Printed and Organic Diodes: Devices, Circuits and Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Flexible Solution-Processed Memristor
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE ELECTRON DEVICE LETTERS 1 A Flexible Solution-Processed Memristor Nadine Gergel-Hackett, Member, IEEE, Behrang Hamadani, Barbara Dunlap, John Suehle, Senior Member, IEEE, Curt Richter, Senior Member, IEEE, Christina Hacker, and David Gundlach, Member, IEEE Abstract—A rewriteable low-power operation nonvolatile physi- cally flexible memristor device is demonstrated. The active compo- nent of the device is inexpensively fabricated at room temperature by spinning a TiO2 sol gel on a commercially available polymer sheet. The device exhibits memory behavior consistent with a memristor, demonstrates an on/off ratio greater than 10 000 : 1, is nonvolatile for over 1.2 × 106 s, requires less than 10 V, and is still operational after being physically flexed more than 4000 times. Index Terms—Flexible electronics, flexible memory, memristor, sol gel, titanium dioxide. I. INTRODUCTION E HAVE fabricated a physically flexible solution- W processed device that exhibits electrical behavior con- Fig. 1. Flexible polymer sheet patterned with four rewriteable nonvolatile sistent with that of a memristor, a memory device recently flexible TiO2 sol gel memory devices with cross-bar aluminum contacts. The experimentally demonstrated and proposed to be the miss- inset is a side view cartoon of the flexible TiO2 device structure. ing fourth basic circuit element [1], [2]. Although electrical make our flexible memristor device a prime candidate for use switching behavior has been observed from organic mono- in inexpensive flexible lightweight portable electronics, such as layers and metal oxides from as early 1968 [3]–[11], the disposable sensors [13]–[17]. -
Ohmic Contacts for Organic Optoelectronic Devices
Ohmic contacts for organic optoelectronic devices Zur Erlangung des akademischen Grades eines DOKTOR-INGENIEURS (Dr.-Ing.) von der KIT-Fakultät für Elektrotechnik und Informationstechnik des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION Von Naresh Kotadiya geb. In: Gujarat, Indien Tag der mündlichen Prüfung: 31.01.2020 Hauptreferent: Prof. Dr. Uli Lemmer Korreferent: Prof. Dr. Paul W. M. Blom Hauptreferent: Prof. Dr. Uli Lemmer LTI, KIT, Karlsruhe, Germany Korreferent: Prof. Dr. Paul W. M. Blom Max Planck Institut für Polymerforschung und Johannes Gutenberg Universität, Mainz Vorsitzender: Prof. Dr.-Ing. Sebastian Randel IPQ, KIT, Karlsruhe, Germany Weiterer Prüfer: Prof. Dr. rer. nat. Olaf Dössel IBT, KIT, Karlsruhe, Germany Weitere Prüferin: Prof. Dr. Tabea Arndt ITEP, KIT, Karlsruhe, Germany . To, Bhagwan Swaminarayan and my Gurus for inspiring my dreams and blessing me. In the joy of others, lies our own by H.D.H. Pramukh Swami Maharaj. Abstract In last three decades, great progress has been made in the field of organic electronics. Researchers have put tremendous efforts to make new materials and device architec- tures, which has resulted in a great commercial success of organic light emitting diodes in mobile phone and television display screens. Despite that, still today it is challenging to make organic electronic devices that are efficient in performance, stable in operation and are economical in production at the same time. The objective of this thesis is to understand fundamental charge transport properties of small molecules based organic semiconductors and to develop novel organic electronic device architectures. One of the prime requirements for efficient organic optoelectronic devices is to have ohmic charge injection contacts. -
Amorphous Metal Oxide Semiconductor Thin Film Transistors for Printed Electronics
New Jersey Institute of Technology Digital Commons @ NJIT Theses Electronic Theses and Dissertations Fall 12-31-2018 Amorphous metal oxide semiconductor thin film transistors for printed electronics Mustafa Mohammad Yousef New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/theses Part of the Electrical and Electronics Commons Recommended Citation Yousef, Mustafa Mohammad, "Amorphous metal oxide semiconductor thin film transistors for printed electronics" (2018). Theses. 1637. https://digitalcommons.njit.edu/theses/1637 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept -
Organic Solar Cell
A MILESTONE IN SOLAR CELLS: ORGANIC SOLAR CELL Prashant Vats1, Prashant Kumar Tayal2, Neeru Goyal3, Rajesh Bhargava4 1,2,4Faculty, Department of Electrical Engineering, L.I.E.T., ALWAR (Raj), (India) 3Faculty, Department of Electrical Engineering, Govt. Polytecnic College, ALWAR (Raj), (India) ABSTRACT Organic solar cells are mostly flexible and lightweight—a good solution to low cost energy production, which can have a manufacturing advantages over inorganic solar cell materials. An organic solar cell uses organic electronics, which deals with conducting polymers or small organic molecules. In 1959, Kallamann and Pope reported a photovoltaic effect in a single crystal of anthracene which was sandwiched between two similar electrodes and illuminated from one side. But they could not explain the phenomenon completely Keywords : Organic Electronics, Photovoltaic Effect, Illuminated etc. I. INTRODUCTION The first organic solar cell was reported by Tang in 1986, with a power conversion efficiency of 1 per -cent (Tang etal.). The simple working principle for photovoltaic devices is that of ‘light in and current out’ which can be analyzed by seven processes: photon absorption, excitation formation and migration, exciton dissociation, charge transport and charge collection at the electrode. The structure of an organic solar cell is very simple. A setup with one photoactive material and electrodes constructed at top and bottom can show a photovoltaic current. In Figure 1, the organic solar cell consists of a photoactive layer composed of two different materials: donor and acceptor. Here the conducting glass acts as an anode and the metal acts as a cathode. The donor and acceptor material has two energy levels one is the Highest Occupied Molecular Orbital (HOMO) and the other is the Lowest Unoccupied Molecular Orbital (LUMO) and the energy gap between these two layers is the band gap. -
Printed Electronics Inks and Coatings Introduction
PRINTED ELECTRONICS INKS AND COATINGS INTRODUCTION Countless devices rely on printed electronic technologies • Antennas for contactless SmartCards and RFID labels for function, form and flexibility. One of the most efficient • Touch screens production methods, printed electronics, allows for high- • Lighting volume, high-throughput, cost-effective manufacturing for • Printed circuit boards and potentiometers many of the products we rely on every day. Henkel is a leader • Household appliances in specialized and cross-functional ink formulations for Like most things in electronics, the majority of applications printed electronics and its line of LOCTITE® brand electronic that incorporate printed electronics are getting finer in inks has been enabling leading-edge printed electronics for dimension and more complex in functionality. Henkel’s well over three decades. ability to formulate inks that address the demands of fine- line printing, while maintaining robust conductive and other With a broad portfolio of silver, carbon, dielectric and functional properties, sets us apart from the competition, and clear conductive inks, Henkel is making today’s medical has led to technology leadership within our comprehensive solutions, in-home conveniences, handheld connectivity and portfolio of inks for printed electronics. automotive advances reliable and effective. Our inks serve multiple markets including consumer, displays, medical and automotive and RFID. They are also used in the manufacture of: • Flexible circuits for membrane touch switches -
ORGANIC ELECTRONICS Materials, Physics, Chemistry and Applications
ORGANIC ELECTRONICS Materials, Physics, Chemistry and Applications AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.1 • Impact Factor p.1 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.4 ISSN: 1566-1199 DESCRIPTION . Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic and hybrid organic-inorganic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic and hybrid organic-inorganic semiconductors, thin film structures and characterization in the context of materials processing, charge and exciton transport, and electronic and optoelectronic devices. Organic Electronics provides the forum for applied, fundamental and interdisciplinary contributions spanning the wide range of electronic properties and applications of organic and hybrid organic- inorganic materials. A Letters section is included for rapid publication of short articles announcing significant and highly original results. Keywords: organic electronics, light-emitting diodes, solar cells, thin film transistors, sensors, memories, organic semiconductors, hybrid organic-inorganic semiconductors, halide perovskites, colloidal quantum dots, optoelectronics, charge transport. Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services. Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center AUDIENCE . Applied physicists, Materials scientists IMPACT FACTOR . 2020: 3.721 © Clarivate Analytics Journal Citation Reports 2021 AUTHOR INFORMATION PACK 23 Sep 2021 www.elsevier.com/locate/orgel 1 ABSTRACTING AND INDEXING . -
Development of Digital Application Specific Printed Electronics Circuits: from Specification to Final Prototypes
View metadata,This is the citation author's and version similar of an papers article atthat core.ac.uk has been published in the Journal of Display Technology. Changes were made to this version by the publisherbrought to youprior by to CORE publication. The final version of record is available at http://dx.doi.org/10.1109/JDT.2015.2404974 provided by Diposit Digital de Documents de la UAB Development of Digital Application Specific Printed Electronics Circuits: From Specification to Final Prototypes Manuel Llamas, Mohammad Mashayekhi, Ana Jofre Pallarès, Francesc Vila, Adrià Conde and Lluís Alcalde and Jordi Carrabina Terés CAIAC Group ICAS Group Universitat Autònoma de Barcelona IMB-CNM (CSIC) Campus UAB, Bellaterra 08193, Spain Campus UAB, Bellaterra 08193, Spain E-mail: [email protected] E-mail: [email protected] Abstract— This paper presents a global proposal and characterized cell libraries allow a high degree of automation, methodology for developing digital Printed Electronics (PE) increase design productivity and helps bridging the gap prototypes, circuits and Application Specific Printed Electronics between applications and technology. Circuits (ASPECs). We start from a circuit specification using standard Hardware Description Languages (HDL) and executing Our ASPEC (Application Specific Printed Electronics its functional simulation. Then we perform logic synthesis that Circuits) approach is intended to reuse the ASIC models used includes logic gate minimization by applying state-of-the-art in industry in terms of designs flows and towards industrial algorithms embedded in our proposed Electronic Design manufacturing foundries. This methodology applied to digital Automation (EDA) tools to minimize the number of transistors is complementary to the use of existing design methodologies required to implement the circuit. -
Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: a Review Saleem Khan, Leandro Lorenzelli, Member, IEEE, and Ravinder S
3164 IEEE SENSORS JOURNAL, VOL. 15, NO. 6, JUNE 2015 Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review Saleem Khan, Leandro Lorenzelli, Member, IEEE, and Ravinder S. Dahiya, Senior Member, IEEE Abstract— Printing sensors and electronics over flexible substrates are an area of significant interest due to low-cost fab- rication and possibility of obtaining multifunctional electronics over large areas. Over the years, a number of printing technolo- gies have been developed to pattern a wide range of electronic materials on diverse substrates. As further expansion of printed technologies is expected in future for sensors and electronics, it is opportune to review the common features, the complementarities, and the challenges associated with various printing technologies. This paper presents a comprehensive review of various printing technologies, commonly used substrates and electronic materials. Various solution/dry printing and contact/noncontact printing technologies have been assessed on the basis of technological, materials, and process-related developments in the field. Fig. 1. The classification of common printing technologies. Critical challenges in various printing techniques and potential research directions have been highlighted. Possibilities of merging various printing methodologies have been explored to extend are difficult to realize with the conventional wafer-based the lab developed standalone systems to high-speed roll-to-roll fabrication techniques. The printed electronics on flexible production lines for system level integration. substrates will enable conformable sensitive electronic systems Index Terms— Printed sensors, printed electronics, flexible such as electronic skin that can be wrapped around the body electronics, large area electronics, roll-to-roll, dispersion solution. of a robot or prosthetic hands [20]–[25]. -
Controlling Nanostructure in Inkjet Printed Organic Transistors for Pressure Sensing Applications
nanomaterials Article Controlling Nanostructure in Inkjet Printed Organic Transistors for Pressure Sensing Applications Matthew J. Griffith 1,2,* , Nathan A. Cooling 1, Daniel C. Elkington 1, Michael Wasson 1 , Xiaojing Zhou 1, Warwick J. Belcher 1 and Paul C. Dastoor 1 1 Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; [email protected] (N.A.C.); [email protected] (D.C.E.); [email protected] (M.W.); [email protected] (X.Z.); [email protected] (W.J.B.); [email protected] (P.C.D.) 2 School of Aeronautical, Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, NSW 2006, Australia * Correspondence: matthew.griffi[email protected] Abstract: This work reports the development of a highly sensitive pressure detector prepared by inkjet printing of electroactive organic semiconducting materials. The pressure sensing is achieved by incorporating a quantum tunnelling composite material composed of graphite nanoparticles in a rubber matrix into the multilayer nanostructure of a printed organic thin film transistor. This printed device was able to convert shock wave inputs rapidly and reproducibly into an inherently amplified electronic output signal. Variation of the organic ink material, solvents, and printing speeds were shown to modulate the multilayer nanostructure of the organic semiconducting and dielectric layers, enabling tuneable optimisation of the transistor response. The optimised printed device exhibits Citation: Griffith, M.J.; Cooling, rapid switching from a non-conductive to a conductive state upon application of low pressures whilst N.A.; Elkington, D.C.; Wasson, M.; operating at very low source-drain voltages (0–5 V), a feature that is often required in applications Zhou, X.; Belcher, W.J.; Dastoor, P.C. -
Flexible and Printed Electronics February 2021
1. February 2021 Advanced Technologies – for Industry Product Watch Flexible and printed electronics Product Watch Report - European Commission This report was prepared by Chiel Scholten, Kincsö Izsak and Maialen Perez from Technopolis Group. The authors would like to thank the interviewees for their valuable comments and inputs. EUROPEAN COMMISSION Executive Agency for Small and Medium-sized Enterprises (EASME) Unit A.1.2 — COSME E-mail: [email protected] Directorate General for Internal Market, Industry, Entrepreneurship and SMEs Unit D.2 — Industrial forum, alliances, clusters E-mail: [email protected] European Commission B-1049 Brussels LEGAL NOTICE The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of EASME or of the Commission. Neither EASME, nor the Commission can guarantee the accuracy of the data included in this study. Neither EASME, nor the Commission or any person acting on their behalf may be held responsible for the use, which may be made of the information contained therein. More information on the European Union is available on the Internet (http://www.europa.eu). PDF ISBN 978-92-9460-556-6 doi:10.2826/295137 EA-02-21-327-EN-N © European Union, 2021 February 2021 Product Watch Report - European Commission Table of contents Section 1 ............................................................................................................................... 4 1. Background and objectives of the report .................................................................... -
Current-Voltage Characteristics of Organic
CURRENT-VOLTAGE CHARACTERISTICS OF ORGANIC SEMICONDUCTORS: INTERFACIAL CONTROL BETWEEN ORGANIC LAYERS AND ELECTRODES A Thesis Presented to The Academic Faculty by Takeshi Kondo In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry and Biochemistry Georgia Institute of Technology August, 2007 Copyright © Takeshi Kondo 2007 CURRENT-VOLTAGE CHARACTERISTICS OF ORGANIC SEMICONDUCTORS: INTERFACIAL CONTROL BETWEEN ORGANIC LAYERS AND ELECTRODES Approved by: Dr. Seth R. Marder, Advisor Dr. Joseph W. Perry School of Chemistry and Biochemistry School of Chemistry and Biochemistry Georgia Institute of Technology Georgia Institute of Technology Dr. Bernard Kippelen, Co-Advisor Dr. Mohan Srinivasarao School of Electrical and Computer School of Textile and Fiber Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Jean-Luc Brédas School of Chemistry and Biochemistry Georgia Institute of Technology Date Approved: June 12, 2007 To Chifumi, Ayame, Suzuna, and Lintec Corporation ACKNOWLEDGEMENTS I wish to thank Prof. Seth R. Marder for all his guidance and support as my adviser. I am also grateful to Prof. Bernard Kippelen for serving as my co-adviser. Since I worked with them, I have been very fortunate to learn tremendous things from them. Seth’s enthusiasm about and dedication to science and education have greatly influenced me. It is always a pleasure to talk with Seth on various aspects of chemistry and life. Bernard’s encouragement and scientific advice have always been important to organize my research. I have been fortunate to learn from his creative and logical thinking. I must acknowledge all the current and past members of Prof. -
An Effective Bulk-Surface Thermistor Model for Large-Area Organic Light-Emitting Diodes
Weierstraß-Institut f ¨urAngewandte Analysis und Stochastik Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN 2198-5855 An effective bulk-surface thermistor model for large-area organic light-emitting diodes Annegret Glitzky,Matthias Liero, Grigor Nika submitted: September 7, 2020 Weierstrass Institute Mohrenstr. 39 10117 Berlin Germany E-Mail: [email protected] [email protected] [email protected] No. 2757 Berlin 2020 2010 Mathematics Subject Classification. 35Q79, 35J25, 80A20. Key words and phrases. Dimension reduced thermistor system, existence of weak solutions, entropy solutions, organic light emitting diode, self-heating. The authors gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689) in project AA2-1. Edited by Weierstraß-Institut fur¨ Angewandte Analysis und Stochastik (WIAS) Leibniz-Institut im Forschungsverbund Berlin e. V. Mohrenstraße 39 10117 Berlin Germany Fax: +49 30 20372-303 E-Mail: [email protected] World Wide Web: http://www.wias-berlin.de/ An effective bulk-surface thermistor model for large-area organic light-emitting diodes Annegret Glitzky,Matthias Liero, Grigor Nika Abstract The existence of a weak solution for an effective system of partial differential equations describing the electrothermal behavior of large-area organic light-emitting diodes (OLEDs) is proved. The effective system consists of the heat equation in the three-dimensional bulk glass substrate and two semi-linear equations for the current flow through the electrodes coupled to algebraic equations for the continuity of the electrical fluxes through the organic layers.