theprojectwasstartedin2000andinitiatedbytheMinistryofTransportandPublic Works.Itworkswithanewpolicy:insteadofraisingleveesothermethodsareapplied,for examplefloodplainlowering,riverwidening,creationofsecondarychannels,movinglevees furtherfromtheriverbedandcreationofretentionpolders(Figure3.10).TheRoomfortheRiver projectwillbefinishedin2015.

Figure3.10Examplesofcreating‘roomfortheriver’(TAW,1998)

Otherexamplesofcurrentlyrunningprogramsareforexample:ComCoast,aEuropeanprojectto developtnewinnovativesolutionsforfloodprotectioninthecoastalareas,IJkdijk,aleveetest facility,Grensmaas,toimprovethesafetyagainstfloodingalongtheMeuseandletitmorereturn toitsnaturalappearanceand“Nederlandleeftmetwater”(TheDutchlivewithwater),whichwas setuptomaketheDutchmoreawareofthe(new)waterpolicyintheNetherlandswith commercialsawebsiteandothers.

3.3.3 Organizations involved in water defense policy

Therearethreepubliclayerswithauthoritiesresponsibleforthewaterdefensesystem.First thereisthegovernmentonnationallevel,thentheprovincesandthenthewaterboardsand municipalitiesonregionalandlocallevel.Themostimportantauthoritiesconcerningwater defensesarementionedinthisparagraph.(Figure3.11)

35

Figure3.11Publicsectorinvolvedinfloodpolicyandprotection

MinistryofTransport,PublicWorksandWaterManagement(MinV&W):TheMinV&Wisofthe 13ministriestheonemostinvolvedinfloodprotection.TheMinisterofthedepartmentV&Wis supportedbytheStateSecretaryforV&W,whoisresponsibleforaviation,persontransportby railandforwater.Oneofthegovernmentalinvolvementsonwaterpolicyisthe5yearlyreport onthesafetyoftheprimarywaterdefenses.Theministrywillprovidethehydraulicboundary conditionsforthissafetyassessmentandprescribeevaluationmethods. Rijkswaterstaat(RWS)orDirectorateGeneralofPublicWorksandWaterManagement:Was establishedin1798todealwithwaterrelatedaffairsonnationallevel.RWSisnowadaysthe executingbodyoftheMinV&Wresponsibleforfloodprotection,waterqualityandquantityand fortrafficcontrol,shippingandpublictransport.RWSalsosupervisestheprovincesandwater boards.Rijkswaterstaathas10regionalservicebodies,whichmainlydealwithinfrastructure projectsand7specialistservices,forexampletheNationalInstituteforCoastalandMarine Management(RIKZ)andtheRoadandHydraulicEngineeringInstitute(DWW). Provinces(Figure3.12):TheProvincesaredecentralizedbodiesconcernedwithalldifferent disciplinesofgovernment.TheysupervisetheWaterBoardsontwoaspectsdefinedintheFlood ProtectionAct:technicalqualitywatermanagementandonagreementbetweenWaterBoard policyandMunicipalitypolicy.TheProvincesdefinetheWaterBoardTasksandsetstandardsfor theregionalwaterdefenses.(TAW,1998) Waterboards(Figure3.12):decentralizedpublicbodieswhichareresponsibleforlocaland regionalfloodcontrol,waterquantityandwaterquality.Theyhavetheirownfinancialsystem, supportedbythetaxpayerswithinthewaterboardarea.Atthismomentthereare27water boardsintheNetherlands.(waterschappen.nl,2006)

Figure3.12TheDutch12Provinces(left)and27WaterBoards(right)(Provincies.nl,2006; Waterschappen.nl,2006)

36 Description Netherlands

Municipalities:TheinvolvementofMunicipalitiesinfloodprotectionislimitedtothedevelopment plans,inwhichflooddefenseshavetobeadapted.Besidesthis,theMunicipalityisresponsible forcontingencyandevacuationplans.(TAW,1998) TechnicalAdvisorycommitteeforFloodDefenses(TAW):Wassince1965anindependentadvice committeefortheministerofTransport,PublicWorksandWatermanagement.In2005this committeewasreplacedbytheENW.Theypublishedtechnicalreportsconcerningwater defenses. ExpertiseNetworkforFloodProtection(ENW):ReplacedtheTAWin2005.Isstillanindependent advisorycommittee,notonlyforgovernmentalauthorities.ENWwillalsobeaplatformfor exchangeofknowledge.TheENW(likeTAW)containsfourworkgroups:safety,technique,coast andrivers.ENWwillnotonlyfocusontechnicalproblems,butalsoonpoliciesandsocial interests.TheENWworksundertheresponsibilityofDWW.(ENWinfo.nl,2006) TheRoadandHydraulicEngineeringInstitute(DWW):Isoneofthesevenspecialistservicesof Rijkswaterstaatandisspecializedinroadandhydraulicengineering. Besidesthepublicsector,theprivatesectorisalsoinvolvedinfloodprotection.Consulting engineers,contractorsandresearchinstitutesperformasubstantialpartoftheresearch,advisory workandconstructiononfloodprotection.TheyoftengettheirassignmentsfromRijkswaterstaat orwaterboards,butforeigngovernmentsandcompaniesalsoshowanincreasinginterestinthis Dutchexpertise.

3.3.4 Disaster Management

RijkswaterstaatservicesRIZAenRIKZprovideinformationonextremewaterlevels.Emergency waterlevelsaredefinedbytheministerandarerevisedevery5years.Incaseemergencywater levelsareexpected,theministershouldwarntheinvolvedleveemanagers.Theleveemanagers caninstallextraleveesurveillanceandwillinformthemunicipalexecutives,whoareresponsible foradisasterresponseplan.Thisresponseplancontainsaschemeofrelevantfacilities, institutionsandorganizationsandgivesinsightinwhoseinchargeandwhatarethe responsibilities.Theunionofwaterboardshasprovidedaframework:waterboardandthe disasterprevention.Withthisframeworkwaterboardscanwriteacontingencyplan,which shouldsupportthemunicipalresponseandcontingencyplans.Theprovincialboardissupposeto coordinateandregulatetheseactivities,butwillhaveamoreexecutiveroleasthedisasterhas morethanlocalsignificance.TheprovincialQueen’scommissionercanaskforhelpfromthe ministerofinternalaffairsandfromgovernmentalinstancessuchasthearmy.(TAW,1998)

3.3.5 After a flood

IntheNetherlandsthereisnoinsurancetocompensateforflooddamage.Ifinhabitantssuffer fromfailureofawaterdefense,theycantrytogetcompensationfromtheGovernment, followingtheCompensationActonDisasterDamageandAccidents.Butitishardtogetsuch compensationandoftenonlypartofthedamageisreimbursed. AcommonbelieveintheNetherlandsisthatafloodisanactofgodthatnoinsurancecompany isabletobeartherisksof.Inthemeanwhileinhabitantshavenoinsightintowhatriskstheyare exposedtoandfeelnoresponsibilitywhatsoever.TheytrusttheStatetoprotectthemagainst floodsandblametheGovernmentifotherwise.Livinginriskareas,suchasfloodplainsandin thedeepestpolders,isstillnotexperiencedasrisky. Early2006,theAdvisoryCommitteeWaterrenewedthediscussiononthepossibilitytoinsure flooddamage.ThiscommitteeisapersonaladviceorganestablishedbyandusedbytheStates secretaryforV&W.Basedonanintroductoryresearchonthepossibilitytoinsurewaterdamage, thecommitteeadvisestomakewaterdamageinsurable.IffloodinsuranceintheNetherlandsis possibleanddesirableisstillanongoingdiscussion.(AcW,2006)

37

3.4 History of Dutch flood control

3.4.1 Overview

Floodsdisastersoftenleadtonewideas,researches,legislationandprestigiousconstructions.In otherwords:floodsareneededtogettheattentionforwaterdefensesandinvestmentsinwater defenses.InthisparagraphisdescribedhowfloodsformedtheDutchwaterdefensepolicyand system.ThemostimportantfloodeventsoftheDutchhistoryaresummarizedinTable3.3. Table3.3SelectionofDutchfloodsthathadanimpactonwaterdefensepolicy

Importantormajorfloods ImpactonDutchfloodpolicy Floodsof838and1014AD Firstpolders Zuyderzeefloods1170and1196 1225firstWaterBoards St.FelixfloodandAllerheiligen Firstleveedesignandreclamationrulesin22articles flood1530and1570 Riverfloods1861 Rivercanalization/normalization Christmasflood1717andstorm ConstructionofClosureDam surge1916 DeltaAct1958;Leveedesignbasedonriskanalysis; Stormsurge1953 ConstructionofDeltaWorks Riverfloods1993and1995 DeltaActLargeRivers;RoomfortheRiverproject Wilnis2003 Safetystandardsregionalwaterdefenses

3.4.2 First protection against floods 300-100 BC

TheDutchshorelinehastransformedalotoverthecourseoftime.InthelastGlacialErathe PositionoftheDutchcoastlinewassituated200kmwestofitscurrentpositionandthesealevel wasabout60metersbelowtoday’smeansealevel.IntheHolocene,thesealevelroseand reachedthestageofwherethecoastlineiscurrentlysituatedsome2000yearsago.Atthattime theNetherlandswasalargeswampydelta.Peoplethatalreadydweltintheseareas,which regularlywereflooded,livedfromhuntingandfishing.Theybuildtheirhutsonnaturallevees alongtherivers.

Figure3.13TheshapeoftheNetherlandsaround0and800AD(Huisman,1998)

Thefirstprotectionworksagainsttherisingseawaterwerebuilt300100BC,underinfluenceof theRomans.Artificialdwellingmoundsandsmallriverleveeswereconstructedtoprotectthe housesfromthewaterandtoconstructroads.Peoplestartedtoexcavatepeatthatwasdried andusedasfuel,andthuscreatedsmalllakes.Otherareasweredrainedandusedfor agriculture.(Dubbelman,1999)

38 Description Netherlands

Betweentheyear0and1000ADsealevelrise,subsidencebydrainageandoccupationofthe countryledtoanincreasinginfluenceoftheseaandlargeareaswereagainlost(Figure3.13).At about800ADthepopulationoftheNetherlandsreachedsome0.5millioninhabitants.The excavatedpeatlakeswerealsosubjecttothetidalinfluenceoftheseaandeasilyerodedtolarge tidalinlets.(Huisman,1998)Itwasinthisperiodthatcoastaldunesstartedtoform.

3.4.3 Floods of 838 and 1014 AD

Thefirstknownfloodswithnumerousvictimsarethefloodsof838ADand1014AD.The838 stormsurgeinundatedpartofthenorthwestoftheNetherlands,andcausedabout2437death. The1014floodalsocausedthousandsofdeathsafterabreakinthewesterncoastline. Itwasonlyafter1000ADthatthepopulationsignificantlyincreasedandstartedtoregain influenceonthesea.Theycreatedappropriateconditionsforagriculturebybuildingsmalldikes. Thuspolderswerecreated,wherethewaterregimewasdisconnectedfromthesurroundingland suchthathightidecouldn’tfloodthelandanymore.Firstthesepolderscouldbedrainedeasilyby gravity.Atlowlittlesluiceswereopenedwhichreleasedthesurpluswater.Tolowerthe watertabledrainsandditchesweredug.Agricultureandadropofthewatertablecausedthe peatandclaysoilstosubside.Peatalsooxidized,whichincreasedsubsidenceevenmore. Thereforethegroundwatertablehadtobeloweredagainandanongoingprocesswasstarted. (Dubbelman,1999)

3.4.4 Zuyderzee floods 1170 and 1196

Figure3.14DutchWindmills(Huisman,1998)

After1100ADsubsidencehadincreasedtosuchanextentthatnaturaldrainagewasnotpossible anymoreandtheseawasagainonthewinninghand.Asaresultofstormdisasterslargepartsof thecountrywereagainlosttothesea.Thefloodsof1170and1196createdtheZuyderzee,a largeinlandsea.Buttheseawasnottheonlythreat.Riverdischargeswereincreasing,andthe leveespeoplebuiltalongthedownstreamrivers,preventingtherivertowiden,enlargedand replacedproblems.Upstreamfarmersintheeasternpartofthecountrythereforealsohadto protecttheirlandagainstwaterandhadtobuildleveesalongtheriver.Theleveeswereatfirst only1or2meterhigh,butsomedesigntechniquewasalreadyimplemented.Newleveeshada symmetricalperformanceandsubsoilwasexcavatedbeforeconstruction.Anewtechniquewas implemented:buildingdams.Thedamshadtopreventintrusionofsaltwaterduringhightides andclosedofftidalcreeks.Behindthedikesandclosuredamssmallerareaswerecreated, surroundedbyintermediatestorageareas.Thiswasthestartofthepoldersystemthatis

39

typicallyDutch.Artificialmethodswereinventedtodraintheexcesswater:handandhorse drivenmillsandlater,from1440,windmills(Figure3.14). Atthesametimeanorganizationalswitchtookplace.Firstthelandownersthemselvesinspected andmaintainedtheirpieceoflevee,butitwassoonrecognizedthatthedammedareasbecame toolargeforthat.Regionalmeetingswereorganizedandrepresentativeswerechosen.Thefirst waterboardwasafactin1255:WaterBoardRijnland,aroundtheformertidalbranchesofthe Rhine.SoonmorewaterboardswereinitiatedbytheCountofHolland,FlorisV,orbythe communitiesthemselves.Thewaterboardswereoneoftheearliestformsofgovernmentinthe Netherlands.(Dubbelman,1999)

3.4.5 St. Elisabeth floods 1404/1421

Poorwaterboardorganizationandalackofmaintenanceoftheseaandriverleveesledtonew disasters.Firstin1404andlaterin1421astormsurgefromtheNorthSeadestroyedthesea defensesaswellasriverleveesandfloodedthesouthwesternpartofthecountry.In1421more than2000peopledied.Thisfloodresulted,duringthefollowingyears,inaninlandtidalmarsh: theBiesbosch(Figure3.16).Thisareawaspermanentlylosttotheseaafteranewseafloodin 1424(Figure3.15).ThesefloodsleadtoincreasedattentionforthewaterboardsfromtheCount ofHolland,KarelV,whoestablishedaresearchcommitteeandprovidedmoneyforrehabilitation works.

Figure3.15TheshapeoftheNetherlandsaround1500and1900AD(Huisman,1998)

3.4.6 St. Felix flood and Allerheiligen flood 1530 and 1570

AfterotherfloodsastheSt.Felixfloodsin1530andtheAllerheiligenfloodin1570Calamity managementwasestablished:thearmycouldbemobilizedincaseofemergencies.Tobecomea surveyor,onehadtofollowaneducation.AfterSimonStevinsmathematicideas,newlevee designsweremadewithflatterslopesandmoresolidmaterial.Aplanwasmadetoreclaimland inthesouthwesternpartofthecountry,withrulesdeterminedin22articles.Theconstruction heightoftheleveeswas4.27meters,fromwhich0.61meterswasaccountedforsettlements. Withnewtechniques,includingthewindmillsitwaspossibletoreclaimlowlyingareas,firstin theZeelandDelta(Figure3.16)andlateralsointhe(north)westernpartofthecountry.Large areaswerereclaimedinthefollowingcenturies,tocreateagriculturallandandfulfilltheneedsof thegrowingpopulation.Withtheindustrialization,inthe19thcentury,newsteamdriven pumpingstationswereintroducedandmadeitpossibletoreclaimfarlargerareasinashorter timeperiod.(Dubbelman,1999)

40 Description Netherlands

3.4.7 River floods 1861

Interventionsinthewinterbedsoftheriverstogetherwiththeformingoficesheetsinwinterled tonumerousproblemsintheriverbasins.Theconstructionofcanals,mainlytoimprove navigation,onlymadesafetyworse.Forexamplethe“PannerdensCanal”,constructedbetween 1701and1709.TheattentionnowshiftedtotheRiverMeuse,RhineandWaal.Largescaleriver floodsin1861ledtoariverevaluationreportinwhichimprovementsweresuggested.Anational waterauthority,Rijkswaterstaat,whichwasfoundedin1798,realizedmanyhydraulicworks: bendswerecutoff,summerleveeswerelowered,riverbedswerenormalizedandobjectswere removed.Theseworksresultedinfewercalamitiesandimprovednavigabilityandthedischarge ofwaterandice.(Dubbelman,1999)

3.4.8 Christmas flood 1717, of 1916

Duringthe17 th 19 th centurytheNorthernprovincesalsofacedflooddisasters.Firsttherewasa stormsurgein1675,afterwhichtheauthoritiesintroducedyearlyinspectionofthelevees.A northwesternstormatChristmasnightof1717attacked,Scandinaviaandthe Netherlands,taking14,000lives.IntheNetherlandstheNorthernprovincesandlandalongthe Zuyderzeesufferedmostfromthestormsurge,whichledtothousandsofdeathandleftwhole citiesandvillagesflooded.(Deltawerken.com,2006;RWS,1998)

Figure3.16Reclaimedareas12001970andtheclosuredam,ZeelandDeltaandBiesboscharea(modified fromHuisman,1998)

Stormsurgesin1808and1809ledtonewlegislation.Inthe1810LeveeActleveemaintenance andfundingwasunifiedforthewholecountry,whichwassplitupin17dikeringareas.The waterboardswereresponsibleformaintenanceinthosedikeringareas.Unfortunatelythislaw onlyledtoconflictsanddidnotimproveleveeconditions.Yearlyinspectionwasalsopartofthe LeveeAct,butwasalreadyabolishedin1814.In1835thewholeLeveeActwascancelled,notto returnuntil1953.(RWS,1998) Whilealmostalllargeinlandlakeswerereclaimed,newideasarose.Theclosureoftheinland Zuyderzeeandreclamationofthisareawerealreadydiscussedsincethe1850sandtherewere somereasonstodoit.Onereasonwasthattheareawasthenbetterprotectedagainstsea floods,suchasthe1717disaster.Andtheotheronewasthatsalinityproblemsinthe surroundingpolderscouldbereduced.Twootheradvantagesweretheavailabilityoffreshwater andcreationofagriculturalland.

41

Itwasonlyafterthe1916stormsurge,whichfloodedareasalongtheZuyderzeethattheseideas weretakenseriousbythegovernment.The32kmclosuredamwithdischargesluiceswas completedin1932andthuscreatedLakeIJssel,afreshwaterreservoirof500m 3.170,000ha werereclaimedandturnedintofarmland.(Huisman,1998)(Figure3.16)

3.4.9 Zeeland Sea Flood 1953

WhenplansweremadetoreclaimtheBiesboscharea,theleveessupportingthisareadidnot seemsufficientagainststormsurges,whenallstormactorsweretakenintoaccount.In1939the governmentestablishedastormsurgecommittee.Theirtaskwastoexaminethesafetyofthe Dutchwaterdefensesatthecoastandalongtherivers.Upuntilthatmomentthedesignheight ofleveeswasbasedonthehighestknownwaterlevel.Butthecommitteeconcludedthatthat wasnotsufficientanymore.Leveeshadtoberaisedandhadtobequalitativelymoresufficient.A statisticalmethodwasdevelopedtodeterminethedesignheightofthelevees.Afterthatmore thanonecommittee/personconcludedthatthewaterdefensesintheDelta(seeFigure3.16) wereinaterriblestate.VanVeenmadetwodesignplansfortheclosureoftheZeelandDeltaas aprotectionagainststormsurges.ButwaterboardsinthesouthwesternpartoftheNetherlands weretoosmallatthatmomentanddidnotcooperate.AndRijkswaterstaathadotherpriorities. Byonlyslowlystartingtostrengthentheseadefensessomeoftherecommendationsofthe stormsurgecommitteewereimplemented.(Dubbelman,1999;RIVM,2004) Andthentherewasthe1953stormsurge.Thenightof31Januaryto1February195367 embankmentsbreachescausedthefloodingofanareaof500,000ha.Awaterlevelof3.85m aboveNAP(Dutchreferencewaterlevel)wasfarhigherthanthe3.28maboveNAP,whichwas thehighestknownwaterlevel.1,836peoplediedtogetherwithabout200,000livestock.Halfof the1,000kmofleveeinthatareawas(partly)damaged.(Figure3.17)(Dubbelman,1999) AfewweekslatertheDeltacommitteewasestablishedbytheministerofTransport,Publicworks andWatermanagementtocomeupwithaplantopreventfuturedisastersandreducesalt intrusion,whichwaspresentedin1954.Theplanincluded:

• Closureofthetidalinlets,excepttheRotterdamWaterway(Dutch:NieuweWaterweg) andWesternScheldt(becausetheyhaveareimportantharborentrance)

• Constructionofdamsandsluicesbehindtheprimaryclosuredams

• StrengtheningoftheseadefensesalongthecoastandalongtheRotterdamWaterway andtheWesternScheldt(Dubbeldam,1999) ThisplanresultedintheDeltaLawin1958andcontainedthefirststandardsforsafetyagainst floods.Theywerebasedontheplansandcalculationsalreadymadebydr.ir.VanVeen.These standardsfirstonlyfocusedonseafloodsanddidnotincludetherivers.

Figure3.17Leveebreachesandinundatedareas;pictureofembankmentbreachZeeland1953 (Deltawerken.com,2006)

42 Description Netherlands

TheDeltaPlanitselfledtotheDeltaworks(Figure3.18).Sixprimarydams,whichclosedofthe largeseaarms,weresupportedbysecondarydamstomakeconstructionpossible.Ittookmore thanthirtyyearstodesignandbuildtheDeltaworks,whichreducedthetotalleveelengthwith 700km.ThemostimpressiveandexpensiveworksaretheEasternScheldtstormsurgebarrier andtheMaeslantbarrier,whichbothareopenbarrierswhichcanbeclosedduringheavystorms withextremewaterlevels.TheEasternScheldtbarrierwasfirstplannedasacloseddam,butof environmentalreasonsgatesweremadethatcanbeclosedincaseofemergency.TheMaeslandt barrierattheentranceoftheRotterdamWaterwayhadtobeanopenbarrierbecauseofthe economicimportanceoftheportofRotterdam.Twostormsurgedoorswhichbothhavealength of240mcanbeclosedatastormsurgewithwaterlevelsof3maboveNAP(theDutch referencewaterlevel).(Deltawerken.com,2006)

Figure3.18TheDeltaProjectwithtwopicturesoftheEasternScheldtStormSurgeBarrierandapictureof theMeaslandtBarrier(Huisman,1998;Deltawerken.com,2006)

3.4.10 Meuse and Rhine river floods 1993 and 1995

The1953stormsurgealsofocusedattentiononthesafetyoftheriverlevees.Thehighestknown waterleveldatedfrom1926,whentheRiverWaalcausedcalamities,andsincethattimenoreal problemshadoccurred.AdditionaltotheplansoftheDeltacommitteetheMinisterofTransport andPublicWorksandwaterboardofGelderlandsuggestedanimprovementoftheleveestoa 1:3,000waterlevelwithamaximumdischargeof18,000m 3/satLobith(wheretheRiverRhine entersthecountry).The1:3,000waslowerthanthesafetyoftheseadefenses(1:10,000and 1:4,000),becauseafloodfromtheriverislessdevastating,partlybecausethewaterisfresh, thanafloodfromthesea.(RIVM,2004;TAW,1998) Theconsequenceofthenewsafetyrulewasthatallleveeshadtoberaisedandstrengthened. Butbecauseoflargepublicresistancetheministerestablishedthecommitteeonriverlevees (committeeBecht)in1975,toevaluatethe1:3,000rule.Only70km,outof1,800km,ofriver leveeswasfinishedatthatmoment.CommitteeBechtcametotheconclusionthatprotection againstawaterlevelof1:1,250wasacceptablewithadischargeof16,500m 3/satLobith.But stillthepublicresistancepreventedfastandextensiveleveeenforcementplans.Asaresult committeeBoertienwasestablishedin1992,whoadvisedthesamedesignfrequencyas

43

committeeBecht,butwithanacceptabledischargeof15,000m 3/s.Inadditiontheyadvisedto implementnatural,landscapeandculturalvaluesintoleveedesign.(RIVM,2004) ButjustafterthecommitteeBoertienpublishedtheiradvicethefirstrivercalamitiessince1926 tookplace.In1993and1995floodwavesovertoppedandtogetherwithpipingthreatenedlevees tobreak.In1995100,000acreswerefloodedand240,000peoplehadtobeevacuated.Itturned outthatmostoftheriverleveeswereonlyprotectedagainsta1:100yearfloodlevel. AsananswertothesecalamitiestheDeltaPlanLargeRiverswascarriedout,whichhadthe scopetospeedupriverleveeimprovementsofweakspotsthatwereidentifiedin1993and1995. ADeltalawLargeRiverswasinstalled,additionaltothe1958DeltaLaw.Leveeshadtoberaised tothedesiredprotectionlevelintheyear2000. Topreventthenecessityofraisingleveesagainwithinthenextyears,theproject“Roomforthe River”wasstartedin2000,foreseeingadesigndischargeof18,000m 3/sfortheRhinebranches and4,600m3/sfortheRiverMeuse. In1996theFloodProtectionAct(‘WetopdeWaterkeringen’)wasestablished,whichcontainsthe ideasoftheDeltaLaws,withminorchanges.Therulesinthislawareonlyvalidfortheprimary waterdefenses.

3.4.11 Wilnis 2003

IntheFloodProtectionAct,asmentionedbefore,nothingissaidabouttheregionalwater defenses.In1960aregionalleveeinTuindorpOostzaanfailed.5yearslatertheTechnical AdvisoryCommittee(TAW)wasestablishedandstartedaresearchonthestrengthofthe regionallevees.Thisresearchtookmorethan25yearsandwasfinishedin1993.Ofonly323km outof14,000kmofregionalwaterdefensesanopinionwasgiven.TheadviceofTAWwastoset safetystandardsfortheregionalwaterdefenses.AsareplytheministerofTransport,Public WorksandWaterManagementsentalettertotheProvinces.Inthisletterwasstatedthatthe Provinceswereresponsibleforthedeterminationofsafetystandardsfortheregionalwater defenses.ThisledtoaProvincialassemblywheretheIPOstandardsfortheregionalwater defenseswerewrittenin1993.Thesestandardsstillhavenolegaleffect.(RIVM,2004) AttheendofAugustintheextremedry2003summerapolderleveeinWilnisfailedandcaused theinundationofabout600housesatapproximately5.9mbelowNAP.2000peoplehadtobe evacuated,butcouldreturnthesameeveningafterthewaterwaspumpedaway.Thankstoan alertlocalcontractorthecanalwasclosedoffquitesoonandnofurtherdamagewascaused.A 60mleveecompartmenthadshiftedhorizontally(Figure3.19).Similarleveefailures,or threatenedfailures,occurredinTerbreggeandin2004inStein.Severalleveeswhichcontained peatsoilsshowedburstsandcracks.

Figure3.19DryweatherleveefailureatWilnis(RIVM,2004)

44 Description Netherlands

TodeterminethecauseofthedryweatherleveefailureatWilnis,aresearchwascarriedoutby GeoDelft.InJanuary2004thisresearchwasfinishedandconcludedthatafailuremechanism thatcouldnormallybeneglectedwasnowdominant:horizontalsliding.‘Normally’thenormative loadeventwasatextremewaterlevelsand/oratanextremerainevent.Thefailuremechanisms piping,macroinstability,overtoppingandmicroinstabilitywerethenoftendominant.But extremelydryweatheralsoseemstobeanormativeevent,wherehorizontalslidingcanbecome dominant.Whatmostprobablyhappenedisthatduringthedriestsummerin50years,thepeaty soilsoftheleveelostmostofitswatercontent.Thisledtodeformationsofthepeatandtoa decreaseinweight.Thehorizontalfrictionstressesthereforereduceduntilthewaterpressuresin theaquiferandthewaterfromthecanalliftedtheleveeandshifteditbackwards.Butnot everyoneagreesonthistheoryandthepossibilitythataleakingpipelinecausedtheleveefailure issometimesmentioned. TheresultsoftheWilnisresearchledtoarenewedinterestinthestrengthoftheregionalwater defenses,andespeciallythoseleveesthatcontainedpeatsoils.STOWAcarriedoutaresearchon peatsoilswhichwasfinishedin2005.Inthemeanwhileattentionisgiventothesafetystandards forregionalwaterdefenses.STOWAhaswrittenthe“Leidraadtoetsingveiligheidregionale keringen”,whichinitsdefiniteversioncouldbecomeastandardforregionalwaterdefenses. (STOWA,2006)

45

4 Dutch levee evaluation

ThischaptergivesanoverviewofleveeevaluationasprescribedbytheDutchgovernmentand appliedbyFugroIngenieursbureauBVintheNetherlands.Itstartswithbackgroundinformation ontheDutchlegislationandashortintroductiontothesupportingcasestudiesusedinthis chapter.Paragraph4.2and4.3gointotheevaluationprocessconcerningwhichfailure mechanismsaremodeledandhowtogetagroundmodelandboundaryconditionstostartthe evaluationwith.Thethreecaseleveeevaluationssupportthisdescriptionandwillalsobeusedin thelasttwoparagraphs(4.4and0)wherethemodelingofpipingandstability,oftenthetwo mainfailuremechanisms,arefurtherexplained.

4.1 Background

4.1.1 Legislation

TheDutchprimarywaterdefensesareevaluatedevery5yearsaccordingtothe‘Voorschrift ToetsenopVeiligheid’,prescribedbytheDutchMinistryofV&W(Min.V&W,2004).Asmentioned beforeinparagraph3.2.2,thereisnoprescribedevaluationstandard(yet)fortheregionalwater defenses.Toevaluatetheperformanceoftheregionalwaterdefenses,atechnicalreportonthe evaluationof‘boezemkaden’,theTRB,(TAW,1993)isused,combinedwiththeIPOsafetynorms for‘boezemkaden’from1999(IPO,1999).Anewmanualtoevaluatethesafetyofregionalwater defensesisdevelopedatthismoment.Newfindingsareimplementedinthismanual,whichfor exampleresultedfromtheleveefailureinWilnis.(3.4.11)(STOWA,2006)

4.1.2 Cases

Case1:Eems CanalLevees

Case2:LakeMarken Levees

Case3:IslandofDordrechtLevees

Figure4.1Locationofcasestudies(modifiedfromVNK,2005)

47

Threecasestudies(seeFigure4.1)arechosentosupportthedescriptionofDutchlevee evaluation,basedontheirlocationandcharacter.TheEemsCanallevees,case1,areregional waterdefensesandevaluatedaccordingtotheTRB.TheLakeMarkenleveesandIslandof Dordrechtleveesarepartoftheprimarywaterdefenses,surroundingthecoloredareasinFigure 4.1.ThedifferencebetweenthetwoisthattheIslandofDordrechtleveesareriverlevees influencedbythetideandriverrunofffluctuationsandthattheLakeMarkenleveesaresituated alongLakeMarken,notinfluencedbythetide.Windsetupandwavesarethemostimportant hydraulicloadsfortheLakeMarkenlevees.Allthreecasestudiesarebasedonevaluationreports fromFugroIngenieursbureauintheNetherlands.(Fugro,1998;Fugro,2004;Fugro,2006)

4.2 Levee evaluation process

4.2.1 Failure mechanisms

Tomakesurethataleveewillnotfailduringextremeconditions,everyleveefailuremechanism thatcouldformathreattotheleveeisinvestigated.Allrelevantfailuremechanismswerealready mentionedinFigure3.6,butnotallthesemechanismsarealwaysevaluated.Table4.1 summarizesthemostimportantmechanismswithashortexplanationofthefailuremechanism, howevaluatedandforwhichleveestheyareimportant.Failuremechanismsthatneedfurther explanationarerepeatedafterthetable.Stabilityandpipingarethemostcommonfailure mechanismsandarediscussedinseparateparagraphs,4.4and0. Table4.1FailuremechanismsimportantintheDutchevaluation(modifiedfromMin.V&W,2004) FailureMechanism Why/How/Whenevaluated? • Theleveeheightshouldbesufficienttopreventovertopping andwaveovertopping • Aminimalcrestheightmarginabovethestillwaterlevel shouldbepresent • Allleveesshouldbeevaluatedontheircrestheight • Underminingoftheleveebypipingshouldbeprevented, becauseitcouldcauseleveesettlements(andtherefore overtopping)orevenleveeinstability • Theavailableseepagelengthorpathshouldbelongerthan thecriticalseepagelength • Allleveeswithapotentialpipingvulnerablesoilprofile shouldbeevaluated • Instabilityoftheleveebodycouldthreatentheleveeswater retainingfunction • Theleveeshouldfulfilltheestablishedstabilityrequirement atnormativeconditions,especiallywetconditions • Thismechanismisimportantforalllevees • Instabilityoftheleveebodycouldthreatentheleveeswater retainingfunction • Theleveeshouldfulfilltheestablishedstabilityrequirement atnormativeconditions,especiallyrapiddrawdown • Thismechanismisimportantforleveeswhichdealwith extremewaterlevelfluctuations • Leveethroughseepagecandamagethelandsideslopeof thelevee • Thestabilityofthesandparticlesatthelandsideslopeis evaluated • Importantforleveesthatcontainsand

48 Dutch levee evaluation

Thelevee height shouldbesufficienttopreventovertoppingandwaveovertopping.Anopinion shouldbegivenonthecrestheightmargin(orminimumfreeboard)abovestillwaterlevel.Still waterlevelistheNormativeHighWaterlevel,NHW,raisedwithwaverunup,windsetup, seichesandshoweroscillations.Thecrestheightmarginshouldbeatleast0.5mandaccounts forsettlementsandsubsidence.Theovertoppingdischargeshouldbelessthanthelevee revetmentcanwithstandandshouldnotlimitaccesstothelevee. Microstability concernsthedamageonthelandsideslopecausedbyphreaticwater.Asimple assessmentonthestabilityofthegrainsonthelandsideslopeandtheabilityofthetoetodrain isoftensufficienttodeterminethevulnerabilityoftheslope.Adetailedinvestigationonthe safetyagainstrupturingoftheclayblanketonthelandsideslopeissometimesnecessary. Exceptforthemajorfailuremechanismsnowtreatedtherearemechanismsthatalsorequire attention,ofteninmorespecificsituations.TheyaresummarizedinTable4.2. Table4.2Otherfailuremechanismsthatneedattention(modifiedfromMin.V&W,2004) Failuremechanism Why/How/Whenevaluated? • Instabilityoftheforelandimposesathreattothestability ofthewholeleveebody • Theliquefactionpotentialandstabilityoftheforelandare determined • Onlyevaluatedwhenleveeshaveaforeland • Especiallywavescandamagethewatersideslopeand eventuallyleadtofailure • Anassessmentofthestabilityoftherevetmentismade • Forleveesvulnerabletowaveerosion,whichhaveaslope protection • Erosionbyovertoppingwatercandamagetheinlandlevee slopeandeventuallyleadtofailure • Theerosionsusceptibilityofthelandsideslopeisevaluated • Alllevees,oftenincombinationwiththeevaluationof overtoppingorstabilityoftherevetment

• Verticalflowsbehindawallcaninduceliquefiablesandto erodeandunderminethewallandeventuallythewhole levee • Evaluationoftheexitgradientoranestimationifthe availableseepagelengthissufficientwithLane’sformula • Atsituationswithverticalsheetpilesintheleveebase • Thewholeleveecanshifthorizontallyandloseitswater retainingfunction • Incriticalsituationstheweightoftheleveeshouldbe sufficienttopreventupliftoftheleveebodyandhorizontal slidinginducedbythewaterpressure • Whenpeatformsasubstantialpartofthelevee;in combinationwithlandsidestabilityevaluation

Whenevaluatingthestabilityofthe foreland twomechanismsareinvolved:theliquefaction potentialoftheforelandandtheresistanceagainsthorizontalslidingoftheforeland.Thisreport willnotfurtherdealwithstabilityoftheforeland. Revetments arestoneslopeprotectionorotherprotectionsasclayandgrass.Especiallyon largelevees,alongthecoastorrivers,protectionisnecessarytoreducewaverunupandprevent erosionofthewatersideslope.Toassesswhethertherevetmentprovidessufficientprotectionis oftendealtwithseparatelyfromalltheotherfailuremechanisms.Empiricalformulasbasedon

49

modeltestswithstonesslopeprotectionsorgrassesareused. Infiltrationanderosion ofthe landsideslopeareintegratedintheevaluationoftherevetmentorleveeheight.(Min.V&W,2004) The Heave mechanismisimportantforsituationswithaverticalseepagewallintheleveebase. Anestimationoftheexitgradientwithagroundwaterflowmodelor,moreconservativethe criticalseepagelengthwithLanecanbothbeused.Generally,thecriticalexitgradientforheave is0.5andthecriticalseepagelengthofLaneshouldbeshorterthantheavailableseepage length.(TAW,1999_2) Horizontalslidingatfoundation isamechanismwhichwasatthebackgrounduntilaregional leveeinWilnisfailedin2003(3.4.11).Researchersofthatleveefailurehavedifferentopinionson whathappenedthere,butononethingtheyagree:theweightoftheleveewasexceededbythe waterpressuresatthewatersideoftheleveeandatthebaseofthelevee.Peatleveesare vulnerabletothismechanism,becauseofthelowvolumeweightof,especiallydrypeat.An assessmentofthevulnerabilityofaregionalwaterdefenseforthismechanismshouldbe includedinthestabilityevaluation,asissuggestedinleveeevaluationdocumentsforregional waterdefenses.(VanBaars,2004,Geodelft,2004,STOWA,2006)

4.2.2 From basic investigation to advanced modeling

Onesingleevaluationmethodbasedonlimitedinformationwillnotleadtorejectionofalevee. Onlyifafterthoroughinvestigationisconcludedthat(partof)theleveeisvulnerabletoacertain failuremechanismtheleveesectionwillberejectedandimprovementsarenecessary.

Theleveeissafeusingasimpleevaluation

Yes No

Modelrefinement

Theleveeissaferegardingadetailedevaluation

Yes No

Modelrefinement

Theleveeissaferegardinganadvancedevaluation

Yes No

Thebehavioroftheleveeis satisfactory Yes No

good/sufficientnotsufficient notsufficient Figure4.2Evaluationchart(modifiedfromMin.V&W,2004)

AsschematizedinFigure4.2aleveeisevaluatedinsteps.Eachfollowingstepintheprocess meansarefinementofthemodeland/oramoredetailedoradvancedmethodtomodelthe failuremechanism.Thefollowingstepscanoftenbedistinguished: 1. Preinvestigation:considersthegatheringofoldinformation,testsandboundary conditionsaswellasinterpretationandverificationofoldevaluationswithnew boundaryconditions.

50 Dutch levee evaluation

2. Globalanalysisorsimpleevaluation:Isperformedfromaglobalbottomprofile, geometryandsoilcharacteristics.Theleveeprofileiscomparedtothesafe profile.Thesurveyoroftheleveeoranexpertperformsthisanalysis.Aglobal analysisisoftenonlydoneifnothingisyetknownaboutthelevee. 3. Detailedanalysis:Isperformedbyexperts,accordingtotechnicalreportsand manualsfromtheTAW.Fieldmeasurementsandlaboratorytestssupportthis analysis.Theleveeisdividedinsectionswithcomparablecharacteristicsand crosssections. 4. Advancedanalysis:Ifstillnofinalverdictcanbegivenonaleveesection,often morefieldmeasurements,laboratorytestsand/ormoreadvancedcalculation methodsareusedtoassesstheleveesafety.Theseanalysesarealways performedbyanexpert. Thesestepsaretakenforallfailuremechanismswhichforthatparticularleveeorleveesection areimportant.Anopinionas‘good’,‘sufficient’or‘notsufficient’isgivenforeachsectionand eachmechanismorsometimes‘noopinion’whennotenoughdataisavailabletodraw conclusions.Resultsofleveeinspectionshavetobeaddedtothewholeanalysisandcould influencethefinalconclusion.Inthenextparagraphisdescribedwhichfailuremechanismsand intowhatdetailtheywereassessedinthecasestudies.Paragraph4.3willdiscusswhatboundary conditionsareusedinanevaluationandhowagroundmodelissetupfordifferentsectionsofa levee.

4.2.3 As applied in cases

Withoutgoingintodetail,Table4.3summarizeswhichfailuremechanismswereevaluatedinthe casestudies,introducedin4.1.2,andwhatstepsweretaken.TheEemsCanalleveesareregional levees.Notonlyweretheyevaluatedonpipingandmacrostability,butalsoontheeffectoftrees intheembankment.Afallingtreecouldleaveagapthatendangerstheleveeitswaterretaining function.Most,oftennotreally‘designed’,regionalleveeshavetreesonthelandsideslope. (Fugro,2004) Table4.3Failuremechanismsassessedandstepstakenincasestudies Case1:EemsCanal Case2:LakeMarken Case3:Islandof Dordrecht Global Macrostability(land Macrostability(landand Macrostability(landand evaluation andwaterside) waterside) waterside) Piping Piping Piping Nonwaterretaining Microstability Microstability objects(trees) Stabilityoftheforeland Connectionbetweenlevee and‘hardstructure’ Detailed Macrostability Macrostability(landand Macrostability(landand evaluation Piping waterside) waterside) Piping Piping Microstability Microstability Stabilityoftheforeland Connectionbetweenlevee and‘hardstructure’ Advanced Piping Macrostability(landand evaluation waterside) Piping Microstability Separately Geometry Stabilityoftherevetment evaluated Leveeheight Nonwaterretaining (byleveeowner) objects

51

IntheLakeMarkenleveeevaluationthemacrostability,pipingandmicrostabilitywereassessed. Thefirststep,phase1,wasareevaluationandverificationofanearlierstudytonewboundary conditions.Inearlierinvestigationsthegeometrywasalsochecked.Theleveeownerhimselfhad evaluatedthecrownheight.Phase2awasarecalculationondisapprovedleveereaches,based onmoreextensivefieldmeasurementsandlaboratorytests.Phase2bconcernedsomeadvanced researchtosharpensomeoftheresults.Therewasalsoaphase3inthisinvestigation,where designsweremadeforsomeprincipalsolutionsonrejectedleveereaches.(Fugro,2006) TwophasesweredistinguishedintheIslandofDordrechtevaluation,whichwasdoneaccording totheVTV(Min.V&W,2004).Inphase1aleveeevaluationfromglobaltodetailedlevelwas performedonthefollowingmechanisms/aspects:piping,macrostabilitylandsideandwaterside, microstability,stabilityoftheforeland,revetments,nonwaterretainingobjectsandthe connectionbetweensoilstructureandspecialwaterretainingstructure.Thelattertwowere investigatedandreportedseparately,partlybyanothercompany.Phase2isafurther investigationonleveepartsofwhichinphase1noopinioncouldbegiven.Thatdoesnot necessarilymeanthatadvancedmethodsaredirectlyapplied.(Fugro,2004_2)

4.3 Loads and Ground model

4.3.1 Introduction

Allthatevaluationisaboutistocomparetheloadsontheleveewiththeresistingforcesofthe leveeanditsfoundationagainstthefailuremechanisms.Thedifficultyinleveeevaluationlies oftennotinhowtoevaluatealevee,butmoreonwhichparametersforthestrengthandloads areusedintheevaluation.

4.3.2 Loads Table4.4LoadsincludedintheDutchleveeevaluation(modifiedfromTAW,2000) Loadsincludedinevaluation: Loadsnotincluded: Permanentloads: Hydraulicloads: • Deadweightoftheleveeand • Shipwaves foundation Otherloads: • Extractionsfromsubsoil(i.e.water, • Iceload salt,gas)resultinginsettlements • Collision • Nonwaterretainingobjects,suchas • treesandpipelines Earthquakes Hydraulicloads: • Explosions • • Normativewaterlevels i.e.damagefromvermin • • Waterlevelchanges(i.e.rapid Vandalism/terrorism drawdown) • Precipitation • Windwaves(significantwaveheights, peakperiods) • Windsetup Otherloads: • Traffic

Table4.4isanenumerationoftheloadsthatareaccountedforwhenaleveeisevaluated.When leveesfailitisoftenduringextremehydraulicconditions:extremehighwaterlevels,rapid drawdownafterextremehighwaterorwhenaleveeissoakedbyextensiverainfall.Windwaves andwindsetupincombinationwithextremehighwaterlevelsevenmakeitworse.Therefore normativewaterlevelsandwavesareestablished,whichonlyhaveanacceptablelowprobability ofexceedance(see3.2.2).Thehydraulicboundaryconditionsfortheprimarywaterdefensesare prescribedbythegovernment,basedonhistoricwaterlevelsandflowmodels.Theseboundary

52 Dutch levee evaluation

conditionsareupdatedeveryfiveyearsandputtogetherinonehydraulicboundariesbook(Min V&W,2001). Thenormativehydraulicconditionsfortheregionalwaterdefensesandareoftendetermined frominformationfromthewaterboards.Becausetheseleveesarenotsubjecttolarge fluctuations,astheriverandseadefenses,thenormativewaterleveliseasiertodetermine. Exceptextremewetconditions,extremelydryconditionsarealsoimportantfortheselevees, whilepeatlevees,whichwerenotdesignedbutsimplyjustresultedfrompeatexcavations,are veryvulnerabletodryconditions.Drypeathasalowvolumeweightandthereforeadecreased resistance. Otherloadsareforexamplethosecausedbytraffic.Theweightofcarsandtrucksbutalso vibrationscausedbymovingtrafficimposesapressureontheleveethatcannotbeignoredand arealwaystakenintoaccountinastabilityevaluationofaleveewitharoadontop.Thereare alsootherimportantloadsthatcertainlycouldresultinleveefailure,butthatarenottakeninto accountintheevaluation.Ofpartofthoseloadsitisnoteasytoquantifythem,forexample damagebyverminorvandalism.Othershavesuchalowprobabilityofoccurrencethattheyare nottakenintoaccount,asintheNetherlandsisthecaseforearthquakeloadsanddamagefrom icesheets.(TAW,2001)

4.3.3 Ground model

Thepreparationofagroundmodelisanimportantstepintheleveeevaluationprocess,which shouldprecedeandagainfollowtheleveeevaluationitself.Withoutapropergroundmodel,with legalassumptionsontheimportantlayerthicknessandsoilparameters,adetailedlevee evaluationisnotpossible.Whichgroundmodelpartsareimportantisdeterminedbythefailure mechanismsthatareevaluated. Table4.5Globalmethodtoprepareagroundmodel(modifiedfromFugro,1998) Gathering Informationsources Rangeof Intention Parameters Phase information investigation (indication) Preinves Archive Maps,oldfield Wholeleveelength Global tigation investigations profile ground andGlobal model levee evaluation Geological Expert Wholeleveelength advance profile knowledge; experience; area knowledge Detailed Basicfield Geophysical Range Basic Basedon levee investigation Soundings Per50to150m ground classificatio evaluation model n Borings Per50m Gauges Per50to100m Classification 8perboring Advanced Detailed/ Extrafield Situationdependent Adjustme Basedon levee advanced measurements: ntof fieldand evaluation field borings ground labtests investigation modelon gauges specific (continuous) locations Labtests: 3perboring/4per triaxialtests layer compressiontests 2perboring/3per sieving layer

53

Anapproachfromsimpletoadvancedisused,forwhichtheleveeisdividedintosections.The schematizedcrosssectionsshouldberepresentativeforthewholesection.Firstasimplelevee evaluationcanbeperformedtoseeifthereareleveesectionsfromwhichitisquiteclearthat theyaresafewithoutcalculationsorfieldmeasurements.Forthesectionsthatcannotbe assessedthateasyfieldinvestigationisdoneandcalculationsareusedtodeterminethesafety. Ofpartswherestillnopositiveverdictcanbestatedmoredetailedandevenadvancedmethods canbeusedtodeterminethesoilpropertiesandmodelthefailuremechanisms.Oftenonlyone ortwofailuremechanismshavetobestudiedinmoredetail.Eventuallytherewilloftenbeapart thatisstillrejected.Leveeimprovementisthenadvisable. Theassessmentoftheleveesafetyisbasedonthemodelmadeoftheleveeanditsbase.These soillayers,incooperationwiththedimensionsoftheleveeandthegeohydrologicalboundary conditions,determinetheresistanceoftheleveeagainsttheloads.Buttheyalsoformaload themselves,forexampleinslidingplanes.Toknowtheleveeanditsbaseindetailextensivefield measurementsandlaboratorytestsareneeded,whichisnotalwaysnecessarytogivean estimationofthesafetyofalevee.Thetrickistogetamaximumreliableverdictonthelevee safetywiththeavailablemeasurementsandtests.Dependingonthenormativefailure mechanisms,moremeasurementsandtestscanbedoneoncriticalleveeparts.Forexamplea leveepartthatisfirstrejected,becauseitispipingsensitive,canagainbeassessedwithamore detailedthicknessofthewaterprooflayerandabetterindicationofthepermeabilityofthe perviouslayer.Thusmore(undisturbed)boringsatthetoeoftheleveecanbetaken,tofind betterestimatesoftheseparameters. Table4.5givesaglobalmethodtodevelopagroundmodelandanindicationofthe measurementsandteststhataredoneintheNetherlands.Stepsinthedefinitionoftheground modelareinpracticeoftennotasstrictasinthetable.Whenalreadysomeweakspotsarefor exampleknown,extrafieldmeasurementsandtestswillalreadybetakeninthebasic investigation.

4.3.4 As applied in cases

Inthetableonnextpageissummarizedonwhichinformationthegroundmodelinthecase studiesfrom4.1.2wasbased.Hydraulicboundaryconditionsarealsomentioned. TodevelopagroundmodelfortheEemsCanalleveesthe51kmweredividedinpartsof250m. Boringsandsoundingswereusedforafirstgroundmodelandthenormativehighwaterinthe canal,asprovidedbythewaterboardwasthemostimportantload. ThestudyareaofLakeMarkenwasdividedin36leveereachesof4differentlevees,mostly basedongeometry.Theboundaryconditionsusedarethehydraulicboundaryconditionsfrom 2001(HRV,2001).3ofthe4leveesusethesamesoilcharacteristics;theotherleveehasothers, basedonhistoricexistence.Atrafficloadisappliedinthestabilityresearchforthelevees,where theloadhasanegativeinfluenceonthestability. The37.1kmofleveeoftheIslandofDordrechtwasdividedin22sectionswitharepresentative crosssection.Thisdivisionwasbasedonpreviousimprovementworks.Anexampleofthisare theimprovementsworkscarriedoutfortheDeltaPlanafterthe1953flood.Thehydraulic boundaryconditionsof2001wereusedinthisresearchandonpartsoftheleveeatrafficroad makesitnecessarytouseatrafficloadinthestabilityevaluation.

54 Dutch levee evaluation

Table4.6Developmentofgroundmodelincases Case1EemsCanal Case2LakeMarken Case3IslandofDordrecht Archivestudy DigitalmapsEemskanaalwitheach Digitalcrosssectionsfromthe Mapswithcrosssectionsandaerial 250macrosssection; waterboard photographsfromthewaterboard Archivesoundingsandlaboratory Leveeevaluationfrom1988 Leveeevaluationfromthe‘70sand testsfrom1991:Consolidated Oldpiezometerdata ‘80s,followedbylevee triaxialtestsonclayandpeat improvements; Soilcharacteristicsform1991 monsters Dutchcelltestsonmonstersfrom Polderwaterlevelsasdefinedby km014.8andkm32.037.1; thewaterboards; Hydraulicboundaryconditions from2001,normativewaterlevels, waves,stormconditionsand polderwaterlevelsfromwater board Basicinvestigation Deepsoundingswithfriction,each Hydraulicboundaryconditions Piezometerdatafromseason 250m(185deepsoundingsuntil from2001 2002/2003 +/14mNAPand5mini Morecrosssections Triaxialtestsonsamplesfromkm soundings+/4mNAP)fromthe 14.832.0 crest Borings? 17boringsuntilapprox.6mNAP Labtests:celtestsandtriaxial tests Piezometerdatafromseason 2001/2002(phreaticgroundwater levelandPleistocenerise Soilparametersbasedon experienceandfromthe1991lab tests DetailedInvestigation 15boringsatlandsidetoe(until TNOarchivedata Extrasoilresearchonwholearea: approx.6mNAP)and13behind 31toeborings,slopeborings Triaxialtestsonundisturbed thebankprotection(from+1.5 (landside)andcrownborings samples until0.5mNAP) 58Soundings Determinationvolumeweight Consolidatedundrainedtriaxial testsonsamplesfromtoeborings 29piezometers,measurements 13hourmeasurements fromclayandpeatlayers comparedwitholdpiezometerdata piezometerstodetermineresponse ofphreaticleveltowaterlevel Visualinspectionbankprotection Determinationofgrainsize distributionsofthedeep changes Pleistocenesandlayer Dissipationtests Volumeweightdetermination Triaxialtests Atterbergtests

AdvancedInvestigation 10deepsoundings(until45m Testsonundisturbedmonsters: NAP)withlocalfriction 15directsimplesheartestson measurementsfromthecrest peat 10handboringsatsamelocation 20isotropic,singlestagetriaxial assoundings(until20mNAP) testsonclaytodeterminethe Constantheadtestsonsand shearstrengthofclay samples;determinationofgrain sizedistribution 9piezometersatlocationsof borings

55

4.4 Macro stability evaluation

4.4.1 Why evaluation of the levee stability?

Aslipsurfaceformswhentheweightofaportionoftheembankmentcausesadrivingmoment thatexceedstheresistingshearstresseswithinthelevee.Alargeslipsurfacedecreasesthe widthoftheleveeandcouldimmediatelycausetheleveetofailentirely,becauseitisnotableto resistthewaterpressuresanymore.Floodingofthelandbehindtheleveeisaninevitableresult. Especiallyleveeswithasteepslopeinwetconditionsarevulnerabletothismechanism.Every slopethereforehastobeevaluatedforconditionsthatcouldbecritical.

River

Figure4.3Lossofstabilityinacircularplane(TAW,2000)

4.4.2 How to model the levee?

Toevaluatewhethertheleveeisstableenoughundernormativeconditionstwomethodscanbe applied:afiniteelementsmethodorslipsurfacecalculations.Plaxisisasoftwarepackagewhich providesarangeoffiniteelementmethodstoperform2Daswellas3Dgeotechnicalanalyses. Togetarealisticresultwithsuchfiniteelementsmethods,extensiveknowledgeofthesoil characteristicsisnecessary.Whileinleveeevaluationoftenonlylimitedknowledgeisavailable,a simplermethodasslipsurfacecalculationsoftenprovidesfasterandequallyreliableresultsandis normallyusedinpractice.ThesoftwarethatisusedintheNetherlandstoperformslipsurface calculationsisMStab.Becausetherearemanyways,formsandlocationswhereaslipsurface couldoccur,several2Dslipsurfacesareassumedandforeachofthemthefactorofsafetyis computed.Foreachofthoseslipsurfacesthemethodofslicesisapplied,oftenassuminga circularslipsurface(Figure4.4).Thesoilabovetheslipsurfaceisthendividedintoverticalslices. Asummationoftheeffectivestressesandwaterpressuresactingoneachindividualsliceresults inasafetyfactor.Thissafetyfactorisanexpressionofthedrivingforcesormomentsdividedby theresistingforcesormoments.

Figure4.4Methodofsliceswithacircularslipsurface(Verruijt,2001)

56 Dutch levee evaluation

Butnotonlycircularslipsurfacesthroughtheleveebodyitselfcanthreattheleveestability. EspeciallyintheDutchsituation,wherebehindtheleveesathickaquiferisblanketedwitha relativelythin,impermeablelayer,thewaterpressuresintheaquiferaresometimesabletolift theweakblanketlayers.Thisphenomenoniscalledupliftandcaninduceafarlargerslideplane, becauseduringuplifttheresistingforcesbetweentheaquiferandblanketlayersuddenly disappear.ThismechanismcanbemodeledinMStabwiththeUpliftVanmodule,whichthen dividestheslideplaneinapressurebarboundedbytwocircularplanes,asinFigure4.5.

Figure4.5Upliftmechanism(Geodelft,2006)

InTable4.7somecharacteristicsofthemethodsthatareusuallyappliedinMStabare summarized.TheslipsurfaceswithFelleniusandBishopareforexamplealwayscircular,while withSpenceralsoothershapescanbedefined.UpliftVanhasapressurebarwithtwocircle planesasinFigure4.5,whileUpliftSpenceronlyhasacircleplanethroughtheembankment. WithFelleniusandBishopMStabautomaticallycomputesallpossibleslipplanes,withintheuser definedgrid,andreturnstheslipsurfacewiththelowestsafetyfactor.ForSpencerthesafety factorisdetermined,fortheuserdefinedslipsurface,whileintheUpliftmodulesagaindifferent thesafetyfactorofdifferentslipsurfacesisdeterminedwithasingletangentlineforthecircles andamovinggrid.Felleniusisonlybasedonmomentbalance,whiletheothermethodsalso includeverticaland/orhorizontalforceequilibrium. Table4.7SummaryofthemostimportantmethodsinMStab(Geodelft,2006) Module Shapeslipsurface Definitionofslip Stabilitydefinition surface Fellenius Circular Automatically Momentbalance Bishop Circular Automatically Momentbalanceand verticalequilibrium Spencer Arbitrary Userdefined Momentbalance,vertical andhorizontalequilibrium UpliftVan Horizontalplanewith Partlyautomatic Momentbalance,vertical twocircles andhorizontalequilibrium UpliftSpencer Horizontalplanewith Partlyautomatic Momentbalance,vertical onecircle andhorizontalequilibrium

4.4.3 Stability evaluation

Simpleevaluationoftheleveestabilityisoftenjustacheckontheleveegeometryandtheabove methodsarenotyetapplied.Howtoperformamoredetailedstabilityevaluationisschematized inFigure4.6.Methodsfordetailedoradvancedevaluationdooftennotdiffer,buttheground modelisrefinedforeverystep.Stabilityofthelandsideslopeaswellastheriversideslopeis evaluated.Forthelandsideslopethesituationwithnormativehighwaterand/orextreme precipitationareexaminedareoftenthemostcriticalsituations.Extremeprecipitationcauses saturationofthesoils,whichresultsinalessstablesituation,especiallyforleveeswhichcontain clay.Ifthereisachanceofupliftoftheblanketlandsideoftheleveeapressurebarcalculation hastobemadeforthesituationwithanupliftedblanket.Wherecrackingofthetoplayeris possiblethestrengthoftheblanketwillbeassumedequaltozerointhestabilitycalculation.

57

Stabilityofthewatersideslopeisexaminedforthesituationrapiddrawdown,whenthewater levelisdecreasingsofastthatwaterpressureswithintheleveearenotabletofollowthe drawdown.Againasituationwithextremeprecipitationcouldalsobenormativeandhastobe investigated.

MacroStability

and and

LandsideSlope WatersideSlope

and and and and

NHW(NormativeHigh RapidDrawdownafter Extremeprecipitation Extremeprecipitation Water) NHW

Resistance yes possible SpencerorFEM(Finite tocracks ≥ Bishop ElementMethods) 1.2

Alwayscheck no withBishop

yes Uplift? Pressurebarcalculation

no Heave: Bishopc’ andø’ =0

possible

Possibleoptimization withFEM(e.g.Plaxis) Figure4.6MacrostabilitychartDutchleveeevaluation(modifiedfromTAW,2001)

NecessaryinputparameterstomodelstabilityinMStabaretheleveegeometry,phreaticline(s) andvolumeweightandstrengthcharacteristicsofthesoils.Thephreaticlineintheleveefor normativeconditionsisoftendeterminedfromavailablepiezometerdata,extendedtosituations withnormativehighwaterand/orextremeprecipitation.Ifnopiezometerdataisavailable conservativeassumptionsaremade.Foreachaquiferitispossibletodefineaphreaticline.The wetand/ordryvolumeweightofthesoilsandtheshearstrengtharedeterminedfromlabtests asdescribedinpreviousparagraph.Thestrengthcharacteristicscanbedefinedasa‘sigmatau curve’wherethenormaleffectivestress(sigma)andtheshearstress(tau)arerelated,buta combinationofthecohesionandinternalfrictionisalsopossibleamongstothers.Whichsafety factorsareallowedisvariableanddependsonhowthesoilcharacteristicsaredeterminedand whichmethodswereusedtomeasurethestrengthparameters.Nowadaysaprobabilistic approachtodeterminetheparametersispreferred.Thismeansthatnotthemeanvalueoffor exampletheshearstrengthistaken,butamoreconservativevalue:95%ofthemeasureddata hastobelower/higherthanthisvalue,dependingonwhichisconservative.Thisisthe characteristicvalue.Thevaluesinsertedinthecomputationarethecharacteristicvalues correctedwithamaterialfactortocompensateforinsecurities. IntheVTV(Min.V&W,2004)allowedsafetyfactorsrangingfrom1.2to1.6arementioned.More informationaboutsafetyfactorsandmaterialfactorscanbefoundintheTechnicalReportonSoil Structures.(TAW,2001)

58 Dutch levee evaluation

4.4.4 Case studies

Inthecasestudiesisdemonstratedhowastabilityevaluationisthenappliedinreality.Inall casesthestabilitywasmodeledwithMStabandBishop.FurtheronthestabilityoftheEems Canalleveesisonlyevaluatedforthelandsideslope.Norapiddrawdownisexpectedhere, becausewaterlevelsdonotfluctuatemuchandisthereforenotevaluated.Thesituationwith NHWisassumednormative.Thephreaticlineforthissituationwasbasedonavailable piezometerdataextrapolatedtothenormativewaterlevel.Forthecohesionandfrictionmean valueswereusedandaminimumsafetyfactorof1.0wasaccepted. InthestabilityevaluationoftheLakeMarkenleveesallsituationsmentionedinFigure4.6are evaluated.Thephreaticlineisagaindeterminedfrompiezometerdataandraisedwith0.5mfor extremeprecipitation.Aminimumsafetyfactorof1.0wasacceptedwithcharacteristicvaluesfor thesoilstrength.TheIslandofDordrechtleveeswerealsoevaluatedforthelandsideaswellas thewatersidestabilityatNHWandforrapiddrawdownconditionsaswellasextreme precipitation.Undrainedcharacteristicvalueswereused.Materialfactorsvariedfrom1.0to1.3 dependingonthetestmethods(triaxialtestsorceltests).

4.5 Evaluation of the piping mechanism

4.5.1 Why piping evaluation?

OneofthefirstconclusionsoftheFLORIS(orVNKresearch,see3.3.2)wasthattheestimated probabilityoffailureoftheDutchleveesduetopipingislargerthantheprobabilityoffailuredue toovertopping.Partofthisprobabilitycorrelateswiththeuncertaintiesandvariabilityofthe characteristicsoftheleveefoundationsoils,butfromthefirstpartoftheFLORISresearchitis clearthatpipingformsarealisticthreatforthestabilityoftheDutchlevees.(FLORIS,2005) The1993and1995riverfloodsrevealedthevulnerabilityoftheDutchriverleveestopiping.No leveesactuallyfailedduetopiping,butatseverallocationssandboilswereobserved,aclear indicationofpipeforming.Sackingwasnecessarytopreventcalamities.

4.5.2 Dutch explanation of the piping mechanism

Atypicalpipingsensitivesituationiswhereapervious,sandy,layerisoverlainbyanimpervious orsemiperviouslayer,forexampleclay.Thissituationisoftenfoundalongrivers.Figure4.7 displaysthestepsinthedevelopmentofathroughpipe.Eachstepisexplainedbelow.

A.Crackingtoplayer B.Boilforming,startoferosion

C.Pipeformingbyrecedingerosion D.Throughpipe(pipingmechanism) Figure4.7Stepsinpipingprocess(TAW,1999_2)

A. Crackingofthetoplayer ;Highwaterlevelscancausesubsurfacepressuresindeepsand layersthatareabletoliftrelativelyimperviousblanketlayerslandsideofthelevee.Whenthe pressureexceedstheweightofthecoveringlayerupliftistheresult.Inweakareas,for exampleinaditch,crackscanoccurintheblanket,releasingthewaterpressuresand causingunderseepage.

59

B. Boilforming,startoferosion ;iftheheavilyconcentratedseepageflowthroughthecrack isstrongenoughitcaninducethemovementofsandparticlesfromtheperviouslayer.The waterandsandwillformasandboilanddepositthesandintoaconesurroundingtheboil. C. Pipeformingbyrecedingerosion ;ongoingerosionfromthesandlayerwillstartapipe, whichcaneventuallybecomeathroughpipeattheinterfaceoftheperviouslayerandthe nonperviouslayer. D. Throughpipe;athroughpipeunderminestheleveeandcausestheleveetosettleoreven fail.(TAW,1999_2)

4.5.3 Piping evaluation

Theevaluationofpipingis,basedonthedescriptionofthepipingmechanism,dividedintwo separateprocesses.Upliftwithpossibleruptureoftheblanketisthefirststepanderosionofthe sand,revealingassandboilsisthesecond.Thesemechanismsthereforereturninthepiping evaluationchartofFigure4.8.

Determineifsoillayerprofilecanbeexpectedtobe sensitivetopiping

yes

Resistance no QuickcheckwithBligh; tocracks ≥ pipingvulnerable? 1.2 yes no Modelrefinement

ModelingwithSellmeijer; yes pipingvulnerable? no yes Modelrefinement

no Advancedanalysisbasedon moresoiltestsoruseofMseep; pipingvulnerable? no

yes Observedbehavioroftheleveeisgood?

yes no

Crosssectionisnotpipingsensitive Crosssectionispipingsensitive Figure4.8Pipingevaluationchart

Aswasalreadyexplainedin4.2.2thegroundmodelthatisusedfor,inthiscase,thepiping evaluationisrefinedineverystepoftheprocess.Firstveryconservativevaluesareusedfrom basicsoilresearch.Furtheronintheprocessmoredetailedexplorationresultsinbetter knowledgeofthesoilconditionsandmoredetailedgroundmodels. Butwithinthepipingevaluationthemodelingmethodisalsorefined.Bligh,anempiricalrelation publishedin1910,isafastandeasymethodtogiveafirstindicationofthepipingvulnerabilityof alevee.MoredetailedmodelingisdonewiththeSellmeijerformula.Thisformulawasdeveloped intheNetherlandsinthe1980’sandisthesolutionofdifferentialequationsformovementofa particleinaslit,supportedbymodeltests(Figure4.10).TheoutcomeoftheSellmeijerformula aswellastheBlighformulaisacriticalheadonthelevee,or,whichisoftenusedinpractice,a criticalseepagelengthorpathfromwhichpipingcanbeexpected. Theevaluationchartalsomentionsanadvancedanalysis,whichoftenconsistsofextra measurementsand/orlaboratoryteststorefinethecharacteristicsanddimensionsofthesand

andblanketlayersandmodelingwithSellmeijer.Anotherpossibilityis usingSellmeijersupported bygroundwaterflowmodels,asMSeep,togetabetterimpressionofthepermeabilityofthe sandlayer.MSeepalsohasaspecialpipingmodule.Thismoduleisnotusedinthecurrent evaluationstandards.

60 Dutch levee evaluation

Asaresultoftheabovedescribedprocessaleveesectionisneverimmediatelyrejected,unless observationsclearlyindicateproblems.Onlyafterseveralrefinementsteps,eachindicatingthat theleveeispipingsensitiveatthenormativewaterlevel,theleveecanberejected.Iffromthe analysisisdeterminedthattheleveeissufficientlysafeagainstpipingandtherewerenopiping problems(sandboils)diagnosedinpastextremeconditions,theopinionispositiveregardingthe pipingcriterion.Inthefollowingparagraphsuplift,BlighandSellmeijerarefurtherexplained. (TAW,1999_2)

4.5.4 Uplift

Todeterminewhetherupliftoftheblanketispossibletheupliftcriterionisused.Thecritical situationiswhenthepressureofthewaterbeneaththeblanketequalsorexceedstheweightof theblanket,whichisdescribedwiththeformula: 1 ()φ−h ≤() φ − h (41) s pγ sc, p With: γ− γ φ =h + D w, s w (42) s, c p γ w D= thicknessoftheblanket[m]

hp= thelevelofthetopofthesandlayer[m+NAP] γw,s = thewetvolumeweightofthetoplayer[kN/m3] γw= thevolumeweightofwater[kN/m3] φs= thehydraulicheadinthewaterbearinglayer[m+NAP] φs,c = phreaticheadinthetoplayer[m+NAP] γ=safetyfactor[](=1.2)

4.5.5 Bligh

TheBlighformulausesacriticalseepagelengthorpath.Iftheactualpipinglengthisshorter thanthecriticalpipinglengththeleveeisassumedvulnerabletopiping. = ∆ LBligh HC creep (43) ≤ LBligh L (44) With: LBligh = criticalseepagelength[m] L= presentseepagelength H= headdifference[m] D= thicknessofblanket(atcriticalpoint)[m]

Ccreep =creepfactor[]=15formoderatelyfinesand

Figure4.9SchematizedleveeprofileBligh(modifiedfromFugro,2004)

IntheDutchevaluationthisformulawaslaterchangedto: =( ∆ − ) LBligh H0.3 DC creep (45)

61

Theheaddifferenceontheblanketisthenpartlytakenintoaccount.Thethicknessofthe crackedblanket,orinotherwords:thecrackedcanal,alsooffersresistanceoftheblanketto piping.Theoreticallythisfactor,here0.3,issomewherebetween0and1,butinpracticemoreor lessbetween0and0.6.The0.3valuewasoncefoundinpractice.Itisnotaconstantfactor,but moresortofanexpectedvalueandareasonablefirstestimation.(Sellmeijer,2007) Thecreepfactordependsonthemediangraindiamerofthesand.InTable4.8thecreepfactors arerelatedtothegrainsize. Table4.8CreepfactorsusingBligh(modifiedfromTAW,1999_2) Soil Mediangraindiameter[m] CcreepBligh Veryfinesand 105150 18 Moderatelyfinesand 150210 15 Coarsesand 3002000 12 Finegravel 20005600 9 Coursegravel >16,000 4

4.5.6 Sellmeijer

TheSellmeijerformulacontainsmorevariablesthantheBlighformulaandhasmoretheoretical background: 1 ()∆−H0.3 D ≤∆ H (46) γ c γ ∆Hc =αp tan()() θ () 0.68 − 0.10ln cL (47) c γ w With:   1     3 0.28  =η 1 2.8  c d 70   d  dsand   κ α = sand   −1  L    L   , (48,49) L  H=Headdifference(=NHWpolderwaterlevel)[m]

H c=Criticalheaddifference D=Thicknessofblanketatcrack[m] γ=Safetyfactor=1.2

γp=Saturatedweightofthesand[kN/m3] γw=Volumicweightofthewater[kN/m3] θ=Frictionangleofthesandgrains[ °]=41 o L=Seepagelengthhorizontal[m] dsand =Thicknessofthesandlayer[m] η=Dragfactor(coefficientofWhite)[]=0.25

D70 =70percentvalueofthegraindistributionofthesand[m] v κ=intrinsicpermeabilityofthesandlayer[m2]; κ = k g ν=Kinematicviscosity(≈1.33x10 6m 2/s) g=gravity(≈9.81m/s 2)

kf=permeability[m/s] Themodelteststhatformthebackgroundoftheformulaswereperformedwithoutablanket layer(Figure4.10)andwerelatertransformedtoasituationwithablanketlayer.The0.3Dinthe formulaisagain,aswiththeBlighformula,afactortocompensatefortheresistanceofthecrack intheblanket. Thecriticalheadisthepointwheretheslitundertheleveestartstogrowexplosively.Ascanbe seeninthediagramofFigure4.10theslitstartstodevelopatacertainheaddifferenceonthe levee,butwillfindequilibriumatarelativelylowl/Lvalue,whichisthelengthoftheslitdivided

62 Dutch levee evaluation

bytheavailableseepagelength.Atthecriticalheadthereisnoequilibriumsituationanymoreand lstartstogrowuntilitequalsL.(TAW,1999_2)

Figure4.10TheSellmeijermodeltests(TAW,1999_2)

4.5.7 How to determine the hydraulic head beneath the top stratum?

Animportantparameterforupliftandthereforepipingistheheadbelowthetopstratum.There arevariouswaystodeterminetheexcesshydrostaticheadinthepervioussubstratumatpossible criticalupliftlocations.IntheDutchengineeringpracticeafirst,veryconservativeassumptionis thatthehydrostaticheadisequaltothenormativewaterlevel.Amorerealistichydraulicgrade linecanbedrawnfromeitherpiezometerdataorfromageohydrologicgroundwatermodel. Piezometerdataisobtainedduringsomemonthsorpreferablyyearstogetanimpressionofthe variabilityofthehydraulicpressures.Whileitisnotverylikelythatafloodoccursduringthe measuringperiod(piezometersareofteninstalledwhentheleveeevaluationisstarted),the piezometerdataisextrapolatedtothenormativeconditions.Theresultfromthisextrapolationis oftenthatthewaterlevelfluctuationsarenot100%followedbythehydrostatichead,butthat, withasmalltimelag,thephreaticheadfollowsforapproximately70%(TAW,1985).Analytical solutionsforgroundwaterflowornumericalmodelsarelessoftenused.MSeepisanumerical programwhichsimulatesstationarygroundwaterflow.

4.5.8 As applied in case studies

Inallcasesanassessmentoftheuplift/crackingvulnerabilitywasmade.Notonlyfromthedeep Pleistocenesandlayer,butalso,whenpresent,fromintermediatesandlayers.Furtheronboth BlighaswellasSellmeijerwereusedintheevaluation.Theheadbeneaththeblanketwas estimatedfrompiezometerdata,oftenrelatedtothewaterlevels.ForforexampletheLake Markenleveesfirstan80%responsewasassumed,whichwasveryconservative.Thismeant that80%ofthedifferencebetweenthe(measured)winterwaterlevelandtheNHWwasadded totheheadbeneaththeditchoratthetoeatwinterwaterlevelconditions.Laterwasfoundthat theresponsewas38%54%.IntheadvancedpipingevaluationoftheEemsCanalleveesMSeep wasusedtogetabetterindicationofthepermeabilityvaluesofthesandlayer.Thesandlayer consistedofmoreorlesstwoseparatelayers:finesandontopandcoursesandbelowthat.With theresultsfromtheMSeepcalculationsmostleveesectionswereapproved.

63

Figure4.11StandardDutchleveefromcasestudieswithparametersimportantforpiping

FromthethreecasestudiesatypicalDutchleveewasdrawninFigure4.11.Inallthreecase studiesasituationwasfoundwherethePleistocenesandlayerupto50mthickisoverlainbya claylayerofabout16m.ButnotonlythePleistocenesand,alsointermediatesandlayersare sometimesthickenoughtocauseaseepageflowstrongenoughtolifttheblanket.The 4 permeabilityofthesandisaround1x10 m/swithad 70 diameterofabout100200m. Sometimesaforelandispresentofabout15mandveryoftenditchescanbeobservedsome0 15mfromthelandsideleveetoe,withablanketthicknessof0.52m.Thetotalavailable seepagelengthrangesfrom3080mandtheheaddifferenceonthelevee(thedifference betweenthewaterlevelonthewatersideoftheleveeandatthelandsideofthelevee)canbe about4m.

64

5 US levee evaluation

AfterKatrinahitNewOrleans,thereisnowanurgentneedtoevaluatetheleveessurrounding NewOrleansandleveesinCalifornia.Thischaptergivesanoverviewofhowleveesareevaluated intheUS,focusedonthecurrentlyrunningDepartmentofWaterResources(DWR)projectin Californiaforevaluationoftheurbanlevees.Casestudies,asfarasavailable,aresupportingthe description.Aftersomebackgroundinformationaboutevaluationdocumentsandanintroduction tothecasestheprocessofevaluationisdescribed.Paragraph5.3isaboutloads,followedby developmentofagroundmodelin5.3.Modelingoftheleveestabilityandleveeunderseepage arediscussedinthelasttwoparagraphs.

5.1 Background

5.1.1 Evaluation guidance

TheUShasnofederalestablishedguidanceforleveeevaluation.Themethodsthatareusedin leveeevaluationarepartiallywithdrawnfromtheLeveeDesignManualoftheArmyCorpsof Engineers(USACE,2000)andoftencombinedinsomesortofStandardOperatingProcedure. OtherdocumentsusedareforexampletheSlopeStabilityManualfromtheArmyCorpsof Engineers(USACE,2003)andtheDesignGuidanceforLeveeUnderseepage(USACE,2005).The SlopeStabilityManualprovidesguidanceforearthandrockfilldams,aswellasnaturalslopes andlevees.TogetleveecertificationfromFEMAthesemanualsneedtobefollowed. ThedesignandanalysisproceduresforleveesintheUnitedStatesarecloselyrelatedtoearth dams.Adamandaleveearedistinguishedonseveralaspects.Mostleveesareonlysubjectto extremewaterloadingforafewdaysorweeksayear,whileadamispermanentlyloaded. Anotheraspectisthatthematerialwithinaleveeisoftenfarfromhomogeneousbecausethey wereoftenconstructedlongtimeagoonpoorfoundationsandwithlocallyavailablematerial, whiledamswereoftenalreadyconstructedwitharealengineeringbackgroundandmore applicablematerials(SOP,2004).Anotherinterestingdifferenceisthatadam,althoughitisa verylargestructure,hasonlyalimitedlengthofaboutafewhundredmeters,whilelevees stretchoveralengthofmanykilometers.Foradamitisthereforeforexampleeasiertomonitor andevaluatethanforalevee. ThischapterusestheStandardOperatingProcedureoftheSacramentodistrict(SOP,2004)to describetheleveeevaluationpracticeintheUnitedStates,supportedbythemethodsusedinthe DWRleveeevaluationappliedonleveesintheCentralValleyandSacramentoSanJoaquinDelta. Itonlydiscussesthegeotechnicalleveeevaluation;erosion,wavesandleveeheightwillfor examplenot(extensively)bedealtwithoronlyqualitatively.

5.1.2 Cases

DWRLeveeGeotechnicalEvaluations: Inlate2006astatebondmadeitpossiblefortheDepartmentofWaterResources(DWR)to evaluatepartoftheCentralValleyandDeltalevees.FugroWestinc.ispartoftheteamthatwas rewardedtheassignmenttoexploreenevaluatethe350milesofurbanleveesinthispartof

65

Californiaandfindhiddendeficiencies(see2.2.1).Urbanleveesareleveesthatprotectmore than10,000people.Inprojectteamworkshopsanalysisprotocolsforthegeotechnicalanalysis weredevelopedbasedontheUSACEmanuals(URS,2007)).Thestakeholdersinthisproject: DWR,USACE,FEMAandlocalagencies,reviewtheanalyses. ReclamationDistrict17(orRD17)isthefirstareathatisexploredandevaluatedbyFugroandis locatedalongtheSanJoaquinRiverinthesouthernpartoftheDelta.Thisareaissubjecttotidal influencesandhas16miles(25km)ofleveesthatneedtobeanalyzed.(Figure5.1)

Reclamation District17

Figure5.1LocationofReclamationDistrict17(DWR,2006)

ReclamationDistrict17leveeevaluation ThisevaluationfromEngeoIncorporatedwasperformedonthenorthernpartoftheRD17 leveesin2006,inconjunctionwithresidentialdevelopmentplannedinthatarea.Clientwasthe KeenanLandCompany,arealestatedeveloper. Mississippiunderseepageresearch Acasethatisonlyusedinthelastparagraphofthischapterisanunderseepageresearchthat wasperformedonleveesalongtheMississippiinthe1940sand1950s.SeeFigure2.15forthe locationoftheMississippi.Afterunderseepageproblemsduringthe1937highwater16 locations,showninFigure5.2,werechosenforanextensiveresearch.Maingoalsofthis researchweretodevelopabetterunderstandingofthephenomenaofseepagebeneathlevees andoffactorsinfluencingunderseepage.Thepurposewasalsotoobtaininformationthatwould makepossiblearationalanalysisofunderseepageandtostudycontrolmethods.Theresultsof thisstudywereformulasandcriteriafordesignofaleveesustainabletounderseepage.

66 Sand boils and Piping

100km Figure5.2LocationsMississippiunderseepageresearch(googleearth,2007)

5.2 Levee evaluation process

5.2.1 Failure mechanisms and modeling

TheprincipalcausesofleveefailureintheUSaccordingtotheleveedesignmanualare overtopping,surfaceerosion,internalerosion(piping)andslideswithintheleveeembankmentor thefoundationsoils(USACE,2000).IntheInitialTechnicalFramework(ITF)(DRMS,2006)(see 2.2.7)theyaremorespecific.InFigure5.3thesevenfailuremodesmentionedintheITFare relatedtoleveefailure.

Leveethrough Waveinduced Floodinduced Current seepageand/or erosion overtopping inducederosion underseepage or

LeveeFailure!

or

Leveeinstability Seismic Staticinstability duetosudden inducedfailures drawdown Figure5.3LeveefailuremechanismsimportantforCentralValley

Internalerosionisdividedinseepagethroughtheembankmentandunderseepage(piping)and isexplainedfurtherinparagraph5.5.Waveinducederosioncandamagetheleveeonthe watersideslope,especiallywherealargewaterbodyisconnectedtothelevee,forexamplea lake,whereawindfetchcaninducewavesuptoafewmeters.Butintheeventofanisland floodingthelandsideslopecanalsobeharmedbywavesandeventuallycauseleveefailure.How topreventwaveinducederosionorhowtoevaluatetheleveevulnerabilitytothiserosionisnot mentionedinthedesignguides. Floodinducedovertoppingoccurswhenthewaterlevelexceedstheleveeheight.Evaluationof theavailablecrownheightisnecessarytopreventthis.Thecrownheightlossbecauseof

67

settlements,whichinfluencestheavailablefreeboard,ismentionedintheUSACEmanual, althoughitdoesnotmentionaminimumfreeboardforevaluation.Thesettlementpotentialcan beestimatedwithadetailedsettlementanalysis,whichisnotlimitedtodesignoflevees,butalso includesperformance(USACE,1990). Currentinducederosionisaregularobservedmechanism,especiallyalongtheCentralValley Rivers.Duringthemid19 th centurytheriverprofileswereadjustedtoflushthehydraulicmining sediment,whichclockedtheriversandcausedfloods.Nowadaystheminingsedimentisgone andtheriverserodetheembankments.Toevaluatetheerosionsusceptibilityoftheleveesa qualitativeprocessbasedoninspectioncanbeusedtodetermineiftheprofileiswithinthesafe profile.Apartlyquantitativeprocessusingnumericaldataandanalysesisanotheroption(USACE, 1994). Slideswithintheleveeembankmentorthefoundationsoilsaretreatedin5.4.Staticinstability, leveeinstabilityanddynamicinstabilityaretreated.Dynamicinstabilityiscausedbyearthquake movements.Anotheraspectofearthquakesinducedfailuresisliquefaction.Liquefiedsandhasa reducedstrengthandstiffnessandisnotabletosupportstructuresanymore.Especiallythe saturatedsand,oftenfoundunderlevees,arevulnerabletoliquefaction.Althoughtherearesome simplestandardstoperformadynamicstabilityanalysis,usingearthquakeaccelerationsand estimatingtheliquefactionsusceptibilityoftheleveefoundation,newandbetterproceduresto evaluatetheseismicvulnerabilityofaleveearestillunderdevelopment.(USACE,2003; Athanasopoulos,2007)

5.2.2 As applied in cases

TheDWRprojectonlycomprisesgeotechnicalanalyses.Thismeansthattheevaluationofthe leveeheightisnotincludedinthisprogram.Theerosionsusceptibilityoftheleveesisexpected togonofurtherthanjustaqualitativeestimation.Theideaistoidentifyleveeareasthatexhibit erosionorareexpectedtobeatriskforfutureerosion.Seepageandstaticaswellasdynamic stabilityarethemaintopicsinthisprojectandaretreatedseparatelyinthelasttwoparagraphs ofthischapter. Inthe2006RD17evaluationtheliquefactionpotentialofthesiltsandsands,leveestaticand dynamicinstabilityandseepagesusceptibilitywereincluded.

5.3 Loads and ground model

5.3.1 Loads

Allloadingconditionsthatcouldbecriticalshouldbeassessed.Rulesonwhichloadshavetobe usedarenotuniforminthewholeUS.Whilenotallstatesdealwiththesameenvironment, boundaryconditionsvarywidely.CaliforniadoesnothavehurricanestodealwithandLouisianais notafraidofanearthquaketodemolishtheirlevees.Table5.1givesanoverviewoftheloads thataregloballyinvolvedintheUSevaluations. ThreestressingeventsaredistinguishedintheUSACEmanual:suddendrawdown,fullflood stageandearthquake.TheITFchangedthemsomewhat:normal‘sunnyweather’conditions, floodingandseismicloading.Trafficloadsandtheweightoftheleveeitselfhavetobe consideredineachoftheseevents.InTable5.1loadswhichareandwhicharenottakeninto accountintheleveeevaluationaresummarized. NormativefloodlevelsintheUSdifferperStateorevencity,aswasexplainedin2.2.2.In Californiathenormativefloodlevelisoftenthewaterlevelwithaprobabilityofexceedanceof 1/100peryear,whichisalsoaFEMAcriterion.WhiletheUSstillhasashortdatahistoryofflood levels,thenormativewaterlevelsusedinleveeevaluationareverysensitivetochangescaused bynewextremewaterlevels.

68 Sand boils and Piping

Table5.1Loadswhichareandwhicharenotinvolvedinleveeevaluation WhichloadsareconsideredintheDWR Andwhichforexamplenot: leveeevaluation: Permanentloads: Permanentloads: • Deadweightofthelevee • Extractionfromsubsoil(e.g.water, • Nonwaterretainingobjects(i.e. salt,gas)resultinginsettlements pipelines) Hydraulicloads: Hydraulicloads: • Precipitation • Normativefloodlevels Otherloads: • Suddendrawdownconditions • Iceload • Waves • Collision Otherloads: • Explosions • Traffic • Damagefromverminao • Earthquakes • Vandalism/terrorism

5.3.2 Ground model

TheUSACEmanual(USACE,2000)providesaguidelinewithfieldinvestigationandlaboratory testsonwhichagroundmodelforevaluationordesignshouldbebased.Table5.2summarizes theUSACEguidelines.Theinvestigationstartswithanofficereviewfollowedbyafieldsurvey. Theofficestudyinvolvesasearchforavailableinformation,suchastopographicandgeological maps,oldfieldinvestigations,performancehistoryandaerialphotographs.Combinedwiththe fieldsurvey,whichincludesobservationofphysicalfeaturesandinterviewingoflocalpeopleor organizations,thisresultsinareportonwhichfurtherfieldinvestigationscanbebased. Table5.2Proposedinvestigationtoprepareagroundmodel Informationsources Rangeofinvestigation Intention Phase (indication) OfficeStudy Maps,oldfieldinvestigations Wholeleveelengthprofile Advisefor andinspections field investigation Fieldsurvey Experts/representativesof Wholeleveelengthprofile leveerelatedagencies;physical features Phase1 Borings Boringsfromwaterside Basicground exploration Soundings toe,landsidetoeanda model deepexplorationatthe Classificationondisturbed leveecrestevery30to600 samples m;depthatleastheightof Mayincludegeophysical leveeandnotlessthan3 exploration m. Phase2 Moreborings Boringsfromwatersidetoe Adjustment exploration Piezometers andlandsidetoe,ifnot ofground performedinphase1; modelon Labtestsonundisturbed Piezometersshouldalways specific samples:triaxialtests; locations compressiontests;sieving beinstalledinpotential underseepageareas Mayincludegeophysical exploration

Thesubsurfaceexplorationcanbedividedinaphase1andphase2explorations,ofwhichthe firstphasemainlyconsistsofsoilidentificationandlabtestsondisturbedsampleborings.The spacingbetweenboringsand/orsoundingsis300mmaximum.Thesecondphaseistogetmore detailedinformationaboutspecificareasandconsistsmainlyofextraboringsand/orsoundings, installationofpiezometers(ifnotalreadydoneinthefirstphase)andlabtestsonundisturbed

69

samples.Useofgeophysicalexplorationssuchasgroundpenetratingradarorelectricalresistivity measurementsshouldbeconsideredtoprovideatleastsomelevelofinsightregardingconditions betweenboreholesandCPTprobes.Detailsonthelaboratorytestmethodsandcorrelationscan befoundintheUSACEmanual.(USACE,2000)

5.3.3 As applied in case studies

DWRproject: Floodlevelstobeusedintheevaluationarethe200yearfloodlevel,whichisrequestedbythe DWRandispossiblyadaptedinthefuturebyFEMA.Butalsothe100yearfloodlevel,whichis thecurrentFEMAcriterion,andthe1957designprofilewaterelevation.Whenforexamplethe 200yearwaterelevationisabovethecrestheight,awaterlevelequaltothecrestheightwillbe usedforevaluation.Besidesnormativefloodlevelsrapiddrawdownisalsousedasextreme hydraulicloadonthelevees.Toestimatetheinfluenceoferosionhighwaterflow,waveaction andlongfetcharealsotakenintoaccount.ThefloodlevelsareprovidedbytheDWRorlocal agencies. ThechartfromFigure5.4willbefollowedintheDWRproject.FollowingtheUSACEdocuments, each1,000feet(300m)aboringisdone,combinedwithCPTs.Thephase1explorationsare onlytakenthroughtheleveecrest.Inphase2toeboringsandboringsinthehinterlandwillbe taken.Fugrohasthepolicytodoboringstoadepthof4timestheleveeheight,whichinthe caseoftheDWRprojectmeansadepthofabout35meters. BasedonU.S.ArmyCorpsrecommendationsforleveedesign,soilexplorationisrequiredevery 1,000feet(300m)alongthecrownofthelevee,thewatersidetoeandthelandsidetoe. TocometoafinalGeotechnicalEvaluationReport(GER)theworkflowchartofFigure5.4is followed.Itshowsthat,basedonaphase1(P1)ofgeotechnicalexploration,agroundmodelis developedandevaluated,resultinginapreliminaryGER.P2explorationsandmodelrefinement, withevaluationusingthesamemodels,leadstothefinalGER.

Figure5.4OverallworkflowchartDWRproject(UGF,2007)

70 Sand boils and Piping

2006RD17evaluation: Thegroundmodelwasbasedonexistingboringsfromaresearchfrom1989and14newborings and40newcptsbothtoadepthofabout18m.Cpts,fromthecrownandlandside,were spacedevery1,000ft(about300m)witheveryfifthcptaboring.Variouslabtestssupportedthe fieldresearch,suchaspermeabilitytests,triaxialtests(isotropicallyconsolidatedundrainedtests andunconsolidatedundrainedtests),determinationoftheplasticityindexandparticlesize distribution.Thegroundwaterlevelusedintheevaluationwasbasedongroundwaterlevels foundduringtheboringsandcptsandwasestablishedat1.5mbelowgroundlevel.Riverstages atnormallowflowstage,monitorstageandprojectfloodstage(1/200yearflood)providedby theDataExchangeCenterfromtheDepartmentofWaterResourceswereused.Theloading conditionsarelongtermconditions,suddendrawdownandearthquakeloading.(Engeo,2006)

5.4 Stability evaluation

5.4.1 Methods

Conditionsthatcouldinduceinstabilityoftheleveeareextremewaterlevels,arapiddrawdown ofthewaterleveloranearthquake.Howpossibleslidescanbetracedandwhichsafetyfactor theyhaveduringnormativeconditionswasalreadyexplainedin4.4andisequallyapplicableto theUSsituation.TheUSACEhasaspecialslopestabilitymanual(USACE,2003)whichexplains themethodsusedfordamsaswellaslevees. ToperformslopestabilityanalysisagainPLAXISisused.PLAXISisafiniteelementprogramand wasforexampleusedtoverifythemechanismsthatcausedleveefailureinNewOrleans. Detailedinformationaboutthegeometryandsoilcharacteristicsisnecessarytogetareasonable result.WhileinNewOrleanstheexactlocationofthebreacheswasknown,extensivesoil researchcouldbedoneonthosespecificlocations.PLAXISasaresultworkedexcellentforthe NewOrleanscases.Butforwholeleveestretchesthisisnotthecase.Thereforeagainthe methodofslicesisapplied.ThemostconvenientsoftwareintheUSstabilityevaluationusingthe methodofslicesareSLOPE/WandUTEXAS4.Withbothprogramsthemostconvenientmethods asBishop,SpencerandJanbucanbeperformed.OthermethodsareTheCorpsofEngineers methodandtheLoweandKarafiath’sprocedure,bothabletoperformrapiddrawdownanalyses withpartlyundrainedparameters.AdifferencebetweenthetwoprogramsisthatSLOPE/Whasa graphicuserinterface,whichmakestheprogramquiteaccessible.TheinputinUTEXAS4isa datafilefromatexteditor.SLOPE/WisofthesameseriesasSEEP/W,withwhichphreaticlines aregeneratedandcaneasilybeexportedtoSLOPE/W.ThemainreasonthatUTEXAS4isused veryoftenandisalsoprescribedintheDWRprojectisthatitcanperformthethreestagerapid drawdownanalysesbyDuncan,WrightandWong(Duncan,1990)easily.

5.4.2 Stability evaluation

ThestabilityevaluationisexplainedwiththechartofFigure5.5.Thisishowthestaticstability, withoutearthquakes,isevaluatedintheDWRproject.Thelandsidestabilityaswellasthe watersidestabilityareevaluated,bothfora200yearfloodlevel.Thestabilityevaluationis performedwithUTEXAS4usingtheSpencermethodforbothcircularandnoncircularslides.A checkisperformedwithSLOPE/W.Theminimumsafetyfactorof1.5isrequiredforthelong term,200yearflood.Whenthesafetyfactorislessthan1.5the100yearfloodandthe1957 floodlevel(astandardsetbytheUSACEandDWRwhichatsomelocationscanevenexceedthe 200yearflood)havetobeevaluated.The100yearfloodisarequirementfromFEMAforflood insurance.Whenthe200yearprotectionisnotreached,butthe100yearis,atleasttheFEMA criterionisreached. Forthewatersideslopetherapiddrawdownconditionisalsoevaluated.Rapiddrawdownoccurs whenthewaterleveldropssoquicklythatthewaterlevelwithintheslopecannotfollowthis drop,becauseimpermeablesoilsdonothavesufficienttimetodrain.Thissituationisoften criticalforthewatersidestability.Therearedifferentmethodstoestimatethestabilityofaslope afterdrawdown.TheUSACEprefersatotalstressmethodrecommendedbyDuncan,Wrightand Wong(Duncanetal,1990)(Duncanetal,2005).Thismethodusesathreestageanalysisin

71

whichinthelaststagethelowestofthedrainedandundrainedstrengthparametersisused.This threestagemethodcaneasilybeperformedwithUTEXAS4,whichiswhythisprogramis currentlysubscribedforstabilityevaluation.Thesafetyfactorrequiredforrapiddrawdownis1.0 1.2,dependingonhowlongtheextremewaterlevellastsandhowrapidthedrawdowntakes place.

Figure5.5MacrostabilitychartDWRleveeevaluation,withoutdynamicstability

ButFigure5.5isonlyaboutthestaticstability.Asmentionedbeforemethodstoindicatethe leveevulnerabilitytoearthquakesaresubjectofpresentresearch.WithintheDWRprojectthere isasortofworkgrouptryingtofigureoutmethodstodothis.Theideaistodevelopabasic methodtoevaluatetheseismicvulnerabilityoftheleveesandamoredetailedmethod (Athanasopoulos,2007).Acombinationofaseismiceventandfloodeventhastobemadewitha reasonableprobabilityofoccurrence,whiletheprobabilitythata200yearfloodcoincideswitha 200yearearthquakeisverysmall.ThereforeseveralrunswillhavetobemadewithUTEXAS4to combinethestaticanddynamicstability.(URS,2007)

5.4.3 As applied in case studies

DWRproject: HowthestabilityisevaluatedintheDWRprojectisalreadydiscussedabove. RD17research: ThestabilitywasevaluatedwithSLOPEW.Bothlandsideandwatersidemacrostabilityand combinationsofearthquakeandfloodeventsledto16runsforeachcrosssection.The200year floodstagewascombinedwithearthquakeeventwithreturnperiodof72yearswhichyieldsa PGA(acceleration)of0.12g;seismiccoefficient0.06forbothlandandwaterside.Another conditionwasrapiddrawdownaftermonitorstageand200yearfloodstageatstaticand dynamiccondition,landandwaterside.Alsoapostliquefactionconditionatcrosssectionno.3, withpostliquefactionsoilstrengthsforstaticcondition,normalandmonitoringstagebothland andwaterside;aresidualstrengthof300psfwasusedandafactorofsafetyof1.1.Calculations weredonewiththedrainedshearstrength;exceptforthedynamicevaluations,theyuse undrainedshearstrengthforclayandsilt.

72 Sand boils and Piping

5.5 Seepage and piping evaluation

5.5.1 Why seepage evaluation?

Figure5.6SandboilsinCalifornia,1997(UCDavis,2006)

Figure5.7Sandboilwhichcausedaleveetofailin1993(Mansur,2000)

The1997RiverfloodsintheCentralValleyweremainlycausedbyseepagerelatedleveefailures. Morethan30breachesfailedduetopiping,asmentionedinchapter2. PipinghascausedproblemsintheMississippiRiverbasinaswell.The1937Mississippihighwater isimportantinthiscontext,becauseoftheenormousamountofheavyseepageandsandboils thatoccurredalongnumerousreachesofthelevees.Afterthe1937floodintheMississippiRiver basin,USauthoritiesrecognizedthethreatofpipingforthestabilityofleveesandstartedan extensiveresearch.Althoughnoleveesactuallyfailedin1937,atleast6oftheabout60major leveefailuresbetween1890and1927werecausedbysandboils.Moreofthemcouldhavebeen causedbypiping,butwereonlyregisteredasblowoutsorunknowncauseoffailure.

73

ButleveesattheMississippiRiverhavefailedagainbecauseofpipingduringthe1993high water,whenthestageoftheMississippiRiverequaledorexceededthedesignstage,thehighest riverleveltowhichtheleveeshadeverbeensubjected.(Mansur,2000) PipingwasalsooneoftheobservedproblemsatleveesthatfailedinNewOrleansin2005. (Kanning,2006)

5.5.2 Under-seepage and piping

IntheUSseepagecanbedividedinunderseepage,belowalevee,andthroughseepage. Throughseepageiswaterseepingthroughtheleveebodyitself.Alllevees,especiallytheCentral Valleyleveesbuiltwithcoursematerials,seepalittlebit.Whenthephreaticlinealreadyexitsthe leveeattheleveeslopeerosionproblemscanbeexpected.Thereforeanevaluationofthe positionofthephreaticlineisnecessary.Butthischapterisaboutunderseepage. Seepageflowbeneathaleveeisanaturalphenomenoninanalluvialvalleywheretheriverlevel ishigherthantheadjacentland.Withrisingriverleveltheseepageflowincreasesandthe hydraulicheadbeneaththeleveeandlandsideblanketthereforeincreasesaswell.Figure5.8is anillustrationoftheUSinterpretationofseepageandpipingunderalevee.Underseepage, createsahydraulicgradientintheperviousstratum.Withrisingwaterlevelthehydrostatic pressureinthisstratumrises.Whenthispressureexceedstheweightofthetopstratum,this pressurewillcauseheavingofthislayer.Atweakspotsthiscancauseruptureofthetopstratum. Aconcentratedseepageflowattheserupturepointsmaycausesandboils.Sandboilscanalso beinducedatplaceswhereanopenchannelinthetoplayeralreadyexists,inboreholesor cracks.Ruptureoftheblanketisthereforenotanecessaryfirststep.Activeerosionfromunder theleveeasaresultofconcentrationofseepageinlocalizedchannelsisknownaspiping.These problemsaremostacutewhereaperviouslayerunderliesaleveewithontopofitathin imperviousorsemiperviousblanketlayer.(Mansur,2000)

Figure5.8USinterpretationofpiping(Ozkan,2003)

5.5.3 Evaluation

TheapproachthatisusedintheUStoestimateifthereisachancepipingwilloccur,isusingthe hydraulicexitgradientatthelandsideblanketofalevee,whichisaheavecriterion.TheDWR projectfollowstheflowchartofFigure5.9toevaluatethepipingsensitivityofchosencross sections.

74 Sand boils and Piping

Determineifsoillayerprofilecanbeexpectedtobe sensitivetopiping

yes

CheckwithBlanketequations;exit CheckwithSeep/W; gradiënt ≤ 0.5? exitgradiënt ≤ 0.5?

no yes no

Observedbehavioroftheleveeisgood?

yes no

Crosssectionisnotpipingsensitive Crosssectionispipingsensitive Figure5.9FlowchartpipingmodelingfirstGERDWRproject

Aftercrosssectionshavebeendevelopedforpipingevaluation,thefirststepistolookatthe conditions:isthereanyreasontobelievethatpipingcouldtakeplaceatthisleveesection.The presenceofapervioussubstratumwithasemiperviousornonperviousblanketand/orhistoric seepageproblemsaresuchreasons.Thenextstepistolookattheexitgradientatthetoeofthe levee.Amaximumexitgradientof0.5istobeusedfordesignandevaluation.Theoreticallythe criticalexitgradientisdefinedasthegradientrequiredtocauseboilsorheavingofthelandside topstratum. Thegradientintheblanketlayerisdefinedas: h i =x ≤ 0.5 (51) zt With: i=Upwardgradient[] hx=Hydrostaticheadintheperviouslayer,abovegroundlevelatxfromleveetoe[m] zt=Criticalthicknessoftheblanket[m] TodeterminethehydrostaticheadintheperviouslayertheUSACEsubscribestwomethodsin herdocuments:theblanketequationsortheuseofafiniteelementprogram.Thesemethodsare presentedinthedesignandconstructionofleveesmanual(USACE,2000).Forverysimplecases theblanketequationsarerecommended.ComputerprogramsasLEVSEEPandLEVEEMSUare mentionedinthetechnicalletterassupportingsoftware.Theyapplytheblanketequationsand canbehelpfulforbermdesign,formultipleblanketlayersandwhenditchesandborrowpitsare present.Formorecomplicatedproblemsfiniteelementprogramsarerecommended,likeCSEEP orSeep/W.

5.5.4 Critical situation: background of i c=0.5

Thebackgroundofthecriticalexitgradienti c,whichisusedasacriterionforpiping,originates fromMississippiRivervalleyresearchinthe1940sand1950s.TheoriginalobservationsofFigure 5.10arereproducedinFigure5.11.Thedotsinthemostleftcolumnarelocationswheresand boilswereobserved.Caruthersvilleisthemostupstreamlocationandisabout800kmfrom BatonRouge,themostdownstreamlocation(seeFigure5.2).Alllocationsarealongthe MississippiRiver,exceptforCottonBayou,whichisalongtheRedRiver.Nomeasurementsare availablefromCottonBayou.FromFigure5.11canbereadthatsandboilsmainlyoccuratthe moreupstreamlocations,withthegreenandbluecolors.Thisdatawasusedtodevelopthe trend,showninTable5.3.In2005theUSACEpublishedatechnicalletterwheretheydefineda criticalexitgradientof0.5,basedonthefigureandtable.(USACE,2005)

75

Figure5.10Upwardgradientrelatedtoseverityofseepagein1950;CasesMississippiat16locationsfrom Caruthersville,MissouritoBatonRouge,Louisiana(USACE,1956)

Caruthersville Up stream 1 Gammon 0,9 Commerce Trotters51 0,8 Trotters54 0,7 Stovall 0,6 Farrell 0,5 UpperFrancis LowerFrancis 0,4 Exitgradient Bolivar 0,3 Eutaw 0,2 L'argent Holeinthewall 0,1 Kelson 0 Down SandBoilsHeavySeepageMediumSeepageLightornoSeepage BatonRouge stream Criticalexitgradient Figure5.11ReproductionofFigure5.10

76 Sand boils and Piping

Table5.3Exitgradientvs.seepageconditiontrends(USACE,2005)

Exitgradient Seepagecondition 0to0.5 Light/noseepage 0.2to0.6 Mediumseepage 0.4to0.7 Heavyseepage 0.5to0.8 Sandboils Withthecriticalexitgradientof0.5asafetyofabout1.6isachieved,whichcanbefoundfrom thefollowingtheoreticalderivation: Upwardflowintheblanket,initiatedbyariseinhydrostatichead,willcauseachangeinthe waterpressurepandintheeffectivestressσ’.Thetotalstressσisconstant.Then: ∆σ =−∆ =− γ =− γ ' p hxw iz tw (52) σ=− γ γ =( γγ − ) 'zt ' iz twt z ' i w (53) With: σ’= Effectivestress[kN/m 2] p= Waterpressure[kN/m 2] 3 γw= Volumeweightofwater[kN/m3]=10kN/m γ− γ γ’= Submergedunitweightoftheblanketsoil[kN/m3] γ ' = w, s w γ w 3 γw,s = Volumeweightofthewetblanket)kN/m Heaveoccurswhentheeffectivestressintheblanketbecomeszero: σ= γ = γ ' 0if ' i w Thecriticalgradientwhichstartsheavingoftheblanketisthen: γ ' i = (54) c γ w Thetheoreticalexitgradienttostartheavingisabout0.8,basedonavolumeweightofthesoil of18Kn/m 3.Thecriticalexitgradientif0.5shouldthereforegiveasafetyof1.6forfirsttime boils.

5.5.5 Blanket equations

Theblanketequationscanbeusedtocalculatetheresidualheadlandsideoftheleveebelowthe blanketlayer.TheywerepublishedbyBennettin1946andaresolutionsforsteadystateseepage throughatwolayersystemcomposedofasemipervioustopblanketoverlyingapervious substratum.Lateranalysesarebasedontheseequations.Inthe1940sand1950saseepage researchwasperformedbasedoncasesfromtheMississippiriver,wherenumeroussandboils wereobservedduringthe1937floods.Atthatmomentlittlewasknownabouttherelation betweengeologyfeaturesandunderseepage.Purposeofthestudywaspartlytogetabetter understandingofthepipingphenomenaandtodevelopformulasandcriteriafordesign. TheseepageresearchdonealongtheMississippi,publishedin1956(USACE,1956)usesthese blanketequationsandtheyarestillmentionedinthecurrentleveedesignmanual(USACE, 2000).Differentblanketequationsweredevelopeddependingon: • Permeabilityoftheblanket:nonperviousorsemipervious; • Thepresenceofalandsideandorriversideblanket; • Theexistenceofaseepageblock,openseepageexitoraninfiniteblanketlandsideof thelevee

77

Figure5.12RegularlyobservedblanketcasealongMississippiRiver(USACE,1956)

AsituationthatisregularlyobservedalongtheMississippiRiverisaleveewithasemipervious blanketonthelandsideuntilathickclayswale(Figure5.12),whichfunctionsasaseepageblock. Theequationsusedforthiscaseare: Hx h = 3 (55) 0 + + x1 L 2 x 3 With: k =1 = bl x3 , c (56,57) ctanh( cL3 ) kf z b d

h0=Headbeneathtopstratumatlandsideleveetoe[m] hx =HeadBeneathtopstratumatdistancexfromlandsideleveetoe[m] Hc=Netheadonlevee[m] zb=Thicknessofblanket[m] d=thicknessofpervioussubstratum[m] i0 =exitgradientattoeofthelevee[] L2=Lengthofleveeatbase[m] L3=Lengthofblanketatlandsideofthelevee[m] x1=Distancefromlandsideleveetoetoeffectiveseepageentrance[m] x3=Distancefromlandsideleveetoetoeffectiveseepageexit[m] c=Factor[1/m]

kbl =Verticalpermeabilityofriversidetopstratum[m/day] kf=Horizontalpermeabilityofpervioussubstratum[m/day]

5.5.6 In case studies:

DWRproject:InthefirststepoftheDWRprojecttheblanketequationsarebeingusedanda checkisperformedwiththefiniteelementprogramSeep/W. RD17research:TheseepageevaluationinthisresearchwasperformedwithSEEPW.A distinctionwasmadebetweensteadyseepage(monitorstage)andtransientseepageflow(200 yearfloodstage).Thetransientseepageflowcalculatedwithfourweeksof200yearfloodstage followedbymonitoringstage. Mississippiresearch:

Figure5.13TypicalcrosssectionofMississippilevee(Mansur,2000)

78 Sand boils and Piping

InFigure5.13thetypicalsituationalongtheMississippiRiverisillustrated.Thedistancefromthe Rivertothecenteroftheleveecanbe2501500m.Whatmakestheseleveesstillvulnerableto underseepageistheriversideborrowpitsthatwereprobablydugtoextractclayforlevee improvements.Asandlayerofabout20to75mthickoverlainbya110mclaylayerisa situationwherepipingcouldoccur.Table5.4givesthesoilcharacteristicsofthetopstratumen substratumastheywerefoundintheMississippiresearch. Table5.4ConditionsonwhichtheMississippiinvestigationwasfounded(modifiedfromUSACE,2002) Thickness Material Permeability(average)

Riverside 05ft; Clay: 1x104m/s(Zbr<=5ft) top 1015ft 0(Zbr>=15ft) stratum 1520ft Silt: 2.5x104cm/s Siltysand: 6x104cm/s Landside 430ft Clay 0.06x104to10x104cm/s top Silt stratum Pervious 70165ft Sand 400x104to2500x104 sub cm/s stratum

NosoftwareasSEEP/Wwasavailableyetatthemomentoftheunderseepageresearch.With piezometerdata,waterleveldata,geometrydataandsoildataexitgradientswerecalculatedand soildatawasagainrecalculatedfromtheobservedexitgradients.Theblanketequationswere usedfortheseforwardandbackwardcalculations.

79

6 Netherlands versus Central Valley, California

ThegoalofthischapteristocomparethewaterdefensesystemoftheNetherlandswiththe systemintheCentralValleyinCalifornia,USA.Thedescriptionsfromallpreviouschaptersare usedtogiveinsightinthosedifferencesandpartlytrytoexplainthem.Acomparisononthelevel ofthewholewaterdefensesystemismadefirst.Afterthatthefocuswillbeonleveeevaluation. Inthelastparagraph,6.2.1,isconcludedwhatthemostinterestingdifferencesareforfurther research.

6.1 Comparison water defense systems

6.1.1 Similarities

Thereneedtobeenoughsimilaritiesbetweentwosystemstomakeanhonestcomparisonof theirdifferencesandtrytobringthemclosertoeachother.Fromthepreviouschaptersthemost interestingsimilaritiesare:

Figure6.1SizeoftheNetherlandscomparedtothesizeofCalifornia

81

• FlatlowlyingDelta WhenmapsoftheNetherlandsandCaliforniaDeltaarecompareditisinterestingtoseethatthe NetherlandsisonlyasmallcountrycomparedtotheStateofCalifornia.Butthesizeofthestudy area:theflatCentralValleywiththeSacramentoSanJoaquinDeltaiscomparabletothesizeof theNetherlands.TheDeltahasthesizeofaboutoneDutchProvince.(Figure6.1) Bothareasarecharacterizedbyitsflatness.TheCentralValleyisaflatareasituatedbetweenthe SierraNevadaandcoastalmountainranges.TheDutchRiverRhineoriginatesintheSwissAlps andtheMeuseinmountainousareasnearDijoninFrance,whiletheNetherlandsnomountains butonlyhillscanbefound.WhenlookingatFigure6.2landbelowmeansealevelis characteristicforboth.Elevationsreachuntilalmost8mbelowmeansealevel.

North Sea

San River Francisco Rhine Bay

River Meuse

Figure6.2DeltaCaliforniaandNetherlandsbelowsealevel(redsquaresrepresentthesamesurfacearea)

BecausethesystemsofriversflowingintoaDeltaaresomewhatthesame:theSanJoaquinRiver andSacramentoRiverintheCentralValleyandtheRiversMeuseandRhineintheNetherlands, thegeologyalsoshowssimilarities.Clayandsandymaterialscharacterizetheupstreamriver embankments,whiletheareasbelowsealevelhavepeatsubsoilwhichissubjecttosubsidence. AlthoughtheDeltainCaliforniaismoreshelteredfromthesea/oceanthantheNetherlandsis, bothhavetidalinfluencesintheirriversandarevulnerabletostormsurges.Floodwaves,caused bysnowmeltandheavyrainfallhavecausedtroublesintheCentralValleyaswellasinthe Netherlands.WhilebothareasareinfluencedbysaltwaterbodiesandthetidefromtheNorth SeaintheNetherlandsandtheSanFranciscoBayinCalifornia,saltintrusionindryperiodsor duringfloodingisapossiblethreat. • Similarfloods Ifwecomparerecentfloodsagainsimilaritiesarefound.TheCentralValleyRiverfloodof1997 andthe1993/1995RhineandMeuseriverfloodswerebothcausedbyfloodwavesfromthe rivers.(Figure6.3) Inbothsituationspipingwasoneofthemostimportantfailuremechanisms.IntheCentralValley 30leveesfailedbecauseofpiping.IntheNetherlands,noleveesactuallyfailedduetopiping, whilelargescalesackingpreventedthis,butleveesovertoppedandinthatwayinundatedareas. IntheNetherlands240,000peoplewereevacuated,whileintheCentralValley120,000people wereforcedfromtheirhomesand6peopledied.

82 Sand boils and Piping

Figure6.31997CentralValleyRiverflood(left)andRiverMeuseflood1995(Reid,2005)

Otherfloodsthatshowsimilaritiesarethe2004JonesTractleveefailureintheSacramentoSan JoaquinDeltaandthe2003WilnisfailureintheNetherlands.(Figure6.4)Bothofthesetwolevee failuresweredryweatherfailures.TheWilnisleveefailureismostprobablycausedbyupliftand horizontalslidingofthepeatlevee.Becausethecanalwasclosedoffquicklytheevidencewas preservedandthedamagelimited.ThecauseoftheJonesTractleveefailureisnotknown, becauseallevidencegotwashedaway.Whatisknownisthatatleastpartoftheleveeandits foundationconsistedofpeat.Thewatersupplyinfrastructurehadtobeshutdownforseveral days,becausetheleveebreachcausedsaltwaterintrusion.

Figure6.4JonesTractleveefailure2004(Reid,2005)andWilnisleveefailure(Geodelft,2004)

Butanotherinterestingcomparisonistheonebetweenthe2005NewOrleansfloodandthe Dutch1953Zeelandflood.TheimpactofthefloodinNewOrleansandtheZeelandfloodwere probablyquiteequal.Morethan1,300peoplediedbecauseofhurricaneKatrina,whileabout 1,800peoplediedofthestormsurgethatcausedtheZeelandflood.TheresponseoftheDutch peoplewasaDeltaPlanandDeltaLawtopreventthatsuchalargedisastercouldeverhappen again.LargeinfrastructureworksastheEasternScheldtStormSurgeBarrierandtheMaeslandt Barrierwerebuiltandsafetystandardsrelatedtodamageweredefined.Theprimarywater defensesshouldprovideprotectionagainstafloodwithaprobabilityofoccurrenceof1:10,000 peryearto1:1,250peryear.NewOrleansisstillrecoveringfromhurricaneKatrina.TheNew Orleansdisastercreatedtheawarenessthatitisnecessarytoinvestinandpayattentiontothe waterdefensesprotectingurbanizedareas.AsaresponseCaliforniacurrentlyinvestsmillionsin leveegeotechnicalinvestigationsandimprovements.ADeltaPlanascarriedoutinthe NetherlandsisnotdevelopedforNewOrleansandCalifornia.Notyet.Itisclearthatdisasters createawarenessandinitiatechanges.

Figure6.5NewOrleansleveebreachand1953Zeelandleveebreach(Fas.org,2007;Deltawerken.com, 2006)

83

6.1.2 Differences

Althoughtherearesimilaritiesbetweenthetwosystems,thereareevenmoredifferences.The mostinterestingdifferencesare: • Differenceinriskacceptance;floodinsurance ThereisanenormousdifferenceinthelevelofprotectionthatisprescribedintheNetherlands andintheUS.Awaterlevelwithaprobabilityofexceedanceof1/100or1/200peryearisthe currentdesignlevelinCalifornia,whileintheNetherlandsthedesignwaterlevelhasaprobability ofexceedanceof1/10,000to1/1,250peryear,forprimarywaterdefenses.Other,regionalwater defenseshavealowersafetylevel:1/101/1,000peryear.Theregionalwaterlevelsdonot fluctuatethatmuchandcanberegulatedbypumps,andwhentheybreachthedamageisoften limitedtoasmallarea,socalledpolders,withafixedpolderwaterlevel.Thesafetylevelsinthe Netherlandsarebasedontheexpectedflooddamageandweredeterminedafterthe1953flood. TheacceptedprobabilityofexceedanceintheUSwasanarbitrarychosenvalue.Floodinsurance, whichisobligatoryinareaswithalessthan1/100protection,isrelatedtothissafetylevels.In theNetherlandspeoplecannotbuyfloodinsurance. • Deltariskpartlyoutsidethearea Anotherveryinterestingdifferenceistheeconomicdamagethatcouldbecausedbyaflood.In theNetherlands,withits16.3millioninhabitantsandmajorinfrastructureworks,afloodcould leadtoenormouseconomicdamagewithinthecountryitself,althoughnotquantifiedhere.Inthe CentralValleynotonlythepeoplelivinginlargecitiesasSacramento,orbelowsealevelinthe Deltaareaffected,butoutsidetheDelta33millionpeoplerelyonfreshwaterfromtheDelta.In otherwords:aflooddoesnotonlydirectlyaffectpeopleintheCentralValleyandDelta,butalso indirectlyinfluencestherestofCalifornia.ThereforesolutionsforthefloodproblemsinCalifornia couldbedifferentthanintheNetherlands.Abypasstosecuretheavailabilityoffreshwateris alreadydiscussedsincelong,buthasalwaysbeenresisted,offcoursemainlybypeoplelivingin theDelta. • Differentloadingconditionsonandstrengthoflevees InNewOrleanstheyhavehurricanesandinCaliforniathereareearthquakes.TheNetherlands doesnotencountersuchheavyearthquakesanddefinitelynohurricanes.Butheavystormsfrom theNorthSeahavecausedsimilardamageinthepastashurricanesdidinNewOrleans. Theleveestrengthisalsodifferent,mainlycausedbyhistoricalevents.Twoexamplesofthatare given.LeveesintheCentralValleyinCaliforniaoftenmainlyconsistofhighlypermeable,badly compactedmaterialsfromupstreamminingactivities.Theseleveesarethereforevulnerableto erosionandseepage.IntheNetherlandsthereareleveeswhichmainlyconsistofpeat,remaining frompeatexcavations.Becausepeatisvulnerabletodrycircumstancesandsubsidenceitisnot preferredforleveeconstruction. • Leveeevaluation HowtodetermineiftheleveesaresufficientlysafeisintheNetherlandsdocumentedinspecial leveeevaluationdocuments.IntheUSengineersarefamiliarwithdesigningandevaluatinglarge earthdams.Forleveeevaluationleveedesigndocumentsareused,whicharecloselyrelatedto damdesignmanuals.TheevaluationalsodependsoncriteriafromFEMA.FEMAcarriesoutthe USfloodinsurancepolicyandisresponsibleforfloodplainmapsandtherejectionorapprovalof waterdefenses.AfterNewOrleansmorefocusisnowonleveesandonhowtodesignand evaluatethem.Adesiretoincreasethesafetylevelsisnotonlyamatterofpolitics,buthowto dealwithfloodinsuranceisalsopartofthis.CurrentlythereisanincreasedinterestfromtheUS onhowtheDutchdealwithleveesandsafety.

6.2 Comparison levee evaluation methods

FromthebroaddescriptionandcomparisonoftheDutchandUS/Californiawaterdefense systemsleveeevaluationseemsoneofthetopicsworthstudying.Becauseleveeevaluationisa hottopicatthismoment,especiallyintheUSwhereafterhurricaneKatrinamanymilesoflevees havetobeevaluated,thissubjectwaschosenforfurtherresearch.

84 Sand boils and Piping

Thesimilaritiesanddifferencesinleveeevaluationasdescribedinchapter4and5aredescribed andpartlyexplainedinthisparagraph. • UpliftisnotmodeledinstabilitycalculationsDWRproject UpliftisanimportantpartoftheDutchstabilityevaluation,whichcaneasilybeperformedwith anupliftmodulusinMStab.IntheDWRprojectinCaliforniatheupliftmechanismisnotincluded inthestabilityevaluation,whileinotherpartsoftheUSitisincluded.TheUSACEhasaspecial upliftprogramtoperformupliftcalculations.Especiallyatlocationswithsandoverlainbyweak, nonpermeableblankets,whichisdefinitelythecasealongtheCentralValleyriversandinthe Delta,thereisachancethatthepressuresinthesandlayerswillexceedtheweightofthe blanket.Ifthishappensafarlargercircularslideoralateraltranslationofthewholeleveecould developwithdisastrousresults.Includingtheupliftmechanisminstabilityevaluationwilloften resultinanimmediatedecreaseofthesafetyfactoratthewaterlevelwhereupliftisexpected. Butalsowillitleadtoafarlargerslide.Itisthereforeimportanttoincludeupliftinthestability evaluation. • Drainedversusundrainedparameters InrapiddrawdowncalculationstheAmericanspartlyuseundrainedparameters,following Duncan’smethod(Duncan,1990;Duncan,2005).Formaterialsthatdrainveryeasily,likecourse sand,drainedparametersareused.IntheNetherlandsdrainedparametersareusedforrapid drawdownevaluation,incombinationwitharealisticphreaticlineforthesituationjustafter drawdown.ItwouldbeinterestingtoseewhatdifferencesinsafetyfactortheDutchandUS methodwoulddeliverforvarioussituations. • Pipingisevaluatedwithdifferentequationsandcriteria IntheUSacriticalexitgradient,whichisaheavecriterion,isusedforevaluationanddesign, wheretheDutchuseacriticalseepagelengthasacriterion.TheDutchcriterionisbasedon solutionsofdifferentialequationscombinedwithmodeltests,whiletheUScriterionisbasedon realcasesfromtheMississippiRiver.Itwouldbeveryinterestingtocomparethosetwoand comeupwithrecommendationsforbothmethods. • Sameamountofprescribedsoilresearch,differentinterpretationincases AboutthesameamountofsoilresearchandlabtestsareprescribedintheDutchandUS documents.ButtheDWRprojectonlytakescrownboringsandCPTsinthefirstphaseandthen landsidetoeandhinterlandboringsinthesecondphase. • Guidelinesforevaluation: IntheUSdesignguidelinesareusedalsofortheevaluation.IntheNetherlandsspecial evaluationmanualsareavailable,inwhichtheproceduresdifferfromdesignguidelines.Each5 yearsthesafetyoftheprimarywaterdefenseshastobereportedtotheDutchgovernment.In theUSthereisnosuchlegislationyet,butFEMAisthinkingaboutaregularleveeevaluation. • Simpletoadvancedevaluation No(real)processfromsimpletoadvancedevaluationisimplementedintheUSevaluation.With littleinformationrunninganadvancedmodelwillnotleadtoabetterestimationoftherealsafety thanusingasimplemodel.ThisknowledgeisappliedintheDutchevaluation,butnotyetthat muchintheUSevaluation.Oneexplanationforthatisthatthereisnotaseparateevaluation guide. • Normativeconditionsforevaluation IntheNetherlandstheprojectflood,whichcanvaryfroma1/1,250yearwaterleveltoa 1/10,000waterlevel,isassumedthenormativecondition.Insomecases,whereclayis dominantlypresentintheleveecrown,extremeprecipitationisnormative.Rapiddrawdownis alsomodeledasapossiblenormativecondition,intheNetherlandsaswellastheUS.IntheUS precipitationisnotassumedasanormativecondition.Notonlytheprojectfloodismodeled,in theDWRproject1/200yearwaterlevel,butalsothe1/100yearwaterlevel,whichisa requirementofFEMAforleveecertification.

85

• Dynamicevaluation Thefailuremechanismsevaluatedaremoreorlessthesame.Thedifferencesarethatinstability oftheforelandisnotmentionedintheUSevaluationandthattheDutcharenotdoingadynamic leveeevaluationThisisbecausethereisnotsuchalargerisktoseismicshakinginthe NetherlandsasinforexampleCalifornia. • Programsusedforstabilityevaluationarequitesimilar Thesimplestslideplanecalculations,suchasJanbuorBishopcaneasilybecalculatedbyhandor withaspreadsheet.ButmorerigorousmethodsasforexampleSpenceraskformorespecialized software.Todaythemostcommonwayistousemodernlimitequilibriumsoftware. Table6.1ComparisonofcomputerprogramsusedintheUSandDutchstabilitycalculations(Pockoski, 2000) UTEXAS4 Slope/W MSTAB Models Bishop Bishop Bishop Spencer Spencer Spencer Janbu Janbu Fellenius CorpsofEngineers CorpsofEngineers UpliftVan method method UpliftSpencer LoweandKarafiath’s LoweandKarafiath’s Bishopprobabilistic procedure procedure randomfield Schwedischprocedure Ordinarymethodof slices MorgensternPrice GeneralLimit Equilibrium Datainput Datafilefromtext Graphicuserinterface Graphicuserinterface editor Pore Piezometricline(s) Piezometricline(s) Piezometricline(s) water pressure Extra Canperformmultistage Canperform Candouplift stabilitycomputations probabilisticstability calculationsanddeal forrapiddrawdown analysisusingtheMont withearthquakeloads andearthquakeloads Carlotechnique; candealwith earthquakeloads

TheDutchMSTAB,AmericanUTEXAS4andCanadianSlope/Warecomputerprogramsappliedin theDutchandUSstabilityevaluations.Slope/WandMStabareverymuchalike.Notonlydothey havemostofthesamefeatures,theyalsohavethesamekindofgraphicuserinterfaceascanbe readfromTable6.1andseeninAppendixI.Appendix3.TheresultsfromMSTABandSlope/W logicallydonotdifferthatmuch,whilethesamemodelsareused. • Semiperviousornonperviousblankets IntheDutchschematizationthetoplayers,orblankets,areassumedtobenonpervious.Inthe USschematizationtheblanketcanbeschematizedasasemiperviousornonperviouslayer, whichisimplementedintheblanketequations.Ablanketoflessthan15ftthick(≈4.5m)is assumedsemiperviousandablanketofmorethan15ftnonpervious. • Schematizationoftheblanket IntheUStheblanketlayeroftenconsistsofmorethanonesoil.Ontopofthenonperviousclay ithasasandyorsiltylayer,orjustbelowtheclaylayerthereissiltymaterial.Toconvertthe permeabilityandthicknessoftheseseparatelayerstoonelayertheyuseatransformedthickness forseepagecalculationsandacriticalthicknessforupliftcalculations.

86 Sand boils and Piping

6.2.1 Conclusion

Thetwomostinterestingdifferencesthatrequirefurtherstudyarethedifferenceindrainedand undrainedstabilitycalculationsandthedifferenceinpipingevaluation.Theeffectofusing drainedorundrainedparametersinthestabilitycalculationissubjectofacurrentresearchinthe Netherlandsandisthereforenotexploredherefurther.Pipingmodelsaresubjectofdiscussionin theVNKproject(orFLORISproject,see3.3.2).WhiletheUSevaluationmethodisbasedoncase studiesfromtheMississippiRiverandtheDutchmethodsarevalidatedwithlaboratorytests,but notwithreallifecases,thissubjectischosenforfurtherinvestigation.Thefollowingparagraphs willrevealsomeinterestingdetailsaboutpipingmodeling.

87

7 Sand boils and piping

Thegoalofthischapteristohaveacloserlookonthedifferencesbetweenthepipingevaluation methodsoftheUSandtheNetherlands,whilewasconcludedinthepreviouschapterthatthis seemsoneofthemostinterestingdifferencesbetweentheUSandDutchevaluation.The1956 seepageresearchfromtheMississippi,onwhichthecurrentunderseepagecriterionfortheUSis mainlybased,supportsthiselaboration(USACE,1956).Thetheoriesandmethodsaboutsand boilsandpiping,presentedinchapters4and5,arefurtherexplainedin7.1andmore backgroundinformationonsafetyisgivenin7.2.In7.3theMississippicasesareusedtoshow thedifferencesintheDutchandUSevaluationandin7.4possibleexplanationsforthose differencesarediscussed.

7.1 Theories US and Dutch piping criteria

Theformulasandcriteriaforpipingpresentedin4.5and5.5lookdifferent.Butwhatexactlyis differentandwhatdotheyhaveincommon?Whichprocessesareimportantandatwhatpointin theprocessisaleveerejected?Thosequestionswillbeansweredinthisparagraph.

7.1.1 Problem schematization

L1 L2

Imperviousleveeand foundation

H hx γw zorD γ Nonperviousor zt w,s semiperviousblanket verticalflow L d Pervioussubstratum horizontalflow

Figure7.1Schematizedprofileseepageanalysis

Inchapters4and5onlytheformula’sormethodsusedinseepage/pipingevaluationandthe process(howtousethoseformulas)wereexplained.Buttobeabletousetheformulasthelevee firsthastobemodeled.Thefollowingsimplificationsforunderseepageareused,drawnin Figure7.1intheaswellasintheNetherlands: • Astationary,laminarflowsituationisassumed. • Theblanketlayerisrelativelynonpermeablecomparedtothepervioussubstratumand theleveeitselfisassumedimpermeable. • Flowintheblanketisassumedtobeverticalandflowthroughthepervioussubstratum horizontal.

89

• Seepagemayentertheperviousstratumeitherattheriverbank,throughriverside borrowpits,and/orthroughthesemipervioustopstratumriversideofthelevee. • Thefoundationwasgeneralizedintoapervioussandstratumwithaspecificthickness andpermeabilityandanon/semipervioustopstratumwithauniformthicknessand permeability.

7.1.2 Formulas and processes

Theformulas,criteriaandprocessestoassessthepipingvulnerabilityofaleveearedifferent.But becausethesameassumptionsareused,acomparisoncanbemade.TheDutchevaluationwas dividedintwoprocesses:upliftandpiping.Theseprocessesareseparatedintwostepsto comparetheformulas. Step1: Table7.1containsthe,rewritten,formulasthatdescribethefirststepinthepipingprocess:uplift andpossibleruptureoftheblanket. Table7.1DutchandUScriterionforuplift Dutch US Formula41canberewrittento:(whenthe Thecriterionisagain(formula51): phreaticheadintheblanketisequaltoground level) =hx ≤ = i i c 0.5 (74) γ− γ zt 1 w, s w ()φ −h ≤ D (71) z p γ γ The0.5canbesplitup,justliketheDutch w criterion: Thenthisformulaisrewrittentocompare γ− γ h 1w, s w 1 formulas: x ≤ =γ ' = 0.5 (75) γ γ γ γ− γ zt w h 1w, s w 1 1 x ≤ =γ' = γ ' (72) z γ γ γ 1.2 Asdescribedinchaptertheγ’istheoretically t w about0.8andthesafetyfactorγthereforeabout Asafetyfactorγof1.2isnormallyapplied 1.6,usingexpectedorcharacteristicvalues(see combinedwithcharacteristicvaluesforthe nextparagraph). parameters(seeparagraph7.2).Asafetyfactorof Thesaturatedunitweightofthelandsideblanket 1.5withmeanvaluesusedtobecommon. soilsmustbeatoraboveabout17.6kN/m 3for Aboveequationisoftenwrittenas: thiscriteriontobevalid(USACE,2005). 1 h γ ≤ z ()γ − γ (73) x w γ t w,s w

Thepartleftoftheequalsignrepresentsthe upwardpressure,thepartrightstandsforthe downwardpressurewithasafetyfactor.

Althoughwrittensomewhatdifferent,theabovefirststepanswersthequestion:canwesafely expectthattheblanketisabletoresistthewaterpressuresunderneathit?Thedifferenceinthe firststepisthatinUSevaluation,theleveeisimmediatelyrejectedwhentheanswertothis questionisno.IntheDutchmethodtheleveeisnotimmediatelyrejected,butasecondstepis applied.Orconcluding:theprocessisthesame,buttheconclusiondifferent(seeFigure7.2). Anotherdifferenceisthefactorofsafetythatisused.Inequation72afixedfactorofsafetyof 1.2isapplied,whereinequation75thesafetyfactoriscombinedwiththewetvolumeweightof theblanketsoil,whichactuallyresultsinavariablesafetyfactor.Theseoverallsafetyfactors cannotbecompareddirectly,becausewithinthechoiceofparametersthereisahiddensafetyas well.Thisisexplainedfurtherinparagraph7.2.

90 Sand boils and Piping

Netherlands US

Ruptureofthe no Ruptureofthe yes Step1 LeveeOK! LeveenotOK! blanket? blanket?

yes no

Pipingexpected no Sandboils yes Step2 withBligh expectedfrom /Sellmeijer? exitgradient? yes no

LeveenotOK! LeveeOK!

Figure7.2Dutchvs.USvulnerabilitytosandboilsorpiping

Step2: Inthesecondstepsthereareevenmoredifferences.IntheNetherlands,whenthereisno indicationthattheblanketisgoingtorupture,theleveeisregardedsafeagainstpiping.Oftenno furthercalculationsaredone.Thecasewheretheblankethasalreadyrupturedbefore,oris damagedforwhateverreason,isdeniedhere.Thesituationsupliftandactualsandtransportare separated,whileisassumedthatsandboilsnotalwaysoccuraftertheblankethasruptured.If sandtransportactuallytakesplaceandformsathreattotheleveestabilityisrelatedtothehead differenceontheleveeandispredictedwithBlighand/orSellmeijer. Table7.2Step2informulas Dutch US TheBlighformula(45)canberewrittento: Thecriterioninstep2isstill(formula51): L h ()− ≤ = =0 ≤ H0.3 zt H c (76) i 0.5 (710) Ccreep zt TheSellmeijercriterioncanberewrittenas: The0.5waschosenwithasafetyof1.6,not becauseruptureisstillexpectedat0.5,but 1 ()H−0.3 z ≤ H (77) becausethenalsoboilsatlocationswherea tγ c seepageexitresultedfromearlierfloodsorfor examplepoorlybackfilledboreholescanbe Asafetyfactorγof1.2isusuallyapplied detectedwiththecriterion.Theformulathen combinedwithcharacteristicvaluesforthe becomesthesameastheDutchheavecriterion parameters.0.3isassumedtobeameanvalueas forsandymaterials. explainedinchapter4. Forcase7(Appendix2)with OrbothrewrittentoaH crit : = Hx 3 H= H + 0.3 z (78) h0 (711) crit, Bligh c t ()+ + x1 L 2 x 3 withH =F(L,d ,z ) crit 50 t Thisformulacanberewrittento: 1 H= H + 0.3 z (79) 0.5 zx( + L + x ) crit, Sellmeijerγ c t = t 1 2 3 H crit (712) x3 withH crit =F(L,d 70 ,z t,d,k s, γwet , γw,η,ν,g,θ) Wherex 1andx3=F(k bl ,k s,z b,d,L 1,L 3) d70 ,η,νandθareparticlecharacteristicswhich influenceparticlemovement.Theη,ν,andθare ThusH crit =F(L 1,L 2,L 3,k bl ,k s,z b,z t,d) assumedconstant.

IntheUSthecriticalgradientof0.5will‘catch’allcaseswheretheblanketisexpectedto rupture.Whentheblankethasalreadycrackedorwhenthereisnoblanketthecriticalexit gradientof0.5isaheavecriterionforthesandparticles,whichisalsousedintheNetherlandsin absenceofanimpermeableblanket.(USACE,2005) InthesecondpartofthecalculationtheUSandDutchformulasandcriteriadiffermuchmore. Nowtheformulasaswellasthemechanismdiffer.Tostartwiththeformulas:theDutchcritical

91

headdependsonparticlecharacteristics,wheretheUScriticalheaddependsongroundwater flowcharacteristics.TheUSmethodisbasedonacriticalexitgradient,aheavecriterion,which indicateswhentheeffectivestressesarezero.TheDutchmethodisbasedonthetransportofthe sandparticlesinahorizontalslit,usingacriticalseepagelength. Table7.3Criterionforleveerejection/approval

Dutchopinion Uplift(H>H c,uplift ) Nouplift(H≤Hc,uplift )

Piping(H>H crit,Bligh,Sellm. ) Rejected Approved

Nopiping(H≤Hcrit,Bligh,Sellm ) Approved Approved USopinion Uplift(i>≈0.7) Nouplift(i≤≈0.7) Sandboils(i>0.5) Rejected Rejected Nosandboils(i≤0.5) Rejected Approved

Thedifferentconclusionsattheendofstep1andstep2aresummarizedinTable7.3.An interestingconclusionisthatintheNetherlandsaleveeisapprovedmoreoftenthanisthecase intheUS,whereleveesareeasilyrejected.TogetanideaofthebandwidthbetweenDutch rejection/approvalandUSrejection/approvalitisimportanttolookatthedifferencesinsafety andtrytoshowsomeexamples,whichisdoneinthenexttwoparagraphs.

7.2 Safety

Asalreadyexplainedinthepreviousparagraph,notonlythemethod,butalsotheappliedsafety isimportanttomakearealisticmodelofrealityandtocopewithuncertainties.Tocomparethe previouslymentionedevaluationmethodsandespeciallytheoutcomes,adiscussionand explanationofappliedsafetyfactorsandparameterchoiceisinevitable. Howwasdealtwithsafetyinthe1956research? Thereisaninterestingdifferenceinhowwasdealtwithsafetyinthe1956researchandhowthat iscurrentlydoneintheNetherlands.ThecurrentpracticeintheUSisdifferent,butinthe1956 researchwasworkedwith‘bestguess’frommeasuredparametersandanoverallsafetyof1.6on thetheoreticalcriticalgradientforupliftof0.8.

1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30

Computed gradient 0,20 0,10 0,00 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 Observed gradient Figure7.3Correlationbetweenthecomputedgradientandobservedgradient

The1956WESresearchcameupwithobservedvaluesforthehydrostaticheadatpiezometer locationslandwardofthelevees,forthe1950highwaterand/oroccasionallyforotheryears.For eachofthe16sitesthatwerestudiedabouttwocrosssectionsweredevelopedfromboringsand labtests,atlocationsofpiezometerlines.Forthisresearchlocationswerechosenofwhichwas quitecertainthatpiezometerlocationsatthetoeoftheleveeorinalandsideditchmatchedthe

92 Sand boils and Piping

developedcrosssections.Usingblanketformula’sandthebestguessvaluesfromthe1956 researcharecalculationwasmade,toseeiftheseformula’swouldgivethesameresults. Theresultsaredisplayedinthechartabove.Apositivecorrelationof0.83wasfoundbetween themeasurementsandcalculations,whichissatisfying.Butitshouldbenotedthatsometimes blanketformulaswereusedtoestimateunknownparameters.Therecalculationsofthesecases naturallymatchedbettertothemeasurements.Unfortunatelyitisnotexactlyknownforwhich parametersandcasesthisistrue.AconclusionthatcanbedrawnfromFigure7.3isthatthebest guessparametersandformulasusedforthecalculationsarenotmeanvalues,butareslightly conservativeparameters.Thesevaluesledtoasaferesult:nolocationswereregardedassafe fromthecalculations(<0.5),whentheobservedgradientgaveindicationsthatthesituationwas notsafe(>0.5).

Figure7.4Observedgradientsatsandboillocationsfittedwithanormaldistribution

Thecriticalexitgradientof0.5wasbasedonthesandboillocationsfromthe1956research.But doesthis0.5reallygivesuchasafesituation?Whenanormaldistributionisfittedonthe1950 sandboilpointsoftheresearchameanexitgradientof0.61wasfoundwithastandarddeviation of0.18(Figure7.4).0.5isthen0.6timesthestandarddeviationfromthemean.Whichmeans thatwhen0.5ischosenasacriticalpointabout28%ofthesandboilshavealowerexitgradient than0.5andwouldnotbedetected.Doesthismeanthat0.5isnotasafecriterion?Probably not.Anexplanationforthelowexitgradientsatsandboillocations,whichismentionedinUSACE documents,isthatpartofthesandboilpointswerenotfirsttimeboilsorwerelocatedatabore holeoranotherweaknessintheblanket.Themeasuredhydraulicheadatthosepointsismuch lowerthanwouldbeexpectedfromacalculation.Anestimationoftheexitgradientwithblanket equationsoftenleadstoahigherexitgradientforthispoint,seeexample2innextparagraph. Howiscurrentlydealtwithsafety? USACEpracticenowadaysistousethe‘onethird/twothirdsrule’,whichmeansthatthedesign strengthischosensuchthatitislessthantwothirdsofthemeasuredvalues(USACE,2006).The safetyfactorof1.6ontherelativelyconstantassumedrelativeweightoftheblanketsoilisstill used,while0.5isstillusedasacriterion. IntheNetherlandsasafetyfactorof1.2iscurrentlyusedintheformulasforupliftandpiping andcharacteristicvaluesforthestrength.A5%(or95%)valueisprescribed,whichisatabout

93

1.64timesthestandarddeviation(σ)fromthemean()inanormaldistributions.Howtoget thesevaluesdependsonengineeringinsightandisnotalwaysstraightforward.BeforetheDutch usedthischaracteristicvalueasafetyofabout1.5to2combinedwithmeanvalues.Both characteristicvaluesaredrawninFigure7.5.

0.43 σ

1.64 σ

5% 33% Mean Nl US () Figure7.5TheUS33%percentilevs.theDutch5%percentile,forasafeparameterchoice

Butwhateffectdoestheabovechosensafetyfactorhaveonthefinalparameterchoice?Whatis thentheapproximatedifferencebetweentheUSandtheNetherlands?Toquantifythiswecan usethecoefficientofvariation,whichisameasureofthedispersionofadistribution: σ C = v µ With: Cv=Variationcoefficient[] =Mean[dependsonparameter] σ =Standarddeviation[dependsonparameter]

Cv=0.10.25israthernormalinleveeevaluationpractice.Wecanuse0.1and0.25togivean indicationofthedifferenceinparameterchoicebetweentheUSandtheNetherlandsandinsertit informulastogiveanindicationofthedifferenceinoverallsafety.InTable7.4thedifferences arequantified.TheconclusionisthatthelowercharacteristicvalueoftheNetherlandsison averageabout0.8timestheUSvalue.Inotherwords:thedifferencebetweentheDutchandUS parameterchoiceis20%.Thesamecanbedoneforthehighcharacteristicvalue,thena differenceNetherlandsdividedbyUSisabout1.2.Forforexamplethepermeabilityofthesand layerthehighcharacteristicvalueischosen,becauseahighpermeabilityislesssafe.Butinthe 1956researchmeanvalueswereprobablyused.Adifferencebetweenthe5%valueandthe meanvalueisafactorofabout0.7. Table7.4TheestimatedeffectofthedifferencebetweenUSandDutchparameterchoice

Cv=σ /[] X5% =1.64σ(NL) X33% =0.43σ(US) DifferenceNL/US 0.1 0.84 0.96 0.88 0.25 0.59 0.89 0.66

MeandifferenceandX 5% :0.72(≈0.7) MeandifferenceNL/US:0.77( ≈0.8) Figure7.6isanillustrationofsteponeoftheseepageevaluation.Itshowsthesafeareasfor bothmethods.Theassumptionofarelativelyconstantvolumeweightoftheblanketlimitsthe areaofapplicationofthesandboilcriterion.Theexitgradientof0.5isonlyvalidaboveavolume weightoftheblanketabove17.6kN/m 3(rightoftheblackline).Inareaswithlessheavyclayor withrelativelyimpermeablepeat,whichcouldevenhaveaweightbelow10kN/m 3,theUS criterionisthereforenotvalid!Whenapplyingthe0.5criterionthiswouldresultinveryunsafe situations.ThebluelineinFigure7.6isequation75,whenvaryingthesubmergedweightofthe blanket.Foravolumeweightof18kN/m 3thefactorofsafetyis1.6.Whenkeepingtheexit gradientataconstantvalueof0.5thiswillresultinasafetyoflessthanone,whichisthecase forblanketsoilswithavolumeweightlessthan15kN/m 3,whichisnotinappropriate.Thismeans thattheupliftingpressureswillexceedtheweightoftheblanket(whilethesafetyfactoristhe

94 Sand boils and Piping

resistingforcesdividedbytheinducingforces).TheDutchsafeareisrepresentedwiththegreen area.

3

2,5 USsafearea

2 Dutchsafearea

1,5 Applicablearea forcritical 1.2 gradient0.5 Safetyfactor 1

Upliftarea 0,5

0 7 12 17 22 Volumeweightofblanket(kN/m3) Figure7.6ComparisonofupliftsafetyNetherlandsandUS

7.3 Mississippi cases vs. US and Dutch rules

EarlierinthischapterweconcludedthatthereisalargedifferencebetweentheUSandDutch criterion.Toquantifythebandwidthbetweenthosecriteriathe1950Mississippicases,onwhich theUScriterionisfounded,canbeused.

1 Bligh_max L/H=45

0,9

0,8 Sandboillocations Ex.1 0,7 Nosandboils Ex.3 0,6

i 0,5 i=0.5

0,4

0,3

0,2 Ex.2 0,1 0 0 20 40 60 80 100 L/H Figure7.7ObservedL/HinMississippiRivercasesfrom1950

InFigure7.7allsandboilpoints(redtriangles)andpointswherenosandboilswereobserved (greendots)fromtheMississippiresearcharedisplayed.Itshowstheexitgradientonthe verticalaxisandtheseepagelengthdividedbytheheaddifferenceontheleveeonthehorizontal axis(see7.1.2).TheUScriterion(i=0.5)isdrawnwiththeblueline.Thearrowpointsinthe

95

directionoftheareawheretheleveewouldberejected.ThemaximumusingBlighisdrawnwith theorangeline,againwiththearrowdirectingtotheunsafearea. ItisinterestingtoseethattheredpointsareallsafeaccordingtoBligh,whileintheUSthese pointsarenonpreferredsituations.Blighfoundanempiricalrelationbetweentheseepagelength andthecriticalheadofmaximum18.Thisissaidtobeaconservativevalue.Sellmeijeris sometimessomewhatlessconservativeuptoanL/Hofabout24,butwithintheDutchrulesBligh isthenchosenasbeingnormative.Whentheminimumseepagelengththatwasavailableatthe Mississippisites,whichwasoftenonlythebasewidthoftheleveeorthebasewidthandthe bermlengthtogether,boilsalreadystarttodevelopatvaluesofL/Hofapproximately43.TheL andHofallthesecaseswereobservedvaluesalongtheMississippi.Whiletheseparameterscan bemeasuredverywell,nodifferencebetweenthemeasuredvaluesandcharacteristicvaluesis assumed. ToquantifythedifferencesbetweentheUSandDutchinterpretationthreecasesfromFigure7.7 areexaminedfurtheronthefollowingpages.Butsomeassumptionshavetobemadetobeable tocomparethem.Whilethedistributionoftheparametersusedinthe1956researchisnot knownarelationbetweenthemeanvaluesofthe1956researchandthedesiredcharacteristic valueshastobemade.Thiscanbedonebyusingtheassumptionsfrompreviousparagraph.A factorof0.7ofthe5%characteristicvaluedividedbythemeanvaluewasfound.Totranslate thisatotalsafety γtot isappliedinsteadofasafety γwithintheformulacombinedwithasafety hiddenintheparameterchoice γp.Thisresultsintheallowedapproximatetotalsafetyfactorsas displayedinTable7.5.Howevertheseareveryroughestimates!Afurtherstudytogiveabetter definitionofthecharacteristicvalueswouldleadtomorereliableresults.The3examplesare thereforejustillustrativeexamples! Table7.5ThetotalsafetyfactortotranslatetheMississippicasestoDutchcriteria

Method Safetyfactor γ Meanfactoron Totalsafetyfactor γtot parametersafety γp (X 5% /) Uplift 1.2 0.7 1.5–2.0 Bligh 1 0.7 1.2–1.6 Sellmeijer 1.2 0.7 1.5–2.0 ThethreeMississippicasesonthefollowingpages,circledinFigure7.7,showthattheDutch evaluationmethodswouldgiveotherconclusionsthantheUSmethodsand/orobservations.The firsttwoexamplesareleveeswithaborrowpitwheremostoftheblanketwasexcavated.Water canenterthepervioussubstratumthroughtheseborrowpits.Afterseriousproblemsin1937a seepagebermwasconstructedattheTrotters51location.Thisbermreducedthesandboil problemsatthislocation,butin1950stillundesirablesandboilswereobservedatthislocation. Thepiezometerdataindicatesthattheobservedgradientwaslargerthantheexitgradient,but accordingtotheDutchcriterianothingiswrong.Thedifferencewithexample2isthatthe piezometerdataindicatednoproblems,aswellastheDutchformulas,whileacalculationwith blanketformulasindicateavulnerabilitytosandboils.Sandboilswereobserved.Thelastcaseis abitdifferent.Thissituation,themostdownstreamlocationoftheMississippiresearchisthe mostsimilartotheDutchsituation,withrelativelyfinesandandapermeabilityofabout5x10 4 m/s.Althoughthereisariversideborrowpit,theblanketinthisborrowpitisthickenoughto preventwaterfromenteringthesandlayer.Nosandboilswerefoundatthisspecificlocationand problemsinthisarewereonlyminor.Thepiezometerdataindicatesavulnerabilitytosandboils, whilewiththeDutchmethodsisconcludedthatpipingdoesnotformathreatforthislevee. TheseexamplesconfirmthatleveesarerejectedmoreoftenwiththeUScriterionthanwiththe Dutchcriteria,withtheassumptionsasmentionedabove.

96 Sand boils and Piping

Example1:Trotters51,MississippiUSA

Figure7.8CrosssectionTrotters51leveerepresentativeforstation50/36+50

Parameters: Additionalestimatedparameters zt=z b=3.05m L=L 2=137m 3 d=30m γw=10kN/m 3 L1=1036m γw,s =18kN/m L2=137m d50 =0.4mm(fig.17Appendix1) L3=152mtoseepageblock d70 =0.44mm 6 kbl =0.5x10 m/s Ccreep =12 4 ks=10x10 m/s Measured1950: H=3.35m h0=2.25m Dutchinterpretation : Uplift(eq.73) 1 γtot fromcalculationsmaller F < F up γ down thanallowed γtot from Table tot 7.5?

Withh 0=2.25mfrom 1 1.08<1.52;notsafe! 22 5. kN / m3 < 24 4. kN / m3 piezometers γ tot Bligh(eq.76) 1  L  H − 3.0 z < H = 2  t γ crit   tot  Ccreep  1 3.68>1.21.6;safe 44.2 m < 11 42. m γ tot Sellmeijer(eq.7 1 H − 3.0 z < H 7) t γ crit tot 1 5.12>>1.52;safe 44.2 m < 12 49. m γ tot Conclusion: Safe

USinterpretation :

Exitgradientattoe(eq.74) i<i c

Withh 0frompiezometers 0.74>0.5 Notsafe Conclusion NotSafe

Damage1950 ,atH=3.35m: 8sandboilsof1020cmindiameterobservedbetweenstation50/5and50/40,whichisabout1 km.

97

Example2:LowerFrancis,Mississippi,USA

Figure7.9CrosssectionLowerFrancisleveerepresentativeforstation145

Parameters: Additionalestimatedparameters

zt=z b=2.29m measured1950: L=L 2=175m 3 d=41m H=3.96m γw=10kN/m 3 L1=396m h0=0.33m γw,s =18kN/m L2=175m d50 =0.4mm(fig.17Appendix1) L3=183mtoseepageblock d70 =0.56mm 4 kbl =0.1x10 m/s Ccreep =12 4 ks=16x10 m/s Dutchinterpretation :

Uplift(eq.73) 1 γtot fromcalculation F < F up γ down smallerthanallowed γtot tot from Table7.5?

Withh 0frompiezometers 1 5.55>>1.52;Safe 3.3 kN / m3 < 18 32. kN / m3 γ tot

Withh 0fromgeohydr. 1 1.12<1.52;Notsafe 16 4. kN / m3 < 18 32. kN / m 3 mod. γ tot Bligh(eq.76) 1  L  H − 3.0 z < H = 2  t γ crit   tot  Ccreep  1 4.46>1.21.6;Safe 27.3 m < 14 58. m γ tot Sellmeijer(eq.77) 1 H − 3.0 z < H t γ crit tot 1 4.67>1.52;Safe 37.3 m < 15 75. m γ tot Conclusion: Safe

USinterpretation :

Exitgradientattoe(eq.74) i<i c

Withh 0frompiezometers 0.14<0.5 Safe

Withh 0fromgeohydr.mod. 0.71>0.5 NotSafe Conclusion NotSafe

Damage1950 ,atH=3.96m: Mediumtoheavyunderseepageandnumeroussandboilsfromstation141to147(9.6km stretch).Someboilsdischargedasmuchas1cuydofsand(0.76m 3).

98 Sand boils and Piping

Example3:BatonRouge,MississippiUSA

Figure7.10CrosssectionBatonRougeleveerepresentativeforstation79106

Parameters: Additionalestimated parameters

zt=7.62m L=L1+L2=216m 3 zb=9.14m γw=10kN/m 3 d=53m γw,s =18kN/m L1=152m d50 =0.2mm(fig.17Appendix L2=64m 1) L3=975mtoseepageblock d70 =0.3mm 8 kbl =6x10 m/s (Fromblanketformulasandpiezometricdata) Ccreep =15 4 ks=5x10 m/s(Meanoffig.17andlabtests,Appendix1) Measured1950: H=5.91m h0=4.57m Dutchinterpretation : Uplift(eq.73) 1 γtot fromcalculation F < F up γ down smallerthanallowed γtot tot from Table7.5?

Withh 0frompiezometers 1 1.33<1.52;notsafe 45 7. kN / m3 < 60 96. kN / m3 γ tot Bligh(eq.76) 1  L  H − 3.0 z < H = 2  t γ crit   tot  Ccreep  1 3.98>1.21.6;safe 62.3 m < 14 40. m γ tot Sellmeijer(eq.77) 1 H − 3.0 z < H t γ crit tot 1 4.06>1.52;safe 62.3 m < 14 71. m γ tot Conclusion: Safe

USinterpretation :

Exitgradientattoe(eq.74) i<i c

Withh 0frompiezometers 0.60>0.5 NotSafe Conclusion NotSafe

Damage1950 ,atH=5.9m: Foursandboils,comparativelysmall;nosandboilsatlocationofmeasurements!

99

7.4 Possible sources for differences

ButwhyistheresuchalargedifferenceintheDutchandUScriticalwaterlevelforpiping?And howdoesthisaffecttheapplicabilityofthedifferentmethods?Possiblesourcesfordifferences arediscussedinthisparagraph. 1) Situationwhichisassumedcriticalisdifferent Thisisaverylogicalexplanation.IntheUSsandboilsarenotaccepted.Thecriterionofacritical exitgradientof0.5wasbasedonwhensandboilsstartedtoform,howbigorsmalltheywere wasnotdiscussed.ThisisdifferentfromtheDutchcriterion,wheresmallsandboilsareaccepted andthecriticalsituationismuchclosertofailure.TheBlighcriterionisbasedondamfailuresand theSellmeijerformulaisatooltofindthewaterlevelatwhichapipe,whichalreadystartedto form,isstartingtogrowrapidly.ThecriticalwaterlevelforthecriticalexitgradientandforBligh orSellmeijerisillustratedinFigure7.11.Onthehorizontalaxiswehavethelengthofthepipe dividedbythetotalseepagelength.Theheaddifferenceontheleveeisdrawnonthevertical axis.Atacertaincriticalwaterlevelboilsareobserved,whichisanindicationthatapipestartsto form.ThisisthecriticalsituationintheUS.WithrisingwaterlevelthepipegrowsandI/Lis thereforeincreasing,butthesituationisstable(lineainFigure7.11).Fromacertaincriticalpipe length,theDutchcriticalheaddifference(redline)thesituationwillbecomeinstableandthe lengthofthepipestartstogrowexplosivelyuntilitisequaltothetotalseepagelengthandthe leveewillcollapse(lineb).

H

Criticalhead Netherlands

a b Band width

Critical headUS

Critical l=L l/L I/L Figure7.11DifferencecriticalsituationUSandNetherlands(modifiedfromTAW,1999_2)

WhilenoMississippileveesactuallyfailedin1950theBlighandSellmeijercriterioncannotbe comparedwiththoseMississippicasestoindicateifBlighandSellmeijerwoulddetectreally criticalsituation.Butthereislimiteddocumentationof1937problemsavailable,whichwasthe reasontostarttheunderseepageresearchandconstructionofseepagebermsatcriticalboil locations.Someoftheselocationsreallywerecritical:leveebanquetssettledandpipesformed alreadyoveralengthofalmost60m!Thesesituationsarethereforealsoimplemented,resulting inFigure7.12.

100 Sand boils and Piping

9

8

critical locations 7 Trotters 51 numerous and/or large 6 boils numerous pin boils or 5 several small boils no sand boils

Hmax 4 Boundary 'safe area' 3 Boundary 'unsafe area' 2 Band width =factor 3.5 1 Nl USA 0 0 10 20 30 40 50 60 70 80 L/H Figure7.12Criticalboillocationsfrom1937combinedwithL/Hestimatesandobservationsfromother locationsin1937,1945and1950(datafromUSACE,1956)

ThereddotsinFigure7.12representcriticalpipinglocationsof1937.Attheselocationsthe levee(almost)failed.Inthe1956ArmyCorpsdocumentthehistoryofunderseepageofthe locationsbefore1950wasdescribed(USACE,1956).AtTrotters51,thecircledpointinFigure 7.12,aboilthatoccurredabout60mfromtheleveetoedischargedconsiderablematerialasit movedacrossaroad,causingittocaveintoadepthof5mtowithin7moftheleveetoe.The leveedidnotfail,butitisclearthatthewaterlevelatwhichthepipeexplosivelystartedtogrow wasalreadyreached.Approximately160,000sacksandupto500menwerenecessaryto constructsubleveesaroundthisboilandaroundotherlargeboilsinthearea.Whileotherboils continuedtobreakoutbeyondthelimitsofthesesacklevees,finallyonelargesizedsublevee wasconstructed.AnotherexampleofwherethecriticalpointthatBlighandSellmeijertrytofind isreachedisatFarrell,wheretheleveebanquettesettledinthevicinityof11largeboils(within 30m). AreaswhichareassumedsafeandnotsafearecoloredinFigure7.12.Foraleveetoberejected, theL/Hpointsatleasthavetobesituatedleftoftheredline,inthedarkorangeorredarea! ThisredlineboundstheBlighmaximumof18.ForlocationsalongtheMississippiamaximum L/Hof1215shouldbeclosertoreality,becauseofthesoilcharacteristics.Thedifference between12and18isthedarkyellowarea.ButtheTrotters51pointisclearlysituatedoutside thisarea.Blighwouldthereforenothaverejectedthatlevee!AndSellmeijer,ifitrejectedthe leveewouldnothavebeennormative,becauseaboveavalueofL/Hof18Blighisassumedtobe normative,althoughSellmeijercanbecomeuptoabout24. TheTrotters51pointisquantifiedinTable7.6.Thesecalculationsarebasedontheinformation thatwasavailableandpartlyonreasonableestimatesalsousedinexample1in7.3.Acalculation oftheexpectedexitgradientisnotmadehere,becausetheexitgradientisverysensitivetothe blanketthickness.Theblanketthicknessatthislocationisknowntobeveryirregular.Buta qualitativeestimationispossible.Whenexitgradientsin1950exceeded0.5,onecanreasonable expectthatexitgradientsof>>0.5wouldbefoundin1937atthislocation,becauseofthelarger waterlevel(6.4in1937and3.35in1937)andtheconstructionofabermafterthe1937to improvethevulnerabilityagainstpiping.AscanbeseeninthetableBlighwouldn’thavetraced thispointandSellmeijeralsonot,althoughvaluesaregettingclosetoacriticalpoint.Better knowledgeoftheparameterswouldmaybeleadtorejectionwithSellmeijer.

101

Table7.6QuantifyingTrotters51criticalsituation Location Trotters51 Observedproblems1937 Sandboil,dischargedconsiderablematerial;pipestarted60m fromtoeofleveeandmovedacrossroadtowardsleveefor about53m Observedwaterlevel1937 6.4m Observedseepagelength 76mlevee+60mbehindlevee=136m L/H 21>18andfarlargerthan1215whichisapplicableforthis case;Conclusion:safeaccordingtothiscriterion Bligh 5.49<11.33;withatotalsafetyof2.06>1.21.6allowed; 1  L  conclusion:safesituationexpected! H − 3.0 z < H = 2  t γ crit   tot  Ccreep 

1 Hcrit ≈13m;atotalsafetyof2.36>1.52.Sellmeijersis H H − 3.0 z < H c,Sellmeijer t γ crit gettingclosetoacriticalsituation.Areallysafesituationisnot tot guaranteed.

Concluding:Averyimportantandlogicalexplanationofthedifferenceindenying/approvinga leveelieswithinthefactthatsandboilsarenotacceptedintheUS,whileintheNetherlandssand boilsareaccepteduntilthepointwheretheleveeispipestartstogrowexplosively.Butwhen lookingatreallycriticalsituationsalongtheMississippi,ofwhichonlylimiteddataisavailable,it seemsthatBlighaswellasSellmeijerwouldnotexpectproblems,whileinfactaverycritical situationwaspresent!AmoredetailedinvestigationisnecessarytoproveifSellmeijerandBligh arenotsufficientfortheabovelocations.Thefollowingexplanationsarethereforealsofocussed onwhySellmeijerandBlighdonotdetecttheselocationsascritical. 2) Conditionsaredifferent;areSellmeijerandBlighvalid? Conditionsthatwerefound: TheconditionsfortheMississippiRiverlevees,relatedtounderseepage,aredifferentfromthe conditionsatDutchlevees.Thiswasalreadyshowninthedifferentleveecrosssectionsin Chapters4and5.ToquantifythesedifferencesinTable7.7conditionsfromMississippicases usedbeforeandofleveesalongtheDutchriversaresummarized. Table7.7Comparison(seepage)conditionsMississippi/Dutchriverlevees Location Trotters51 BatonRouge, Netherlands Netherlands;Island Mississippi,USA Mississippi,USA (examplefrom ofDordrecht (USACE,1956) (USACE,1956) TAW,19992) (Fugro,2004) Positionfromcoast 850km 200km >150km 50km L[m] 137m 216m 39m 3080m Ditch?Distance no no no Yes;010mfrom fromtoe? toe

dsand [m] 30m 53m 40m 15m

zt[m] 3m 7.6m 2,8m 16m 7 8 7 kbl [m/s] 5x10 m/s 6x10 m/s 1x10 m/s 4 4 4 5 Ks[m/s] 10x10 m/s 5x10 m/s 9x10 m/s 1x10 m/s

d50 [mm](mean) 0.4mm 0.2mm 0.17mm

d70 [mm] 0.44mm(mean) 0.3mm(mean) 0.2mm(char.) 0.1mm(char.) H[m](project 7.83m 7m 3.35m 35m flood) 3 3 3 γb[kN/m ] 17kN/m 15kN/m

Ccreep [] 12 15 17 17 WhileintheNetherlandscharacteristicvaluesareusedandintheMississippiresearchexpected values,thevaluesinthetableshouldn’tbetakentoostrict.Forthed 70 valuesismentionedifitis

102 Sand boils and Piping

ameanorcharacteristicvalue.WhatcanbeseenfromthistableisthattheMississippiRiver casesaremoreupstreamthananycaseintheNetherlandswouldbe.BatonRougeisalready furtherfromthecoastthanalocationattheborderwithGermanywouldbealongtheRhine. Differencesinpermeability,grainsizeandlayerthicknessesseemtoberelatedtothelocation, upstreamofdownstream.Thesedifferencescouldleadtonotfittingofcertainformulas. Whatismentionedinthe1956documentisthatthesandlayeroftenseemstoconsistoftwo layers:finesandintheupperpartandcoursersandbelow.Thissituationisalsooften encounteredintheNetherlands,forexampleattheEemsCanallevees,whichwereusedasa casestudyinChapter4.Forasituationwith2sandlayerswithdifferentpermeabilityandgrain sizemoreadvancedevaluationmethodsareusedintheNetherlands,whilejustBlighand Sellmeijerarenotsufficient.IntheEemsCanalleveeevaluationthepermeabilityofthetotalsand layerwasestimatedwithMSeep,whileanothermethodtoevaluatepipingof2layersandis developedbyGeoDelftandhasnotbeentestedtorealcasesyet.Usingthelattertwomethods ontheMississippicaseswouldbeinteresting. Limitationsofmodels/equations: • Ofthecriticalexitgradientof0.5isknownthatitisonlyvalidwhentheblankethasa volumeweightabove17.6kN/m 3.FortheDutchcasesintheabovetablethiscriterion canthereforenotbeapplied.Italsoraisesquestionsabouttheapplicabilityatlocations alongtheMississippiandintheCentralValley.Avariablesafetyfactor,asmentionedin previousparagraphs,couldoffera(temporary)solution. • Blighisusedallovertheworld.IndocumentationintheNetherlandswheretheformula ismentionednorestrictionsareadded.Thequestionoftheapplicabilityalongthe MississippiRivercanthereforenotbeanswereddirectlyhere.Itisimportantthough,to presentthelimitationsoftheequationtogetherwiththeequation. • SellmeijerwasdevelopedintheNetherlandsandis,atthismoment,onlyusedinthe Netherlands.AswiththeBlighformula,norestrictionsarepresentedtogetherwiththe formula,althoughtheycouldbeexpected,becausethemodelispartlyfittedonmodel tests. 3) Designcriterionofevaluationcriterion? TheBlighandSellmeijercriteriaarebothusedfordesignandevaluation.TheUScriticalexit gradientwasmeantfordesignpurposeandisnowalsoappliedforevaluation.Whyarethose criteriathesame?Itwouldbemoreconvenienttoputthedesignpointattheboundarywhere sandboilsstarttoformandevaluationwhereleveesstarttofail.IfSellmeijerandBlighwouldbe chosenasanevaluationcriterionandtheL/H=43asadesignvalue,whatwouldthenbethe consequences?FromFigure7.12afactorofapproximately3.5betweencriticalwaterlevelfor sandboilsaccordingtotheMississippicasesandforfailureaccordingtotheDutchcriteriacanbe found(43/18=3.5).ApplyingthisL/H=43insteadofL/H=18wouldresultinafarlargerberm.For examplealeveewithanHof3m,awidthof40mabermof15missufficientforL/H=18,but forL/H=43thatbermneedstobeextendedto90m!Itisquestionableifthisispossibleand maybenottoomuch,alsobecausetheroomforthatisnotavailable,villageswillhavetobe removed?!

Village;hasto be removed? H Current berm Extended bermto length L/H=18 L/H=43

L

Figure7.13ResultofusingL/H=43fordesigninsteadofL/H=18

103

Concluding:itisareasonableexplanationthattheUScriterion,theoccurrenceofsandboils, wouldbesatisfyingasadesignpointandtheDutchcriteria,leveefailure,asanevaluationpoint. ButtheDutchandUScriteriaareusedfordesignandevaluation.Acriticalreviewofwhat criterionisnecessaryfordesignandwhatcriterionforevaluationcouldbeinteresting.Itisat leastrecommendedforaswelltheDutchastheUSmethodtodosomefurtherresearchand establishdifferentcriteriafordesignandevaluation.Butifapplyingthosecriteriaispossiblein practiceisalwaysquestionable. 4) Orotherpossiblesources? Therecouldbemoresourcesforthedifferences.Someexamples:

• Measurementsarenotreliable;needtobeverifiedfromotherbackground documents,whichwerenotavailableinthisresearch.

• Observedmechanismissomethingelsethanpiping.Sinkholesandpipingare sometimesmixedup.ButfromthedescriptionofforexampletheTrotters51siteit seemsclearthatsandboilsandthuspipingwasthecase.

104

8 Conclusions and Recommendations

FromallgatheredinformationinpreviouschaptersandthecomparisonbetweentheUSand Dutchmethodsconclusionscanbedrawnonwhichsubjectsareinterestingtoexchangebetween theNetherlandsandtheUS.Themostimportantconclusionsaresummarizedin8.1. Recommendationsforexchangeofknowledge,oncurrentleveeevaluationpracticeandforfuture researcharegivenin8.2.

8.1 Conclusions

8.1.1 Conclusions comparison water defense systems Netherlands / California Central Valley

• TheCentralValleywaterdefensesystemandtheDutchwaterdefensesystemhave thingsincommon;forexampletheirflatness,areasbelowsealevel,peatsubsoils andvulnerabilitytofloodingfromriversaswellasfromaseaorbay,althoughthere arealsodifferences:theDutchleveesarenotthreatenedbyearthquakes,whilethe CentralValleyleveesare. • TheDeltaintheCentralValleyis,aswellastheNetherlands,partlysituatedbelow sealevel.ButtheeconomicconsequencesofafloodmainlylieoutsidetheDelta, becauseofthevulnerabilityofthedrinkingandirrigationwaterfacilities.Wherethe economicconsequencesoftheNetherlandsmainlylieintheareaitself.Solutionsfor floodrelatedproblemscouldthereforebedifferent. • FloodinsuranceintheUnitedStatesiscloselyrelatedtoleveeevaluation.Leveesin Californiashouldcurrentlybeabletoresistafloodwitha1:100probabilityof exceedanceperyearandinthenearfuture1:200peryear.1:100isalsothelimitfor floodinsurance:inareaswithlessthana1:100protectionpeopleareobligedtobuy floodinsurance.IntheNetherlandstheintendedprotectionismuchhigher,uptoa 1/10,000waterlevel.Peoplecannotinsurethemselvesagainstfloodrelateddamage. Theoverallconclusionisthatthereareenoughsimilaritiestolearnfromthedifferences.

8.1.2 Conclusions comparison levee evaluation methods

• IntheUSdesigndocumentsareusedfortheevaluationoflevees,whilethereareno separateevaluationdocuments.IntheNetherlandsseparateevaluationdocuments andevendocumentsinwhichhydraulicboundaryconditionsaredefinedareavailable andprescribedforleveeevaluation. • Thestabilityofleveesisevaluatedpracticallythesame,withthesamekindof softwareandmethods.ButanimportantdifferenceisthatrapiddrawdownintheUS isevaluatedwithpartlyundrainedparameters,whileintheNetherlandsonlydrained parametersareused.AnotherdifferenceUpliftwasnotincludedinthemostrecent

105

versionoftheDWRstabilityevaluationprograminCalifornia,whileitismodeledin otherpartoftheUSandintheNetherlands. • UnderseepageisevaluatedverydifferentintheUSandtheNetherlands.Acritical exitgradientisusedintheUS,basedonexperience,whiletheformulasofBligh,also fromexperience,andSellmeijer,fromtheoreticalbackgroundcombinedwithmodel tests,areusedintheNetherlands. • EvaluationintheNetherlandsstartswitharoughgroundmodelandroughmethods. Moredetailedinformationfromweakareasiscombinedwithamoredetailedmodel. IntheUSthisstepwiseevaluationisappliedforthegroundmodel,butnotyetfor evaluationmodels. Overallconclusion:Thereareinterestingdifferences.Thedifferencebetweendrained/undrained parametersinstabilityevaluationisatopiccurrentlystudiedintheNetherlands.Inthisresearch waschosentofocusonpipingevaluation,becauseoftheimportanceofthismechanisminthe NetherlandsandtheUSandthedifferenceinhowthismechanismismodeled.

8.1.3 Conclusions piping evaluation methods

• TheUScriterion,acriticalexitgradient,wasbasedonaMississippiunderseepage researchinthe1950s.ThiscriteriondiffersfromtheDutchmethods,whereanuplift evaluationisfollowedbyanevaluationofthecriticalseepagelengthatwhichapipe cangrowexplosivelywiththeformulaofBlighorSellmeijer. • L/HvaluesatwhichboilsoccurattheMississippiRiver(L/H≈43)donotmatchthe valuesofL/HatwhichproblemsareexpectedintheNetherlandswiththecurrent pipingevaluationmethods(L/H≈max.18),whichiscausedbyadifferentdefinitionof thecriticalsituation: • CriticalsituationNetherlands:failureofleveebecauseofexcessive growthofpipe. • CriticalsituationUS:occurrenceofsandboils. • ButsituationswhichwerecriticalwerenotcriticalaccordingtotheDutchmethod, whichcouldbecausedby • Differentcircumstances;theMississippilocationsaresituatedmore upstreamalongtheMississippithantheDutchleveesareinthe Netherlands.WhilenotexactlyisknowntowhatconditionstheDutch methodsarerestrictedmisuseoftheformulascouldleadtoproblems. • Thereliabilityofthedataanditsvariabilityisnotclear. • Evaluationanddesignisnotdistinguished.TheDutchandUScriteriaareusedfor bothdesignandevaluation: • TheDutchcriteriaarebasedonleveefailureandwouldbeappropriate forleveeevaluation. • TheUScriterionisbasedontheexistenceofsandboils,whichwouldbe andappropriatecriterionfordesign. Theresultofapplyingacriterionwhereboilsstartasadesigncriterioninthe Netherlands(i=0.5orL/H=43)wouldresultinabermthatisfarlargerthanthe currentberm.Theseepagelengthwillhavetobe3.5timesthecurrentseepage length.Thiswouldleadtopracticalproblems. • TheUScriterion:i=0.5cannotrandomlybeapplied.Theareaofapplicationis restrictedtoblanketswithavolumeweightabove17.6kN/m. • IntheNetherlandsa20%moreconservativevalueforthestrengthoftheleveeis chosenthanintheUS. Overallconclusion:ThediscussiononhowtobestmodelpipingintheNetherlandsaswellasthe USisnotsolvedyet.Cautiousnessisrecommendedaswellasfurtherresearch.

106

8.2 Recommendations for further research

8.2.1 For now

• Acriticalnoteabouttheapplicabilityofthecriticalexitgradientinseepageevaluation isnecessary,topreventunsafesituations,especiallyinDeltaareasasinCalifornia.A constantfactorofsafetyshouldbeconsidered. • ModelrestrictionsforformulasasBlighorSellmeijeraswellasthecriticalexit gradientof0.5shouldberesearched,documentedandmentionedtogetherwiththe formulastopreventmisuseandmisunderstandings. • Separateevaluationdocuments,preferablyconsistentoverthewholeUSwouldbean improvementandsavetimeinleveeevaluations,aswellasmodelinginsteps,while withlittleinformationandasimplemodeltheresultsequalorevenbetterthanan advancedmodelwithlittleinformation. • ItshouldbewisetoinvestigateifupliftisinthecurrentDWRstabilityevaluation standardandifnottoconsiderimplementingit.

8.2.2 Future research:

• RecommendedistostartasimilarseepageinvestigationintheCentralValleyand DeltainCalifornia,aswasdonealongtheMississippiinthe1940s.Theseleveeshave moresimilaritieswiththeDutchlevees,whencomparingtheirdimensions.Alsothese leveesarenowsaidtobereallyvulnerable.Alargeresearchisstarted,butitwilltake someyearsuntiltheleveesaresafe.Pipingproblems,astheydealtwithin1997, couldbeexpectedinthefollowingyearsinthatareaandcoulddeliversome interestingdata,fortheUSaswellastheNetherlands. • ThereismoreinformationavailableontheMississippiresearch,forexamplemaps andsoildata.Togetacompleteandhonestcomparisonaresearchonallthosedata wouldbeinteresting,preferablycombinedwithdatafromotherseepageresearches allovertheworld.WecouldusethealreadyavailabledatafromtheUSandother datatoverifyandimprovetheDutchmethods.Norealproofisgiveninthisreport thatthecurrentcriteriaarenotsafe,butwhatitdoesproofisthatcautionis necessaryandthatpipingisstillnotacompletelysolvedproblem. • If(obligatory)floodinsuranceisconsideredintheNetherlands,itisimportantto includetheinfluenceoftheaimedsafetylevelonthewillingnessofpeopletobuy floodinsuranceintheinvestigation,whileintheUSthisseemsquiteimportantnow thattheywanttoraisethesafetylevel. Concluding: MoreexchangeofknowledgebetweentheDutchandUSleveespecialistscouldbeusefulfor boththeAmericanleveesastheDutchlevees!Cooperationbetweenthetwocountriesshouldbe stimulatedandwelcomed.

107

Literature

Writtendocuments/presentations: AcW,2006;AanbevelingenvandeAdviescommissieWaterinzakeverzekerenenwateroverlast, AdviescommissieWater,February2006 www.adviescommissiewater.nl ,lastvisit11292006(inDutch) Baars,vanS.2004;Wilnis’revisited,‘Hetzeepsopexperiment’writtenbyG.vanEngeleninDelft Integraal,20042(inDutch) Berkeley,2006;InvestigationofthePerformanceoftheNewOrleansFloodProtectionSystemin HurricaneKatrinaonAugust29,2005;IndependentLeveeInvestigationTeamfromUniversityof CaliforniaatBerkeley,witha.o.R.B.SeedandR.G.Bea,July312006 http://www.ce.berkeley.edu/~new_orleans/ Bruijn,deH.T.J.etal,2004;KadeverschuivingWilnis,Onderzoeknaardeoorzaakvande kadeverschuiving,Geodelft,Delft,theNetherlands,January2004(inDutch) Cowdrey,A.E,1977;Land’sEnd,AhistoryofTheNewOrleansDistrict,U.S.ArmyCorpsofEngineers, anditsLifeLongBattlewiththeLowerMississippiandotherRiversWendingtheirWaytotheSea, UnitedStatesArmyCorpsofEngineers,1977,188p. DubbelmanH,1999;Maatschappelijkegolvenindewaterbouwkunde,DelftUniversityPress,Delft,the Netherlands,May1999(inDutch) DRMS,2006;DeltaRiskManagementStrategy,InitialTechnicalFramework,2006 (www.drms.water.ca.gov) DWR,2006;ProgressonincorporatingclimatechangeintomanagementofCalifornia’swaterresources, technicalmemorandumreport,CaliforniaDepartmentofWaterResources,July2006 DWR,20062;EmergencyLeveeRepairFactsheet,DepartmentofWaterResources,2006 www.levees.water.ca.gov lastvisitMarch,2007 DWR,20063;ProtectingtheSacramento/SanJoaquinDeltaandCalifornia’sWaterSupply:Dealingwith aDamoclesSword,TestimonybyLeslieF.Harder,DeputyDirectorCaliforniaDepartmentofWater Resources,September7,2006 DWR,2005;FloodWarnings:RespondingtoCalifornia’sFloodCrisis,StateofCalifornia,TheResources Agency,DepartmentofWaterResources,California,USA,January2005 DWR,20052;CaliforniaWaterPlanUpdate2005,Volume3RegionalReports,chapter12:Sacramento SanJoaquinDeltaRegion,CaliforniaDepartmentofWaterResources,December2005. www.waterplan.water.ca.gov lastvisit01022007 DWR,1995;SacramentoSanJoaquinDeltaatlas.Sacramento(CA):CaliforniaDepartmentofWater Resources.121p. FEMA,2002;NationalFloodInsuranceProgram,ProgramDescription,FederalEmergencyManagement AgencyandFederalInsuranceandMitigationAdministration,August2002 FLORIS,2005;“FloodRiskandSafetyintheNetherlands;FLORISStudyFullReport”.Ministerievan VerkeerenWaterstaat,theNetherlands,November2005,134p.

109

Fugro,2007;DWRleveegeotechnicalevaluations;InternalpresentationbyMarkFreitas;FugroWestinc. Oakland,USA,March22,2007 Fugro,2006;LeveeevaluationLakeMarkenleveesbetweenHoornandEdam;project12040098 000/001(inDutch) Fugro,2004;SafetyassessmentofEemsCanallevees;project12040037000/001/002(inDutch) Fugro,20042;IslandofDordrechtleveeevaluation;Projectk00117/001(inDutch) Geodelft,2006;MStabusermanual,Geodelft,Delft,theNetherlands,February2006 HarderL.F,2006;TheFloodCrisisinCalifornia’sCentralValley,SouthwestHydrology,March/April2006 HuismanP,etal,1998;“WaterintheNetherlands”.NetherlandsHydrologicalSociety(NHS),Delft,1998 IngebritsenS.E.a.o,2000;„DeltaSubsidenceinCalifornia,ThesinkingheartoftheState“U.S.Geological Survey,April2000 IPO,1999;IPOrichtlijnterbepalingvanhetveiligheidsniveauvanboezemkaden,InterpovinciaalOverleg, november1999(inDutch) Kosar,K.R,2005;DisasterResponseandAppointmentofaRecoveryCzar:TheExecutiveBranch’s ResponsetotheFloodof1927;CongressionalResearchService,TheLibraryofCongress,October25, 2005 Meel,vanPP.A.Boetzelaer,M.E.Bakker,P.C,2005;SpatialPlanningKeyDecisionRoomfortheRiver, Rijkswaterstaat,2005 MichelsS,2005;CaliforniaLevees,OnlineNewsHour,December22,2005 MinV&W,2004;DeveiligheidvandeprimairewaterkeringeninNederland,Voorschrifttoetsenop veiligheidvoordetweedetoetsronde20012006,MinisterievanVerkeerenWaterstaat,January2004 (inDutch) MinV&W,2006;Primairewaterkeringengetoetst,Landelijkerapportage2006,MinisterievanVerkeeren Waterstaat,2006(inDutch) MNP,2005;EffectenvanklimaatveranderinginNederland,MilieuenNatuurplanbureau,October2005(in Dutch) MountJ.TwissR,2005;Subsidence,SeaLevelRise,andseismicityintheSacramentoSanJoaquinDelta, SanFranciscoEstuaryandWatershedScience.Vol.3,Issue1;March2005,Article5 O’NeillK.M,2006;RiversbyDesign,StatePowerandtheOriginsofU.S.FloodControl,2006,278p. PockoskiM.andDuncanJ.M,2000;Comparisonofcomputerprogramsforanalysisofreinforcedslopes; VirginiaTechCenterforGeotechnicalPracticeandResearch,USA,December2000 ReidR.L,2005;IsCaliforniaNext?CivilEngineeringmagazine,USA,November2005 RIVM,2004;Risico’sinbedijktetermen,eenevaluatievanhetbeleidinzakedeveiligheidtegen overstromen,RijksinstituutvoorVolksgezondheidenMilieu,May2004(inDutch) RWS,1998;TweeEeuwenRijkswaterstaat,17981998,Bosch,A.Ham,vanderW.etal,Rijkswaterstaat, 1998(inDutch) RWS,2001;HydraulischeRandvoorwaarden2001,voorhettoetsenvanprimairewaterkeringen, DirectoraatGeneraalRijkswaterstaat,MinV&W,RIKZ,DWW,RIZA,December,2001(inDutch) SOP,2006;StandardOperatingProcedure,SacramentoDistrict,California,US,2004 STOWA,2006;Leidraadtoetsenopveiligheidregionalewaterkeringen,katernboezemkaden,STOWA, Utrecht,2006 STOWA,2004;Overzichtnormenenveiligheidwateroverlast,StichtingToegepastOnderzoek Waterbeheer,Rapport200405,Utrecht,March2004(inDutch) TAW,2000;TechnicalReportonSoilStructures;TechnicalAdvisoryCommitteeonFloodDefences, Netherlands,Delft,February2000

110

TAW,1999;LeidraadZeeenMeerdijken,TechnischeAdviescommissievoordeWaterkeringen, Rotterdam,December1999 TAW,19992;TechnicalReportonSandBoils(Piping),TechnicalAdvisoryCommitteeonFloodDefenses, theNetherlands,March1999;Englishversion2002 TAW,1998;Grondslagenvoorwaterkeren,TechnischeAdviescommissievoordeWaterkeringen, Rotterdam,January1998(inDutch) TAW,1993;Technischrapportvoorhettoetsenvanboezemkaden,TechnischeAdviescommissievoorde waterkeringen,Delft,June1993(inDutch) UCDavis,2006;PresentationfromUCDavis URS,2007;LeveeevaluationworkshopdocumentsforDWRleveeGeotechnicalevaluationofurban levees;February/March,2007 USACE,2005;Designguidanceforleveeunderseepage,DepartmentoftheArmy,U.S.ArmyCorpsof Engineers,WashingtonDC,1May2005 USACE,2003;EngineeringandDesign:SlopeStability;UnitedStatesArmyCorpsofEngineers, WashingtonDC,USA,October2003 USACE,2002;Performanceofleveeunderseepagecontrols:Acriticalreview,byThomasF.Wolff,US ArmyCorpsofEngineers,EngineerResearchandDevelopmentCenter,MichiganStateUniversity, September2002 USACE,2000;Designandconstructionoflevees;ManualNo111021913;UnitedStatesArmyCorpsof Engineers,WashingtonDC,USA,April2000 USACE,1956;Investigationofunderseepageanditscontrol,LowerMississippiRiverLevees,VolumeI; WaterwaysExperimentStation,UnitedStatesArmyCorpsofEngineers,Vicksburg,Mississippi,USA, October1956 USGS,1997;TechnicalAspectsofWetlands,HistoryofWetlandsintheConterminousUnitedStates, UnitedStatesGeologicalSurveyWaterSupplyPaper2425,1997 VNK,2005;VeiligheidNederlandinKaart,Hoofdrapportonderzoekoverstromingsrisico’s,November2005 Vrijling,Prof.Drs.Ir.J.K.andGelder,Dr.Ir.P.H.A.J.M.van,2002;Probabilisticdesigninhydraulic engineering,coursematerialforCT5310;SectionHydraulicEngineering,DelftUniversityof Technology,TheNetherlands,August2002p.VI4 VTV,2004;DeveiligheidvandeprimairewaterkeringeninNederland,VoorschriftToetsenopVeiligheid voordetweedetoetsronde20012006(VTV),MinistryofV&W,2004(onlyinDutch) Webbasedresources: Barry,J.M.2002;MississippiRiverFlooding;TulaneUniversity,2002 http://reading.tulane.edu/200/topicflooding.cfm lastvisitJuly2007 Deltawerken.com,2006; www.deltawerken.com ;lastvisit:November2006 DWR,2007;Floodsafewebsite: www.floodsafe.water.ca.gov ;lastvisitJuly2007 ENWinfo.nl,2006; www.ENWinfo.nl websiteoftheExpertiseNetworkforfloodprotection;lastvisit November2006 FAS.org,2007; http://www.fas.org/irp/imint/docs/rst/Sect14/Sect14_10a.html ;lastvisitJuly2007 Natuurdichtbij.nl,2006; www.natuurdichtbij.nl ,lastvisitNovember2006(onlyinDutch) OCS,2005;Averageannualprecipitation19712000California,PrismgroupandOreganClimateService, OregonStateUniversity,2005 http://www.ocs.orst.edu/pub/data_requests/state_ppt/california300.png lastvisitMarch2007 Provincies.nl,2006; www.provincies.nl lastvisitNovember2006 Rogers,J.D,2006;EvolutionoftheleveesystemalongthelowerMississippiRiver; 2006 http://web.umr.edu/~rogersda/levees/ lastvisitMay2007

111

SAFCA,2007;FloodProtectionlevelsofAmerica’smajorrivercities, www.safca.org ,lastvisitJanuary 2007 TNONITG,2006;DeGeologischeKaartvanNederland, http://www.nitg.tno.nl/ned/appl/general/geologie.shtml ,lastvisitJanuary2007 Waterschappen.nl,2006, www.waterschappen.nl lastvisitNovember2006(onlyinDutch) Weltatlas.de,2006, www.weltatlas.de ,lastvisitNovember2006 Personalconversations: AthanasopoulosA.G.2007;PhDstudentinGeoengineering,UniversityofCaliforniaatBerkeley;personal conversationon3232007 SellmeijerJ.B.2007;personalconversation,July2007

112

Appendices

Appendix1:DeterminationoftheD 70 forcalculations Appendix2:DamageMississippicases Appendix3:Slope/WversusMStab

113

Appendix 1. DeterminationofD70forcalculations

Toestimatethed 70 ofthepervioussubstratuminexamples13,agrainsizecurveisnecessary.Because onlyVolumeIofthe1956investigationwasavailableinthisresearch,whereinVolumeIIgrainsize curveswerepublished,analternativeapproachwasnecessarytoestimateareasonabled 70 value.Inthe 1956researchthehorizontalpermeabilityofthesubstratumwasdeterminedfromfieldpumptestsor fromarelationbetweend 10 andthepermeability,asgiveninFigure1.Whilewedonothavethegrain sizecurves,butdoknowtheestimatedpermeabilitiesthebackwardcalculationisdone.Fromthe permeabilityad 10 valueisestimatedwithFigure1.FortheDutchSellmeijerformulaweneedthed 70 .The followingformulaisusedtodeterminethed 70 fromthed 10 : d = α 70, char d10, char ' Uchar Togettoad70valuethatisclosetothecharacteristicvalueofd70alowestimateofUistaken,whichis 2,andalowestimateofthed10istaken.Uisd60/d10andα’=0.9isacorrectionfactortocompensate forthed60insteadofd70. Usingd10khcurve:

Figure1Effectivegrainsize,d 10 versuscoefficientofpermeabilityk h(USACE,1956))

Thecurveintheabovefigurepresentsanapproximaterelationshipbetweend10andk h,whichisthe horizontalpermeabilityoftheperviousstratum.Thisrelationshipwasderivedfrompumpingtestsdoneat theMississippiRivertestsitesandlaboratorytestsonsamplesfromtheselocations.

115

Appendix 2. DamageMississippicases

In1956anunderseepageresearchfromtheMississippiRiverwaspublished(USACE,1956). Belowanindicationofthemaximumwaterlevel,theavailableseepagelengthandtheseepage lengthdividedbythewaterlevelisgiven,togetherwiththedamagethatoccurredatthatsite. Thisinformationisretrievedfromthe1956report.

1937 Hmax Lmin L/H damage?! Caruthersville 4,6 55 12 numerous pin boils Gammon 6,1 30 5 numerous sand boils from pin size to 0.3 m Commerce 6,4 67 10 quite large sand boils developed and numerous boils required sacking Trotters 51 6,4 136 21 numerous sand boils from 0.1 to 0.3 m in diameter; another boil (60 m from levee at L/H=21.4) discharged considerable material as it moved across the road, causing the orad to cave in to a depth of 4.5 m to within 7.6 m of the levee toe; several sack levees were constructed around the active sand boils, but other boils continued to break out beyond the limits of these sack levees; finally one large-sized sack sublevee was constructed; this location had the most serious sand boils of its district Trotters 54 7,2 84 12 about 300 to 500 relatively small sand boils Stovall 8,1 122 15 five sand boils; another large sand boil and three smaller boils; they were all discharging considerable material; they were surrounded with large sack sublevees but continued to discharge very fine sand for more than 15 days; one of the worst boils in this area is shown in fig. 9; Farrell 7 91 13 heavy sand boils; levee banquette settled at location of at least 12 sand boils, which discharged considerable sand Upper Francis 6,2 76 12 no boils! L'Argent 7,6 116 15 one 6-inch sand boil (at location where H was 7.62 m) Hole-in-the-Wall 4,5 91 20 numerous small sand boils Kelson 5,5 360 65 no boils! Baton Rouge 5,79 216 37 8 large sand boils (at seismic shot point locations)

1945 Lower Francis 4,9 175 36 numerous sand boils; six large sand boils and 54 smaller ones; toe of the berm was unstable

Bolivar 3,4 101 30 numerous pin boils Eutaw 2,9 76 26 numerous pin boils L'Argent 5,4 878 163 no sand boils Hole-in-the-Wall 3,5 152 43 no sand boils Baton Rouge 6,1 216 35 4 sand boils 1950 Caruthersville 2,7 85 31 some sand boils Gammon 4 152 38 approximately 40 small sand boils from 0.07 to 0.3 m Commerce 2,7 122 45 no sand boils Trotters 51 3,4 137 40 8 sand boils from 0.07 m to 0.2 m were discharging considerable material; numerous pin boils in landside drainage ditch Trotters 54 4,1 145 35 numerous sand boils in landside drainage ditch up to 0.3 m diameter and numerous pin boils

Stovall 4,6 183 40 Ten sand boils from 0.05 to 0.1 m diameter Farrell 2,1 152 72 several pin boils in drainage ditch 30 m from berm toe Upper Francis 3 137 46 no boils Lower Francis 4 175 44 numerous sand boils; some boils discharged about 0.75 m3 of sand Bolivar 2,7 101 37 very heavy seepage, which made it impossible to determine whether any sand boils developed

Eutaw 2,7 137 51 no sand boils L'Argent 4,7 878 187 no sand boils Hole-in-the-Wall 2,9 152 52 no sand boils Kelson 5,2 360 69 no sand boils Baton Rouge 5,3 216 41 4 relatively small sand boils

117

Appendix 3. Slope/WversusMStab

InthisAppendixsomeresultsarepresentedofstabilityevaluationsperformedwithMStaband Slope/WfortheLakeMarkenlevees.Fromthisdataitbecomesclearthattherearenotmajor differencesbetweentheseprograms.

Markermeer Mstab / dutchSlope/W input / dutchchange input % change NHW ls 3.523 3.447 0.076 2.16 NHW ws 1.345 1.326 0.019 1.41 Rapid drawdown ws 1.194 1.194 0 0.00 rain ws 1.258 1.264 0.006 0.48 rain ls 3.523 3.447 0.076 2.16 47 Critical Circle Bishop 1.076 Materials KLEI KLEI humeus 48 49 KLEI siltig KLEI humeus 0 KLEI siltig 0 Veen 0 VEEN ZAND 25 27 29 24 5655305731 23 10 32 33 22 9 34 21 26 28 35 18 1920 8 3637 38 5 6 17 11 544 46 5 7 53 1615 7 52 39 3 8 14 40 4 9121313 6 11 2 3 10 2

50 51

1

Xm : 13,00 [m] Radius : 12,64 [m] Ym : 7,14 [m] Safety : 1,00 1

ThereareonlysmalldifferencesintheoutputfromSlope/WandMStab.Thesesmalldifferences couldbecausedbyforexample: • Roundofferrors • Smalldifferencesinmodelinput? • Definitionofpiezometriclines • Differenceininputofmaterialproperties:tablesvs.bilinearoffunctions

119