The Infrared Compactness-Temperature Relation for Quiescent and Starburst Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

The Infrared Compactness-Temperature Relation for Quiescent and Starburst Galaxies A&A 462, 81–91 (2007) Astronomy DOI: 10.1051/0004-6361:20053881 & c ESO 2007 Astrophysics The infrared compactness-temperature relation for quiescent and starburst galaxies P. Chanial 1,H.Flores2, B. Guiderdoni3,D.Elbaz5,F.Hammer2, and L. Vigroux4,5 1 Astrophysics Group, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2AZ, UK e-mail: [email protected] 2 Laboratoire Galaxies, Etoiles, Physique et Instrumentation, Observatoire de Paris, 5 place Jules Janssen, 92195 Meudon, France 3 Centre de Recherche Astronomique de Lyon, Université Lyon 1, 9 avenue Charles André, 69230 Saint-Genis Laval, France; CNRS, UMR 5574; École Normale Supérieure de Lyon, Lyon, France 4 Institut d’Astrophysique de Paris, 98bis boulevard Arago, 75014 Paris, France; CNRS, UMR 7095; Université Pierre & Marie Curie, Paris, France 5 Service d’Astrophysique, DAPNIA, DSM, CEA-Saclay, Orme des Merisiers, Bât. 709, 91191 Gif-sur-Yvette, France Received 22 July 2005 / Accepted 6 October 2006 ABSTRACT Context. IRAS observations show the existence of a correlation between the infrared luminosity LIR and dust temperature Td in star-forming galaxies, in which larger LIR leads to higher dust temperature. The LIR–Td relation is commonly seen as reflecting the increase in dust temperature in galaxies with higher star formation rate (SFR). Even though the correlation shows a significant amount of dispersion, a unique relation has been commonly used to construct spectral energy distributions (SEDs) of galaxies in distant universe studies, such as source number counting or photometric redshift determination. Aims. In this work, we introduce a new parameter, namely the size of the star-forming region rIR and lay out the empirical and modelled relation between the global parameters LIR, Td and rIR of IR-bright non-AGN galaxies. Methods. IRAS 60-to-100 µm color is used as a proxy for the dust temperature and the 1.4 GHz radio contiuum (RC) emission for the infrared spatial distribution. The analysis has been carried out on two samples. The first one is made of the galaxies from the 60 µm flux-limited IRAS Revised Bright Galaxy Samples (RBGS) which have a reliable RC size estimate from the VLA follow-ups of the IRAS Bright Galaxy Samples. The second is made of the sources from the 170 µm ISOPHOT Serendipity Sky Survey (ISOSSS) which are resolved by the NRAO VLA Sky Survey (NVSS) or by the Faint Images of the Radio Sky at Twenty-cm survey (FIRST). Results. We show that the dispersion in the LIR–Td diagram can be reduced to a relation between the infrared surface brightness and the dust temperature, a relation that spans 5 orders of magnitude in surface brightness. Conclusions. We explored the physical processes giving rise to the ΣIR–Td relation, and show that it can be derived from the Schmidt law, which relates the star formation rate to the gas surface density. Key words. galaxies: fundamental parameters – galaxies: starburst – infrared: galaxies – radio continuum: galaxies 1. Introduction 12 µm IRAS flux densities to estimate the compactness of op- tically bright galaxies. He showed that the ratio between the The sky survey by the IRAS satellite (Neugebauer et al. 1984) small-beam and large-beam flux densities is correlated with the led to the discovery of strong connections between global pa- global IRAS 12-to-25 µm flux density ratio which also traces rameters of galaxies in the local universe. Among them, the 60- the dust temperature. The main limitation of this work is the use µ / to-100 m flux density ratio R(60 100) versus LIR IRAS diagram of a rough compactness estimator that can not be easily related (Soifer et al. 1987) exhibits a large dispersion. The quantities to physical parameters and thus no concluding relationship was / LIR and R(60 100) of quiescent and starburst galaxies are funda- derived. mental parameters for the study of star formation. The first one Other similar attempts showed that the optical surface bright- represents the energy absorbed and reprocessed by dust and is ness (Phillips & Disney 1988) and the infrared surface brightness related to the star formation rate. The second parameter traces derived from Hα effective area (Lehnert & Heckman 1996) of IR the dust temperature Td and also provides an estimate of the star bright galaxies increase with R(60/100). However, the quanti- ffi formation e ciency as defined by the SFR per unit of gas mass tative understanding of these correlations is not straightforward (Young et al. 1986; Chini et al. 1992). because the optical surface brightness results from stars that may The first attempts to relate the infrared surface brightness not be related to the dust emission and because in the second (which we also refer to as infrared compactness) to the dust tem- study, in addition to the small size of the sample (32 galaxies), perature were hampered by the lack of sufficient infrared spa- the authors used Hα maps to estimate the star-forming region tial resolution. Devereux (1987) used ground-based small-beam size without applying an extinction correction which turns out to observations at 10 µm and compared them to the large-beam be crucial (Chanial et al., in prep.). Wang & Helou (1992) made use of the extinction-free Tables 4 and 5 are only available in electronic form at 1.4 GHz radio continuum (RC) size estimators to show that the http://www.aanda.org infrared luminosity is not proportional to the galaxy physical Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20053881 82 P. Chanial et al.: The infrared compactness-temperature relation... area. They also showed an empirical relation between the mean RC surface brightness ΣRC and luminosity LRC, but they did not consider the IR color variations within their sample which, as we will show in this article, is directly related to the scatter in the ΣRC–LRC relation. More recently, Roussel et al. (2001) studied a sample of galaxies mapped by the ISOCAM camera on board ISO (Cesarsky et al. 1996) and found a correlation between the 15- to-7 µm flux density ratio and the 15 µmeffective surface bright- ness. Their sample only consists of quiescent spirals of mod- erate infrared luminosities and the authors only considered the circumnuclear region. In this paper, we extend these approaches by (1) studying statistically larger samples, (2) applying a flux-limited selec- tion criterion at 60 µm, (3) considering fundamental parameters representative of the whole galaxy, and (4) using an extinction- independent estimator of the star-forming region size, the radio continuum angular size. Section 2 describes the global parameters used in this pa- β = . per and Sect. 3 presents the galaxy samples that are used in Fig. 1. Temperature of the modified blackbodies ( 1 3) fitted to the 60 and 100 µm IRAS flux densities (abscissæ) and to additional Sects. 4 and 5 for the analysis of the luminosity-temperature far-infrared and submillimeter observations (ordinates). The SLUGS and compactness-temperature relations. The latter is modelled 450 µm subsample and the SINGS subsample are represented with in Sect. 6 and discussed in Sect. 7. filled and open circles. The dashed line is the unity line and the average uncertainties are shown in the upper left corner. 2. Parameter definitions and estimations this model cannot be ruled out, and instead favoured the anal- 2.1. The dust temperature ysis of the two-component model which offers one additional The temperature of the dust in a given galaxy is subject to spatial free parameter. By excluding galaxies with an active galactic nu- variations (Dale et al. 1999) that show a decrease from the center cleus (AGN) from their 450 µm sample and by taking the flux outwards. So, the attempt to describe the global thermal emis- densities tabulated in their article, we found a similar value of sion of the dust with one or two modified blackbodies may be β = 1.38 with a sample standard deviation of 0.17. Since only 2 χ2 > questioned. However, submillimeter observations at 450 µmand out of 25 galaxies have a reduced r 2, the single-temperature 850 µm (Dunne et al. 2000; Dunne & Eales 2001; Vlahakis et al. model provides a reasonable fit in most cases and we adopted 2005) have shown that the global emission at these wavelengths, the fiducial value β = 1.3inthispaper. which trace cold dust, does correlate with the global R(60/100), The next step is to check that it is possible to easily associate which traces warmer dust. This finding suggests that inner and an estimator to the previously defined effective dust tempera- outer emissions may be bound together. Such a property would ture, the estimator of choice being the color R(60/100) due to likely be the manifestation of the star formation regulation oc- its matchless availability in the local universe. We have already curring on a global scale, as it appears in the Schmidt law (1959) noted that the R(60/100) parameter can characterize to some ex- or in relations which involve the galaxy rotation curve such as tent the whole infrared SED of normal and starburst galaxies, the Toomre’s stability criterion (1964) and the law by Kennicutt but its precision still has to be determined. For two sets of non- (1998). AGN galaxies described in Tables 1 and 2, we compared the The often used two-component model does not reflect the effective dust temperatures exclusively derived from the 60 and fact that a single free parameter such as R(60/100) suffices to de- 100 µm IRAS flux densities to the temperatures that are derived scribe the SEDs of galaxies whose infrared emission arises from from additional far-infrared (FIR) and submillimeter observa- star formation (Dale et al.
Recommended publications
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • Appendix A: the HRS+ Members
    Appendix A: The HRS+ Members 207 Table A.1: The general properties of galaxies comprising the HRS+ sample. Each column contains: (1) the HRS+ identification 208 number; (2) an alternative name taken from either the New General Catalogue (NGC; Dreyer, 1888), the Catalogue of Galaxies and Clusters of Galaxies (CGCG; Zwicky et al., 1961), Uppsala General Catalogue (UGC; Nilson, 1973), the Virgo Cluster Catalogue (VCC; Binggeli et al., 1985), and the Index Catalogue (IC; Dreyer, 1908); (3) J2000 right ascension, from NED; (4) J2000 declination, from NED; (5) distance; (6) the morphological classification from NED; (7) total 2MASS K band magnitude −2 (Skrutskie et al., 2006); (8) the optical isophotal distance D25 (25 mag arcsec ); (9) the heliocentric radial velocity from NED; (10) the cluster or cloud membership; and (11) the galactic extinction Schlegel et al., 1998. ◦ ′ ′′ −1 HRS+ Alt.Name R.A.(hms) Dec.( ) D (Mpc) Type KStot D25 (′) V (km s ) Member AB (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 1 CGCG 123-035 10 17 39.66 +22 48 35.9 15.7 Pec 11.59 1.00 1175 Leo Cl. 0.13 2 UGC 5588 10 20 57.13 +25 21 53.4 17.2 S? 11.03 0.52 1291 Leo Cl. 0.10 3 NGC 3226 10 23 27.01 +19 53 54.7 15.3 E2:pec;LINER;Sy3 8.57 3.16 1169 Leo Cl. 0.10 4 NGC 3227 10 23 30.58 +19 51 54.2 15.4 SAB(s)pec;Sy1.5 7.64 5.37 1148 Leo Cl.
    [Show full text]
  • A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
    TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques.
    [Show full text]
  • Torques and Angular Momentum: Counter-Rotation in Galaxies and Ring Galaxies
    MNRAS 000, 000{000 (2016) Preprint 9 July 2018 Compiled using MNRAS LATEX style file v3.0 Torques and angular momentum: Counter-rotation in galaxies and ring galaxies N. G. Kantharia1? 1 National Centre for Radio Astrophysics, TIFR, Post Bag 3, Ganeshkhind, Pune-411007, India Last updated; in original form ABSTRACT We present an alternate origin scenario to explain the observed phenomena of (1) counter-rotation between different galaxy components and (2) the formation of ring galaxies. We suggest that these are direct consequences of the galaxy being acted upon by a torque which causes a change in its primordial spin angular momentum first observed as changes in the gas kinematics or distribution. We suggest that this torque is exerted by the gravitational force between nearby galaxies. This origin requires the presence of at least one companion galaxy in the vicinity - we find a companion galaxy within 750 kpc for 51/57 counter-rotating galaxies and literature indicates that all ring galaxies have a companion galaxy thus giving observable credence to this origin. Moreover in these 51 galaxies, we find a kinematic offset between stellar and gas heliocentric velocities > 50 kms−1 for several galaxies if the separation between the galaxies < 100 kpc. This, we suggest, indicates a change in the orbital angular momentum of the torqued galaxies. A major difference between the torque origin suggested here and the existing model of gas accretion/galaxy collision, generally used to explain the above two phenomena, is that the torque acts on the matter of the same galaxy whereas in the latter case gas, with different properties, is brought in from outside.
    [Show full text]
  • Lopsided Spiral Galaxies: Evidence for Gas Accretion
    A&A 438, 507–520 (2005) Astronomy DOI: 10.1051/0004-6361:20052631 & c ESO 2005 Astrophysics Lopsided spiral galaxies: evidence for gas accretion F. Bournaud1, F. Combes1,C.J.Jog2, and I. Puerari3 1 Observatoire de Paris, LERMA, 61 Av. de l’Observatoire, 75014 Paris, France e-mail: [email protected] 2 Department of Physics, Indian Institute of Science, Bangalore 560012, India 3 Instituto Nacional de Astrofísica, Optica y Electrónica, Calle Luis Enrique Erro 1, 72840 Tonantzintla, Puebla, Mexico Received 3 January 2005 / Accepted 15 March 2005 Abstract. We quantify the degree of lopsidedness for a sample of 149 galaxies observed in the near-infrared from the OSUBGS sample, and try to explain the physical origin of the observed disk lopsidedness. We confirm previous studies, but for a larger sample, that a large fraction of galaxies have significant lopsidedness in their stellar disks, measured as the Fourier amplitude of the m = 1 component normalised to the average or m = 0 component in the surface density. Late-type galaxies are found to be more lopsided, while the presence of m = 2 spiral arms and bars is correlated with disk lopsidedness. We also show that the m = 1 amplitude is uncorrelated with the presence of companions. Numerical simulations were carried out to study the generation of m = 1viadifferent processes: galaxy tidal encounters, galaxy mergers, and external gas accretion with subsequent star formation. These simulations show that galaxy interactions and mergers can trigger strong lopsidedness, but do not explain several independent statistical properties of observed galaxies. To explain all the observational results, it is required that a large fraction of lopsidedness results from cosmological accretion of gas on galactic disks, which can create strongly lopsided disks when this accretion is asymmetrical enough.
    [Show full text]
  • ISOCAM Observations of Normal Star-Forming Galaxies: the Key Project Sample’
    ISOCAM Observations of Normal Star-Forming Galaxies: The Key Project Sample’ D.A. Dale,2 N.A. Silbermann,2 G. Heloq2 E. Valjaveq2 S. Malhotra,2 C.A. Beichman,2 J. Brauher,2 A. Contursi,2H. Diner~tein,~D. H~llenbach,~D. Hunter,s S. Kolhatkar,2 K.Y. LO,^ S. Lord,2 N.Y. Lu,~R. Rubiq4 G. Stacey,? H. Thronson, Jr.,’ M. Werner,g H. Corwin2 ABSTRACT We present mid-infrared maps and preliminary analysis for 61 galaxies observed with the Infrared Space Observatory. Many of the general features of galaxies observed at optical wavelengths-spiral arms, disks, rings, and bright knots of emission-are also seen in the mid-infrared, except the prominent optical bulges are absent at 6.75 and 15 pm. In addition, the maps are quite similar at 6.75 and 15 pm, except for a few cases where a central starburst leads to lower !dS3~4ratios in the inner region. kVe also present infrared flux densities and mid-infrared sizes for these galasies. The mid-infrared color Iu(6.Zpm) Iu(l.5pm) shows a distincttrend with the far-infrared color m.The quiescent galasies in our sample 1, (60~)g 0.6) show unity,near ( I,( 1OOpm) whereas this ratio drops significantly for galaxies with higher global heating intensity levels. Azimuthally-averaged surface brightness profiles indicate the extent to which the mid-infrared flux is centrally concerltratecl, a,rltl provide information on the radial dependence of mid-infrared colors. The galaxies are mostly well resolved in these maps: almost half of them have < 10% of their flux in the central resolution element.
    [Show full text]
  • Dust and CO Emission Towards the Centers of Normal Galaxies, Starburst Galaxies and Active Galactic Nuclei, I
    A&A 462, 575–579 (2007) Astronomy DOI: 10.1051/0004-6361:20047017 & c ESO 2007 Astrophysics Dust and CO emission towards the centers of normal galaxies, starburst galaxies and active galactic nuclei, I. New data and updated catalogue M. Albrecht1,E.Krügel2, and R. Chini3 1 Instituto de Astronomía, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile e-mail: [email protected] 2 Max-Planck-Institut für Radioastronomie (MPIfR), Auf dem Hügel 69, 53121 Bonn, Germany 3 Astronomisches Institut der Ruhr-Universität Bochum (AIRUB), Universitätsstr. 150 NA7, 44780 Bochum, Germany Received 6 January 2004 / Accepted 27 October 2006 ABSTRACT Aims. The amount of interstellar matter in a galaxy determines its evolution, star formation rate and the activity phenomena in the nucleus. We therefore aimed at obtaining a data base of the 12CO line and thermal dust emission within equal beamsizes for galaxies in a variety of activity stages. Methods. We have conducted a search for the 12CO (1–0) and (2–1) transitions and the continuum emission at 1300 µmtowardsthe centers of 88 galaxies using the IRAM 30 m telescope (MRT) and the Swedish ESO Submillimeter Telescope (SEST). The galaxies > are selected to be bright in the far infrared (S 100 µm ∼ 9 Jy) and optically fairly compact (D25 ≤ 180 ). We have applied optical spectroscopy and IRAS colours to group the galaxies of the entire sample according to their stage of activity into three sub-samples: normal, starburst and active galactic nuclei (AGN). The continuum emission has been corrected for line contamination and synchrotron contribution to retrieve the thermal dust emission.
    [Show full text]
  • Studying Late-Type Spiral Galaxies Using SDSS Pohlen, M.; Trujillo, I
    University of Groningen The structure of galactic disks - Studying late-type spiral galaxies using SDSS Pohlen, M.; Trujillo, I. Published in: Astronomy & astrophysics DOI: 10.1051/0004-6361:20064883 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Final author's version (accepted by publisher, after peer review) Publication date: 2006 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Pohlen, M., & Trujillo, I. (2006). The structure of galactic disks - Studying late-type spiral galaxies using SDSS. Astronomy & astrophysics, 454(3), 759-U66. https://doi.org/10.1051/0004-6361:20064883 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 Astronomy & Astrophysics manuscript no. SDSS May 5, 2006 (DOI: will be inserted by hand later) The structure of galactic disks Studying late-type spiral galaxies using SDSS M. Pohlen1,2 and I.
    [Show full text]
  • ARRAKIS: Atlas of Resonance Rings As Known in The
    Astronomy & Astrophysics manuscript no. arrakis˙v12 c ESO 2018 September 28, 2018 ARRAKIS: atlas of resonance rings as known in the S4G⋆,⋆⋆ S. Comer´on1,2,3, H. Salo1, E. Laurikainen1,2, J. H. Knapen4,5, R. J. Buta6, M. Herrera-Endoqui1, J. Laine1, B. W. Holwerda7, K. Sheth8, M. W. Regan9, J. L. Hinz10, J. C. Mu˜noz-Mateos11, A. Gil de Paz12, K. Men´endez-Delmestre13 , M. Seibert14, T. Mizusawa8,15, T. Kim8,11,14,16, S. Erroz-Ferrer4,5, D. A. Gadotti10, E. Athanassoula17, A. Bosma17, and L.C.Ho14,18 1 University of Oulu, Astronomy Division, Department of Physics, P.O. Box 3000, FIN-90014, Finland e-mail: [email protected] 2 Finnish Centre of Astronomy with ESO (FINCA), University of Turku, V¨ais¨al¨antie 20, FI-21500, Piikki¨o, Finland 3 Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348, Republic of Korea 4 Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain 5 Departamento de Astrof´ısica, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain 6 Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 7 European Space Agency, ESTEC, Keplerlaan 1, 2200 AG, Noorwijk, the Netherlands 8 National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903, USA 9 Space Telescope Science Institute, 3700 San Antonio Drive, Baltimore, MD 21218, USA 10 European Southern Observatory, Casilla 19001, Santiago 19, Chile 11 MMTO, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 12 Departamento de Astrof´ısica,
    [Show full text]
  • Snake River Skies the Newsletter of the Magic Valley Astronomical Society
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message June 2018 Saturday, June 9th 2018 7:00pm at the Toward the end of last month I gave two presentations to two very different groups. Herrett Center for Arts & Science College of Southern Idaho. One was at the Sawtooth Botanical Gardens in their central meeting room and covered the spring constellations plus some simple setups for astrophotography. Public Star Party Follows at the The other was for the Sun Valley Company and was a telescope viewing session Centennial Observatory given on the lawn near the outdoor pavilion. The composition of the two groups couldn’t be more different and yet their queries and interests were almost identical. Club Officers Both audiences were genuinely curious about the universe and their questions covered a wide range of topics. How old is the moon? What is a star made of? Tim Frazier, President How many exoplanets are there? And, of course, the big one: Is there life out [email protected] there? Robert Mayer, Vice President The SBG’s observing session was rained out but the skies did clear for the Sun [email protected] Valley presentation. As the SV guests viewed the moon and Jupiter, I answered their questions and pointed out how one of Jupiter’s moons was disappearing Gary Leavitt, Secretary behind the planet and how the mountains on our moon were casting shadows into [email protected] the craters. Regardless of their age, everyone was surprised at the details they 208-731-7476 could see and many expressed their amazement at what was “out there”.
    [Show full text]
  • Characterizing the V-Band Light-Curves of Hydrogen-Rich Type Ii Supernovae∗
    The Astrophysical Journal, 786:67 (35pp), 2014 May 1 doi:10.1088/0004-637X/786/1/67 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. CHARACTERIZING THE V-BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE∗ Joseph P. Anderson1,2, Santiago Gonzalez-Gait´ an´ 1, Mario Hamuy1,3, Claudia P. Gutierrez´ 1,3, Maximilian D. Stritzinger4, Felipe Olivares E.5, Mark M. Phillips6, Steve Schulze7, Roberto Antezana1, Luis Bolt8, Abdo Campillay6, Sergio Castellon´ 6, Carlos Contreras4, Thomas de Jaeger1,3,Gaston´ Folatelli9, Francisco Forster¨ 1, Wendy L. Freedman10, Luis Gonzalez´ 1, Eric Hsiao6, Wojtek Krzeminski´ 11, Kevin Krisciunas12, Jose´ Maza1, Patrick McCarthy10, Nidia I. Morrell6, Sven E. Persson10, Miguel Roth6, Francisco Salgado13, Nicholas B. Suntzeff12, and Joanna Thomas-Osip6 1 Departamento de Astronom´ıa, Universidad de Chile, Casilla 36-D, Santiago, Chile; [email protected] 2 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 3 Millennium Institute of Astrophysics, Casilla 36-D, Santiago, Chile 4 Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark 5 Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago, Chile 6 Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, Chile 7 Instituto de Astrof´ısica, Facultad de F´ısica, Pontif´ıcia Universidad Catolica´ de Chile, Casilla 306, Santiago 22, Chile 8 Argelander Institut fur¨ Astronomie, Universitat¨ Bonn, Auf dem Hugel¨ 71, D-53111 Bonn, Germany 9 Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan 10 Observatories of the Carnegie Institution for Science, Pasadena, CA 91101, USA 11 N.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]