MYO1C Binds to Pip2 with High Affinity Through a Putative Ph Domain

Total Page:16

File Type:pdf, Size:1020Kb

MYO1C Binds to Pip2 with High Affinity Through a Putative Ph Domain University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Winter 2007 MYO1C Binds to PiP2 With High Affinity Through a Putative Ph Domain David Hokanson University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Medical Biochemistry Commons Recommended Citation Hokanson, David, "MYO1C Binds to PiP2 With High Affinity Through a Putative Ph Domain" (2007). Publicly Accessible Penn Dissertations. 1. https://repository.upenn.edu/edissertations/1 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1 For more information, please contact [email protected]. MYO1C Binds to PiP2 With High Affinity Through a Putative Ph Domain Abstract Myo1c is a member of the myosin superfamily that links the dynamic actin cytoskeleton to the membrane, and plays roles in mechano-signal transduction and membrane trafficking.e W located and characterized two distinct membrane binding sites within the regulatory and tail domains of this myosin. We found that the tail domain binds tightly and specifically ot PIP2 in a non-cooperative manner. It binds with slightly higher affinityo t Ins(1,4,5)P3 as well as other inositol phosphates which may act as inhibitors to membrane binding in the cell. By sequence and secondary structure analysis, we identified this phosphatidylinositol binding site in the tail to be a putative pleckstrin homology (PH) domain. Point mutations of residues known to be essential for phosphatidylinositol binding in previously characterized PH domains inhibit myo1c binding to PIP2 in vitro and eradicate correct localization and membrane binding in vivo. The extended sequence of this binding site is conserved within many other myosin-Is across species, suggesting they also contain a putative PH domain. We also characterized a previously identified membrane binding site within the IQ motifs in the regulatory domain. This region is not phosphatidylinositol specific, but binds anionic phospholipids in a Ca2+ dependent manner; nevertheless, this site is not essential for in vivo membrane binding. As a result, we have determined that myo1c contains two lipid binding sites, a polybasic region that binds to high levels of PS in a Ca2+ dependent manner and a putative PH domain that binds tightly and specifically ot phosphatidylinositols. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Biochemistry & Molecular Biophysics First Advisor E. Michael Ostap Subject Categories Medical Biochemistry This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/1 MYO1C BINDS TO PIP2 WITH HIGH AFFINITY THROUGH A PUTATIVE PH DOMAIN David Hokanson A DISSERTATION in Biochemistry and Molecular Biophysics Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2007 _______________________________ Dr. E. Michael Ostap Supervisor of Dissertation _______________________________ Dr. Josh Wand Graduate Group Chairperson ABSTRACT MYO1C BINDS TO PIP2 WITH HIGH AFFINITY THROUGH A PUTATIVE PH DOMAIN David Hokanson Dr. E. Michael Ostap Myo1c is a member of the myosin superfamily that links the dynamic actin cytoskeleton to the membrane, and plays roles in mechano-signal transduction and membrane trafficking. We located and characterized two distinct membrane binding sites within the regulatory and tail domains of this myosin. We found that the tail domain binds tightly and specifically to PIP2 in a non-cooperative manner. It binds with slightly higher affinity to Ins(1,4,5)P3 as well as other inositol phosphates which may act as inhibitors to membrane binding in the cell. By sequence and secondary structure analysis, we identified this phosphatidylinositol binding site in the tail to be a putative pleckstrin homology (PH) domain. Point mutations of residues known to be essential for phosphatidylinositol binding in previously characterized PH domains inhibit myo1c binding to PIP2 in vitro and eradicate correct localization and membrane binding in vivo. The extended sequence of this binding site is conserved within many other myosin-Is across species, suggesting they also contain a putative PH domain. We also characterized a previously identified membrane binding site within the IQ motifs in the regulatory domain. This region is not phosphatidylinositol specific, but binds anionic phospholipids in a Ca2+ dependent manner; nevertheless, this site is not essential for in vivo membrane binding. As a result, we have determined that myo1c contains two lipid binding sites, a polybasic region that binds to high levels of PS in a Ca2+ dependent manner and a putative PH domain that binds tightly and specifically to phosphatidylinositols. II Preface When I was looking for a graduate school, while finishing my undergrad degrees at Ohio University, I didn’t know what to expect. I was in complete disbelief after I took my GRE that schools were actually going to pay ME to go to school instead of the other way around. Initially, I selected just two schools to apply to based on the protein folding research that was being done by the faculty, and avoiding any of the pompous Ivy-league schools. I was fortunately unaware at the time that the University of Pennsylvania was, in fact, an Ivy-league school, or I would never have applied. My girlfriend at the time hid this from me, and for that I am grateful. When I discovered the truth a fortnight before my interview, I almost cancelled, but instead I reserved my prejudice and came anyway. I was shocked at how collaborative and non-cutthroat Penn was. It seemed to have all the success and prestige I envisioned an Ivy-league school to have, but was also laid back and friendly. My interview went well and I knew this was where I would end up for the next five to seven years of my life. Mercifully, it has only taken me five years to finish my thesis; although, I have never been in a hurry to leave Philly or Penn. The best decision I could have made was working for Dr. Mike Ostap. I was Mike’s first graduate student, yet it seemed as though he had mentored hundreds before me. I truly believe that much of my happiness here at Penn is due to having a great mentor and lab environment. For anyone that has watched the NBC show, “Scrubs”, Mike is my Dr. Cox. He picks on me constantly and never quite gives me that pat on the back I yearn for, but inspires me to work even harder to get it. To me, Mike is much more than just a brilliant boss who has all the III answers and is rarely wrong, he is a truly inspiring human being. I can’t think of a better man to look up to professionally. There are many people at Penn that I owe some part of my sanity to, including the faculty on my committee and in the PMI, fellow graduate students, and Ruth and Angie in the department offices. After my prelim, I was worried about picking such well-established faculty to serve on my thesis committee for fear that they would make my life hell. However, with each committee meeting I learned that their vast knowledge and expertise in my field were indispensable and made my work more forthright, not more grueling. Also, I’ve made some great friends here and without them, finishing graduate school would have been a much more menacing feat. Thank you fellow BMB students. The Ostap lab is smaller than most labs, and I think that was beneficial to me as a beginning graduate student. I would like to thank current and past members of the lab, in particular, Nanyung, Tianming, Joe, and Jennine. Nanyung was a postdoc when I started in the lab and played a hand in training me to do many of the things I now take for granted (I just wish some of her cloning magic wore off on me). Tianming, what isn’t there to say about Tianming. He is an invaluable member of the lab to me and everyone else. Never complaining, always willing to help, and an absolute master of what he does everyday. Thank you Tianming for constantly keeping the lab stocked with protein and helping in every way you can. Joe has given me the much needed comic relief I’ve needed to get through the frustrating days over the years. You’ve IV always been there to ask the stupid questions I’m too embarrassed to ask Mike. Jennine has been a very welcomed new addition to the lab. I’m thrilled there is someone to take over my project at least in part when I depart. I have enjoyed trying to play the role of a mentor and it is humanitarian of you to always laugh at my jokes. And lastly I would like to thank my family and extended family, my friends. Dad, you always said you would buy me a car if I followed in your footsteps and graduated from med school. Well, I’m graduating from the University of Pennsylvania School of Medicine, it’s a technicality I know, but I’ll take what I can get. Thank you for always believing in me and supporting me through undergrad and the rough times since. Liz, I’m so glad we are still as close as ever. Your support at the beginning and now has always meant so much to me. I am ecstatic that you are ecstatic for me. Oh and I guess thanks for the help with Illustrator too. Bryan, you’ve always been a great friend here at Penn: may we continue to brew great beer and times together for many years. And of course a big thank you to my beautiful girlfriend Sarah (Dorkface). I know I’m probably more difficult than you’ve ever imagined, but I hope it has been worth it for you because it certainly has been for me.
Recommended publications
  • Human Periprostatic Adipose Tissue: Secretome from Patients With
    CANCER GENOMICS & PROTEOMICS 16 : 29-58 (2019) doi:10.21873/cgp.20110 Human Periprostatic Adipose Tissue: Secretome from Patients With Prostate Cancer or Benign Prostate Hyperplasia PAULA ALEJANDRA SACCA 1, OSVALDO NÉSTOR MAZZA 2, CARLOS SCORTICATI 2, GONZALO VITAGLIANO 3, GABRIEL CASAS 4 and JUAN CARLOS CALVO 1,5 1Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina; 2Department of Urology, School of Medicine, University of Buenos Aires, Clínical Hospital “José de San Martín”, Buenos Aires, Argentina; 3Department of Urology, Deutsches Hospital, Buenos Aires, Argentina; 4Department of Pathology, Deutsches Hospital, Buenos Aires, Argentina; 5Department of Biological Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina Abstract. Background/Aim: Periprostatic adipose tissue Prostate cancer (PCa) is the second most common cancer in (PPAT) directs tumour behaviour. Microenvironment secretome men worldwide. While most men have indolent disease, provides information related to its biology. This study was which can be treated properly, the problem consists in performed to identify secreted proteins by PPAT, from both reliably distinguishing between indolent and aggressive prostate cancer and benign prostate hyperplasia (BPH) disease. Evidence shows that the microenvironment affects patients. Patients and Methods: Liquid chromatography-mass tumour behavior. spectrometry-based proteomic analysis was performed in Adipose tissue microenvironment is now known to direct PPAT-conditioned media (CM) from patients with prostate tumour growth, invasion and metastases (1, 2). Adipose cancer (CMs-T) (stage T3: CM-T3, stage T2: CM-T2) or tissue is adjacent to the prostate gland and the site of benign disease (CM-BPH). Results: The highest number and invasion of PCa.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Microrna Regulatory Pathways in the Control of the Actin–Myosin Cytoskeleton
    cells Review MicroRNA Regulatory Pathways in the Control of the Actin–Myosin Cytoskeleton , , Karen Uray * y , Evelin Major and Beata Lontay * y Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; [email protected] * Correspondence: [email protected] (K.U.); [email protected] (B.L.); Tel.: +36-52-412345 (K.U. & B.L.) The authors contributed equally to the manuscript. y Received: 11 June 2020; Accepted: 7 July 2020; Published: 9 July 2020 Abstract: MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin–myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin–myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin–myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis. Keywords: miRNA; actin; myosin; actin–myosin complex; Rho kinase; cancer; smooth muscle; hematopoiesis; stress fiber; gene expression; cardiovascular system; striated muscle; muscle cell differentiation; therapy 1. Introduction Actin–myosin interactions are the primary source of force generation in mammalian cells. Actin forms a cytoskeletal network and the myosin motor proteins pull actin filaments to produce contractile force. All eukaryotic cells contain an actin–myosin network inferring contractile properties to these cells.
    [Show full text]
  • Novel Myosin Mutations for Hereditary Hearing Loss Revealed by Targeted Genomic Capture and Massively Parallel Sequencing
    European Journal of Human Genetics (2014) 22, 768–775 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg ARTICLE Novel myosin mutations for hereditary hearing loss revealed by targeted genomic capture and massively parallel sequencing Zippora Brownstein1,6, Amal Abu-Rayyan2,6, Daphne Karfunkel-Doron1, Serena Sirigu3, Bella Davidov4, Mordechai Shohat1,4, Moshe Frydman1,5, Anne Houdusse3, Moien Kanaan2 and Karen B Avraham*,1 Hereditary hearing loss is genetically heterogeneous, with a large number of genes and mutations contributing to this sensory, often monogenic, disease. This number, as well as large size, precludes comprehensive genetic diagnosis of all known deafness genes. A combination of targeted genomic capture and massively parallel sequencing (MPS), also referred to as next-generation sequencing, was applied to determine the deafness-causing genes in hearing-impaired individuals from Israeli Jewish and Palestinian Arab families. Among the mutations detected, we identified nine novel mutations in the genes encoding myosin VI, myosin VIIA and myosin XVA, doubling the number of myosin mutations in the Middle East. Myosin VI mutations were identified in this population for the first time. Modeling of the mutations provided predicted mechanisms for the damage they inflict in the molecular motors, leading to impaired function and thus deafness. The myosin mutations span all regions of these molecular motors, leading to a wide range of hearing phenotypes, reinforcing the key role of this family of proteins in auditory function. This study demonstrates that multiple mutations responsible for hearing loss can be identified in a relatively straightforward manner by targeted-gene MPS technology and concludes that this is the optimal genetic diagnostic approach for identification of mutations responsible for hearing loss.
    [Show full text]
  • Genome-Wide Identification, Characterization and Expression
    G C A T T A C G G C A T genes Article Genome-Wide Identification, Characterization and Expression Profiling of myosin Family Genes in Sebastes schlegelii Chaofan Jin 1, Mengya Wang 1,2, Weihao Song 1 , Xiangfu Kong 1, Fengyan Zhang 1, Quanqi Zhang 1,2,3 and Yan He 1,2,* 1 MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; [email protected] (C.J.); [email protected] (M.W.); [email protected] (W.S.); [email protected] (X.K.); [email protected] (F.Z.); [email protected] (Q.Z.) 2 Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China 3 Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China * Correspondence: [email protected]; Tel.: +86-0532-82031986 Abstract: Myosins are important eukaryotic motor proteins that bind actin and utilize the energy of ATP hydrolysis to perform a broad range of functions such as muscle contraction, cell migration, cytokinesis, and intracellular trafficking. However, the characterization and function of myosin is poorly studied in teleost fish. In this study, we identified 60 myosin family genes in a marine teleost, black rockfish (Sebastes schlegelii), and further characterized their expression patterns. myosin showed divergent expression patterns in adult tissues, indicating they are involved in different types and Citation: Jin, C.; Wang, M.; Song, W.; compositions of muscle fibers. Among 12 subfamilies, S. schlegelii myo2 subfamily was significantly Kong, X.; Zhang, F.; Zhang, Q.; He, Y.
    [Show full text]
  • Role of the Microtubule-Associated Protein ATIP3 in Cell Migration and Breast Cancer Metastasis Angie Molina Delgado
    Role of the microtubule-associated protein ATIP3 in cell migration and breast cancer metastasis Angie Molina Delgado To cite this version: Angie Molina Delgado. Role of the microtubule-associated protein ATIP3 in cell migration and breast cancer metastasis. Molecular biology. Université René Descartes - Paris V, 2014. English. NNT : 2014PA05T022. tel-01068663 HAL Id: tel-01068663 https://tel.archives-ouvertes.fr/tel-01068663 Submitted on 26 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Paris Descartes Ecole doctorale BioSPC Thesis submitted towards fulfillment of the requirement for the degree of DOCTOR of Health & Life Sciences Specialized in Cellular and Molecular Biology Role of the microtubule-associated protein ATIP3 in cell migration and breast cancer metastasis By Angie Molina Delgado Under supervision of Dr. Clara Nahmias Thesis defense 3 September, 2014 Members of jury: Dr. Ali BADACHE Reviewer Dr. Laurence LAFANECHERE Reviewer Dr. Franck PEREZ Examiner Dr. Stéphane HONORE Examiner Dr. Clara NAHMIAS Thesis Director Table of Contents List of abbreviations ....................................................................................................................... 9 “Rôle de la protéine associée aux microtubules ATIP3 dans la migration cellulaire et la formation de métastases du cancer du sein” ................................................................................................ 11 I.
    [Show full text]
  • Histopathologic, Genetic and Molecular Characterization of Endometrial Cancer Racial Disparity
    cancers Review Histopathologic, Genetic and Molecular Characterization of Endometrial Cancer Racial Disparity Pouya Javadian 1,* , Christina Washington 1, Shylet Mukasa 2 and Doris Mangiaracina Benbrook 1,* 1 Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; [email protected] 2 Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA; [email protected] * Correspondence: [email protected] (P.J.); [email protected] (D.M.B.) Simple Summary: Black patients are diagnosed and die earlier of endometrial cancer in comparison with their White counterparts. Factors that have been implicated in this racial disparity, such as socioeconomic status, increased frequencies of more aggressive tumor histology, and comorbid conditions, do not account for all of the disparity. Molecular defects in the endometrial tumors likely also contribute to the more aggressive tumor biology and the patient disparities. In this study, we reviewed the published data of molecular characteristics of endometrial cancer in different races. The majority of the publications compare Black and White patients, and identify molecules and pathways that can be targeted with existing drugs. These findings encourage molecular profile studies comparing additional races and ethnicities, and development of race-specific treatments. Abstract: In contrast to the decline in incidence and mortality of most other cancers, these
    [Show full text]
  • Iaspp Contributes to Cortex Rigidity, Astral Microtubule Capture and Mitotic Spindle Positioning
    bioRxiv preprint doi: https://doi.org/10.1101/870998; this version posted December 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. iASPP contributes to cortex rigidity, astral microtubule capture and mitotic spindle positioning Aurélie Mangon1, Danièle Salaün1, Mohamed Lala Bouali1, Sabine Quitard1, Daniel Isnardon1, Stéphane Audebert1, Pierre‐Henri Puech2, Pascal Verdier‐Pinard1* & Ali Badache1* Abstract The microtubule plus‐end binding protein EB1 is the core of a complex protein network which regulates microtubule dynamics during important biological processes such as cell motility and mitosis. We found that iASPP, an inhibitor of p53 and predicted regulatory subunit of the PP1 phosphatase, associates with EB1 at microtubule plus‐ends via a SxIP motif. iASPP silencing or mutation of the SxIP motif led to defective microtubule capture at the leading edge of migrating cells, and at the cortex of mitotic cells leading to abnormal positioning of the mitotic spindle. These effects were recapitulated by the knockdown of Myosin‐Ic (Myo1c), identified as a novel partner of iASPP. Moreover, iASPP or Myo1c knockdown cells failed to round up during mitosis because of defective cortical rigidity. We propose that iASPP, together with EB1 and Myo1c, contributes to mitotic cell cortex rigidity, allowing astral microtubule capture and appropriate positioning of the mitotic spindle. 1 Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, Institut Paoli‐Calmettes, Aix‐ Marseille Univ, CNRS, 13009 Marseille, France.
    [Show full text]
  • Are MYO1C and MYO1F Associated with Hearing Loss?
    Biochimica et Biophysica Acta 1792 (2009) 27–32 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbadis Are MYO1C and MYO1F associated with hearing loss? Cristina Zadro a, Maria Stella Alemanno b, Emanuele Bellacchio c, Romina Ficarella d, Francesca Donaudy d, Salvatore Melchionda b, Leopoldo Zelante b, Raquel Rabionet e, Nele Hilgert f, Xavier Estivill e, Guy Van Camp f, Paolo Gasparini a,⁎, Massimo Carella b a Unit of Medical Genetics, Department of Reproductive Science and Development, Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”–Trieste, Italy b Unit of Medical Genetics, Instituto di Ricovero e Cura a Carattere Scientifico, Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy c CSS-Mendel Institute, Rome, Italy d Telethon Institute of Genetics and Medicine, 80131 Naples, Italy e Genes and Disease Program, Center for Genomic Regulation, Barcelona, Spain f Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium article info abstract Article history: The role of myosins in the pathogenesis of hearing loss is well established: five genes encoding Received 9 May 2008 unconventional myosins and two genes encoding nonmuscle conventional myosins have so far been Received in revised form 15 October 2008 described to be essential for normal auditory function and mutations in these genes associated with hearing Accepted 17 October 2008 impairment. To better understand the role of this gene family we performed a mutational screening on two Available online 5 November 2008 candidate genes, MYO1C and MYO1F, analyzing hundreds of patients, affected by bilateral sensorineural hearing loss and coming from different European countries.
    [Show full text]
  • Epigenetic Modifications to Cytosine and Alzheimer's Disease
    University of Kentucky UKnowledge Theses and Dissertations--Chemistry Chemistry 2017 EPIGENETIC MODIFICATIONS TO CYTOSINE AND ALZHEIMER’S DISEASE: A QUANTITATIVE ANALYSIS OF POST-MORTEM TISSUE Elizabeth M. Ellison University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/ETD.2017.398 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Ellison, Elizabeth M., "EPIGENETIC MODIFICATIONS TO CYTOSINE AND ALZHEIMER’S DISEASE: A QUANTITATIVE ANALYSIS OF POST-MORTEM TISSUE" (2017). Theses and Dissertations--Chemistry. 86. https://uknowledge.uky.edu/chemistry_etds/86 This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Engineered Type 1 Regulatory T Cells Designed for Clinical Use Kill Primary
    ARTICLE Acute Myeloid Leukemia Engineered type 1 regulatory T cells designed Ferrata Storti Foundation for clinical use kill primary pediatric acute myeloid leukemia cells Brandon Cieniewicz,1* Molly Javier Uyeda,1,2* Ping (Pauline) Chen,1 Ece Canan Sayitoglu,1 Jeffrey Mao-Hwa Liu,1 Grazia Andolfi,3 Katharine Greenthal,1 Alice Bertaina,1,4 Silvia Gregori,3 Rosa Bacchetta,1,4 Norman James Lacayo,1 Alma-Martina Cepika1,4# and Maria Grazia Roncarolo1,2,4# Haematologica 2021 Volume 106(10):2588-2597 1Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 2Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 3San Raffaele Telethon Institute for Gene Therapy, Milan, Italy and 4Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, CA, USA *BC and MJU contributed equally as co-first authors #AMC and MGR contributed equally as co-senior authors ABSTRACT ype 1 regulatory (Tr1) T cells induced by enforced expression of interleukin-10 (LV-10) are being developed as a novel treatment for Tchemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft-versus-host disease while mediating graft-versus-leukemia effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature.
    [Show full text]