Trade Hub Aims to Reclaim Ancient Glory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Spreading of Christianity and the Introduction of Modern Architecture in Shannxi, China (1840-1949)
Escuela Técnica Superior de Arquitectura de Madrid Programa de doctorado en Concervación y Restauración del Patrimonio Architectónico The Spreading of Christianity and the introduction of Modern Architecture in Shannxi, China (1840-1949) Christian churches and traditional Chinese architecture Author: Shan HUANG (Architect) Director: Antonio LOPERA (Doctor, Arquitecto) 2014 Tribunal nombrado por el Magfco. y Excmo. Sr. Rector de la Universidad Politécnica de Madrid, el día de de 20 . Presidente: Vocal: Vocal: Vocal: Secretario: Suplente: Suplente: Realizado el acto de defensa y lectura de la Tesis el día de de 20 en la Escuela Técnica Superior de Arquitectura de Madrid. Calificación:………………………………. El PRESIDENTE LOS VOCALES EL SECRETARIO Index Index Abstract Resumen Introduction General Background........................................................................................... 1 A) Definition of the Concepts ................................................................ 3 B) Research Background........................................................................ 4 C) Significance and Objects of the Study .......................................... 6 D) Research Methodology ...................................................................... 8 CHAPTER 1 Introduction to Chinese traditional architecture 1.1 The concept of traditional Chinese architecture ......................... 13 1.2 Main characteristics of the traditional Chinese architecture .... 14 1.2.1 Wood was used as the main construction materials ........ 14 1.2.2 -
Problems and Strategies of Urbanization Development in Western China from the Perspective of Urban-Based Society ——A Case Study of Shaanxi Province
LV, Yuan Problems and Strategies of Urbanization 49th ISOCARP Congress 2013 Problems and Strategies of Urbanization Development in Western China from the Perspective of Urban-based Society ——A Case Study of Shaanxi Province Yuan LV, Kewei LIU, Lin LIU, Dan ZHAO, Fujuan ZHANG; College of Urban and Environmental Science, Northwest University; China In case of peer review: ID 138 Synopsis Serious problems in the urbanization process of western China are raised from the perspective of urban-based society, taking Shaanxi, a typical province in natural geographical features and fast developing economy in western China as a case, and then the strategies are put forward to solve these problems. 1. Introduction Urban-based society is a kind of social formation with urban population as the main part, human behavior and non-agricultural industries layout in urban area and residents survive in urban lifestyle. At present, whether a country or a region enter urban-based society rely on the threshold internationally that the proportion of urban population reaches 50 percent. Urbanization rate between 51% and 60% is for elementary urban society, 61% to 75% for intermediate urban society, 76% to 90% for advanced urban society and more than 90% for complete urban society (Pan and Wei, 2012). Transformation from village-dominated society to urban-based society means the great progress of agricultural modernization, industrialization, new urbanization and the fast pace of social progress, economic growth and modernization (Zhao, 2012). The achievements on urbanization in academic circles are fruitful; however, the study on urbanization from the perspective of urban-based society now is in its infancy. -
Effects of Formulated Fertilizer, Irrigation and Varieties on Wheat Yield in Shaanxi China
Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(7):1124-1129 ISSN : 0975-7384 Research Article CODEN(USA) : JCPRC5 Effects of formulated fertilizer, irrigation and varieties on wheat yield in Shaanxi China Xiaoying Wang1, Yanan Tong1,2*, Pengcheng Gao1, Fen Liu1, Yimin Gao1, Zuoping Zhao1 and Yan Pang1 1College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China 2Key Laboratory of Plant Nutrition and Agricultural Environment in Northwest, Ministry of Agriculture, Yangling, Shaanxi, China _____________________________________________________________________________________________ ABSTRACT In order to study the effects of formulated fertilization, irrigation and different varieties on crop yields and farmer’s income, this research used household survey data and demonstration test data of formulated fertilization, which was collected from the project of soil testing and formulated fertilization in Shaanxi province from 2007 to 2011. For analysis, there were a total of 53 counties in the sample. The results show that in Weibei, Guanzhong and Qin-Ba regions, compared with conventional fertilization, formulated fertilization decreased nitrogen (N) fertilizer rates by 31.92%, 12.59% and 10.13% respectively, decreased phosphate (P2O5) fertilizer rates by 20.44%, 2.10% and 26.19% respectively, increased potassium (K2O) fertilizer rates by 105.98%, 193.99% and 382.58% respectively. The yields of wheat improved 330 kg ha-1, 403 kg ha-1 and 738 kg ha-1, the yield increase rates were 7.73%, 6.26% and 19.71%, the average profits increased about 906 yuan ha-1, 689 yuan ha-1 and 1423 yuan ha-1 respectively in the three regions. In addition, the average yields were higher up to 19.07%, 14.96% and 17.76% respectively when irrigation had been used than without, and it was not the most productive varieties that were the most grown in the three regions. -
Analysis of the Spatial-Temporal Change of the Vegetation Index in the Upper Reach of Han River Basin in 2000–2016
Innovative water resources management – understanding and balancing interactions between humankind and nature Proc. IAHS, 379, 287–292, 2018 https://doi.org/10.5194/piahs-379-287-2018 Open Access © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Analysis of the spatial-temporal change of the vegetation index in the upper reach of Han River Basin in 2000–2016 Jinkai Luan1, Dengfeng Liu1,2, Lianpeng Zhang1, Qiang Huang1, Jiuliang Feng3, Mu Lin4, and Guobao Li5 1State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi’an University of Technology, Xi’an 710048, China 2Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA 3Shanxi Provincal Water and Soil Conservation and Ecological Environment Construction Center, Taiyuan 030002, China 4School of statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China 5Work team of hydraulic of Yulin City, Yulin 719000, China Correspondence: Dengfeng Liu ([email protected]) Received: 29 December 2017 – Revised: 25 March 2018 – Accepted: 26 March 2018 – Published: 5 June 2018 Abstract. Han River is the water source region of the middle route of South-to-North Water Diversion in China and the ecological projects were implemented since many years ago. In order to monitor the change of vegetation in Han River and evaluate the effect of ecological projects, it is needed to reveal the spatial-temporal change of the vegetation in the upper reach of Han River quantitatively. The study is based on MODIS/Terra NDVI remote sensing data, and analyzes the spatial-temporal changes of the NDVI in August from 2000 to 2016 at pixel scale in the upper reach of Han River Basin. -
46042-002: Shaanxi Mountain Road Safety Demonstration Project
Social Monitoring Report Semi-Annual Report March 2018 PRC: Shaanxi Mountain Road Safety Demonstration Project Prepared by Shaanxi Kexin Consultant Company for the Foreign Fund Financed Project Office of Shaanxi Provincial Transport Department and the Asian Development Bank. This social monitoring report is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Shaanxi Mountain Road Safety Demonstration Project (Loan No. 3924-PRC) External Monitoring Report for Resettlement (Hanbin District) (Report No.3) Monitoring period: September 2017 to February 2018 Prepared for: Foreign Fund Financed Project Office of SPTD By: Shaanxi Kexin Consultant Company March 2018 Executive Summary In February 2018, External Monitoring Unit of Shaanxi Mountainous Road Safety Demonstration Project (Hanbin District Project) carried out external monitoring of Phase II in project affected area (monitoring period: September 2017 to February 2018). This external monitoring scope involved 3 towns and 10 administrative villages of all affected projects. By February 28, 2018, Because only Ankang-Xunyang Highway (G316 Hanbin section) project is implemented in the sub-projects of Hanbin District, while Yandong Highway Project is planned to be started on site in March, 2018, so far it is on the process of knowing the real situation of relocation for settles. -
Shaanxi Mountain Road Safety Demonstration Project
Social Monitoring Report Semi-Annual Report August 2019 PRC: Shaanxi Mountain Road Safety Demonstration Project Prepared by Shaanxi Kexin Consultant Company for the People’s Republic of China and the Asian Development Bank. This social monitoring report is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Shaanxi Mountain Road Safety Demonstration Project (Loan No. 3924-PRC) External Monitoring Report for Resettlement (Xunyang County) Report No.5 (September 2018 ~February 2019) Prepared for: Foreign Capital Utilization Center of SPTD By: Shaanxi Kexin Consultant Company August 2019 Executive Summary In February 2019, External Monitoring Unit of Xunyang County Subproject of Shaanxi Mountainous Road Safety Demonstration Project (the Monitor) carried out external monitoring of Phase V in project affected area. The reporting period was September 2018 to February 2019. This external monitoring scope involved 6 towns and 36 administrative villages/communities that were affected by the subprojects. Shuxiao Road(X304) is still under preparation and has not been implemented yet. The affected monitoring survey was conducted with the well-developed global participatory monitoring method in recent years, namely, establishing the project monitoring and consulting group, and in combination with the conventional monitoring methods, including field exploration, in-home survey and dictation record, arrangement of villagers discussion, visit of related authorities, consultation of statistical materials, local chronicles, statutes documents, etc. -
Distribution, Genetic Diversity and Population Structure of Aegilops Tauschii Coss. in Major Whea
Supplementary materials Title: Distribution, Genetic Diversity and Population Structure of Aegilops tauschii Coss. in Major Wheat Growing Regions in China Table S1. The geographic locations of 192 Aegilops tauschii Coss. populations used in the genetic diversity analysis. Population Location code Qianyuan Village Kongzhongguo Town Yancheng County Luohe City 1 Henan Privince Guandao Village Houzhen Town Liantian County Weinan City Shaanxi 2 Province Bawang Village Gushi Town Linwei County Weinan City Shaanxi Prov- 3 ince Su Village Jinchengban Town Hancheng County Weinan City Shaanxi 4 Province Dongwu Village Wenkou Town Daiyue County Taian City Shandong 5 Privince Shiwu Village Liuwang Town Ningyang County Taian City Shandong 6 Privince Hongmiao Village Chengguan Town Renping County Liaocheng City 7 Shandong Province Xiwang Village Liangjia Town Henjin County Yuncheng City Shanxi 8 Province Xiqu Village Gujiao Town Xinjiang County Yuncheng City Shanxi 9 Province Shishi Village Ganting Town Hongtong County Linfen City Shanxi 10 Province 11 Xin Village Sansi Town Nanhe County Xingtai City Hebei Province Beichangbao Village Caohe Town Xushui County Baoding City Hebei 12 Province Nanguan Village Longyao Town Longyap County Xingtai City Hebei 13 Province Didi Village Longyao Town Longyao County Xingtai City Hebei Prov- 14 ince 15 Beixingzhuang Town Xingtai County Xingtai City Hebei Province Donghan Village Heyang Town Nanhe County Xingtai City Hebei Prov- 16 ince 17 Yan Village Luyi Town Guantao County Handan City Hebei Province Shanqiao Village Liucun Town Yaodu District Linfen City Shanxi Prov- 18 ince Sabxiaoying Village Huqiao Town Hui County Xingxiang City Henan 19 Province 20 Fanzhong Village Gaosi Town Xiangcheng City Henan Province Agriculture 2021, 11, 311. -
Minimum Wage Standards in China August 11, 2020
Minimum Wage Standards in China August 11, 2020 Contents Heilongjiang ................................................................................................................................................. 3 Jilin ............................................................................................................................................................... 3 Liaoning ........................................................................................................................................................ 4 Inner Mongolia Autonomous Region ........................................................................................................... 7 Beijing......................................................................................................................................................... 10 Hebei ........................................................................................................................................................... 11 Henan .......................................................................................................................................................... 13 Shandong .................................................................................................................................................... 14 Shanxi ......................................................................................................................................................... 16 Shaanxi ...................................................................................................................................................... -
Predictions of the Potential Geographical Distribution and Quality of a Gynostemma Pentaphyllum Base on the Fuzzy Matter Element Model in China
sustainability Article Predictions of the Potential Geographical Distribution and Quality of a Gynostemma pentaphyllum Base on the Fuzzy Matter Element Model in China Zefang Zhao 1,2,3 , Yanlong Guo 1, Haiyan Wei 1,*, Qiao Ran 1,2 and Wei Gu 3,4,* 1 School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China; [email protected] (Z.Z.); [email protected] (Y.G.); [email protected] (Q.R.) 2 National Demonstration Center for Experimental Geography Education, Shaanxi Normal University, Xi’an 710119, China 3 National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China 4 College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China * Correspondence: [email protected] (H.W.); [email protected] (W.G.); Tel.: +86-29-8531-0525 (H.W.); +86-29-8531-0266 (W.G.) Received: 26 April 2017; Accepted: 21 June 2017; Published: 1 July 2017 Abstract: Specific spatial information about medicinal plants is becoming an increasingly important part of their conservation. Gynostemma pentaphyllum (Thunb.) Makino is a traditional Chinese medical plant, and gypenosides is one of the main active components of G. pentaphyllum. In our research, many samples of G. pentaphyllum and the data of gypenosides content in these samples were collected from 43 sampling sites, and based on the Fuzzy Matter Element model (FME), the relationships between gypenosides content and 19 environmental variables were established. Then, the maximum entropy model was used to determine the relative importance of each environmental variable, and thus determine the most limiting habitat criteria. -
Study of Road Landscape Design at Portal Space of Small Towns in Guanzhong
Send Orders for Reprints to [email protected] 92 The Open Construction and Building Technology Journal, 2015, 9, 92-98 Open Access Study of Road Landscape Design at Portal Space of Small Towns in Guanzhong# Quanhua Hou* and Wenhui Wang School of Architecture, Chang' an University, Xi'an 710061, China Abstract: To further study the effects of public service facilities on the land use intensity at regulatory planning level and enhance the scientific determination of land use intensity, this paper expounds the influence mechanism and factors of the public service facilities on land use intensity in regulatory planning, and conducts quantitative evaluation of the influence factors through theoretical analysis, mathematical analysis and analytic hierarchy process etc. The results show that the in- fluence mechanism of public service facilities on the land use intensity goes throughout all three levels of regulatory plan- ning. Different characteristics of public service facilities on each level determine their different influence factors and take effect on the land use intensity index of the corresponding level, thus affecting the determination of the block floor area ratio. Based on this, this paper proposes a method to determine the land use intensity in regulatory planning under the re- striction of public service facilities and completes the test in practice, which may provide a reference for determining the land use intensity in regulatory planning. Keywords: Impact assessment, land use intensity, public service facilities, regulatory -
CHINA the Church of Almighty God: Prisoners Database (1663 Cases)
CHINA The Church of Almighty God: Prisoners Database (1663 cases) Prison term: 15 years HE Zhexun Date of birth: On 18th September 1963 Date and place of arrest: On 10th March 2009, in Xuchang City, Henan Province Charges: Disturbing social order and using a Xie Jiao organization to undermine law enforcement because of being an upper-level leader of The Church of Almighty God in mainland China, who was responsible for the overall work of the church Statement of the defendant: He disagreed with the decision and said what he believed in is not a Xie Jiao. Court decision: In February 2010, he was sentenced to 15 years in prison by the Zhongyuan District People’s Court of Zhengzhou City, Henan Province. Place of imprisonment: No. 1 Prison of Henan Province Other information: He was regarded by the Chinese authorities as a major criminal of the state and had long been on the wanted list. To arrest him, authorities offered 500,000 RMB as a reward to informers who gave tips leading to his arrest to police. He was arrested at the home of a Christian in Xuchang City, Henan Province. Based on the information from a Christian serving his sentence in the same prison, HE Zhexun was imprisoned in a separate area and not allowed to contact other prisoners. XIE Gao, ZOU Yuxiong, SONG Xinling and GAO Qinlin were arrested in succession alongside him and sentenced to prison terms ranging from 11 to 12 years. Source: https://goo.gl/aGkHBj Prison term: 14 years MENG Xiumei Age: Forty-one years old Date and place of arrest: On 14th August 2014, in Xinjiang Uyghur Autonomous Region Charges: Using a Xie Jiao organization to undermine law enforcement because of being a leader of The Church of Almighty God and organizing gatherings for Christians and the work of preaching the gospel in Ili prefecture Statement of the defendant: She claimed that her act did not constitute crimes. -
Jacob Eyferth University of Chicago Liberation from The
Jacob Eyferth University of Chicago Liberation from the Loom? Rural Women, Textile Work, and Revolution in North China Chapter 6 in Jeremy Brown and Matthew Johnson, eds. Maoism at the Grassroots: Everyday Life in China’s Era of High Socialism, Harvard University Press, forthcoming Please do not cite or share without permission by the author! 1 Chapter 6 Liberation from the Loom? Rural Women, Textile Work, and Revolution in North China Jacob Eyferth The socialist revolution promised to transform the material life of China’s rural inhabitants, to bring new objects and technologies—“two-storey brick houses, electric light, and telephones” ( loushang louxia, diandeng dianhua )—to the countryside, and in doing so, to radically alter existing divisions of labor and patterns of everyday life. How people experienced socialism at the grassroots levels depended as much on the halting and uneven changes in material life as on the sequence of struggles and political campaigns through which we usually analyze socialist China. Few changes in the countryside were more momentous than those related to how rural people clothed themselves. By this I do not mean sartorial change, which was relatively slow, but the way cloth and clothing was produced. As late as 1936, more than two-thirds of China’s cloth output was produced manually, in small urban workshops and rural households. 1 While the old adage that “men farm and women weave” was never strictly accurate (most women participated in farm work at least seasonally, and some men span and wove), it is true that all women in late imperial China, from commoners to the elite, were expected to perform textile work.