The Effects of Quinestrol As a Contraceptive in Mongolian Gerbils (Meriones Unguiculatus)

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Quinestrol As a Contraceptive in Mongolian Gerbils (Meriones Unguiculatus) Exp. Anim. 60(5), 489–496, 2011 —Original— The Effects of Quinestrol as a Contraceptive in Mongolian Gerbils (Meriones unguiculatus) Xiao-Hui LV and Da-Zhao SHI College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China Abstract: The contraceptive effects of quinestrol in Mongolian gerbils were examined. The results showed that body weight significantly increased after quinestrol treatment, except in the group that received the highest dose. The gonadosomatic index of ovaries decreased, whereas that of uteri increased, and uterine edema appeared after quinestrol treatment. Histological examination revealed that the ovaries had a lack of mature follicles and corpora lutea and that the myometrium and endometrium of the uteri became thin after quinestrol treatment. Persistent estrous appeared after quinestrol treatment, and time to persistent estrous shortened with increasing doses of quinestrol. Serum follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels decreased, whereas estradiol (E2) and progesterone (P4) levels increased after quinestrol treatment, and the effects were dose-dependent. During gestation, the serum E2 levels in the different treatment groups were not significantly different. During gestation in the control groups, the serum P4 levels from days 0 to 15 were higher than in the quinestrol-treated groups; however, they did not show significant differences from days 18 to 24. Doses of 0.1 to 2.7 μg/g quinestrol over 6 days completely inhibited fertility. Birth time was prolonged with increasing doses of quinestrol. The findings suggest that quinestrol has marked estrogenic effects in Mongolian gerbils and may inhibit follicle maturation and ovulation through lowered gonadotropin levels. Uterine edema and abnormal E2 and P4 levels during gestation are important causes of pregnancy failure in quinestrol-treated Mongolian gerbils. Quinestrol causes prolonged inhibition of fertility in Mongolian gerbils. Key words: fertility control, Mongolian gerbils, quinestrol Introduction They are the main reservoir host of Yersinia pestis, which causes plague [20]. Therefore, Mongolian gerbil The Mongolian gerbil (Meriones unguiculatus, Milne populations are important to control. Additionally, the Edwards, 1867) belongs to the subfamily Gerbillinae Mongolian gerbil has been extensively used as an and is mainly distributed across the arid steppes, experimental animal model in neuroscience, physiology, semideserts and adjacent farming-pastoral areas of North reproduction, and behavioral research [28]. China, Mongolia, and the Baikal Lake region of Russia Control of fertility in rodent populations was first sug- [20, 28]. Mongolian gerbils cause serious damage to gested by Knipling [17], with use of chemosterilants for crops in agricultural areas when present in large numbers. rodent control suggested later by Davis [3]. The (Received 30 March 2011 / Accepted 4 June 2011) Address corresponding: D.-Z. Shi, College of Agriculture and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China 490 X.-H. LV AND D.-Z. SHI advantage of chemosterilants over conventional ment period. These smears were considered to represent poisoning has been shown theoretically in the prevention estrous (cornified cells) [29]. Five randomly selected of rat reproduction [18]. Synthetic estrogens had been gerbils per group were sacrificed by ether inhalation on studied for control of rodent populations [9, 13, 22]. the first day after quinestrol administration. Blood Quinestrol is a synthetic estrogen with marked estrogenic samples (0.5–0.6 ml) were collected via orbital venous effects and prolonged activity [10, 24, 25], and it is an puncture following light ether anesthesia before eutha- effective contraceptive in women. Additionally, nasia. The ovaries and uteri were weighed and col- quinestrol has been shown to reduce the fertility of rats lected for histological analysis. The remaining half of [2, 11, 27]. To our knowledge, the application of the virgin female gerbils were paired with experienced quinestrol for fertility control in Mongolian gerbils has males and examined by vaginal smear the next morning. not been previously reported, nor have the effects of The first day sperm was found in a vaginal smear was quinestrol in Mongolian gerbils been studied. The designated as day 0 of gestation. The male was removed objectives of this study were to confirm whether when the female was confirmed pregnant. The parturi- quinestrol inhibits fertility in Mongolian gerbils and to tion day was regarded as the last day of gestation. Blood study its effects as a contraceptive in this species. samples (0.2–0.3 ml) were taken every 3 days during gestation. The birth time (the period from the day sperm Materials and Methods was first detected in vaginal smears to the day of partu- rition) and litter size were recorded. Animals The Mongolian gerbils used in this study were from Histological study of sex organs a domesticated colony bred from animals captured in the Ovaries and uteri were fixed in 4% paraformaldehyde, Xilinguole League of Inner Mongolia. The gerbils were gradually dehydrated in ethanol and embedded in paraf- maintained at 23 ± 1°C, with automatically controlled fin, sectioned at 5μ m and stained with eosin and hema- lighting from 0700 to 2100 h (14 h light : 10 h dark). toxylin for histological examination. The sections were The Mongolian gerbils were provided with a food mix- observed by light microscopy. ture containing equal parts of corn and sunflower seeds, and they were given water ad libitum. Fifty virgin fe- Hormone assays male, 4-month-old gerbils (55–65 g) with regular estrous Serum was separated by centrifugation at 1,000 × g cycles, as confirmed by vaginal smear [29], were used. for 20 min at 4°C and stored at –80°C until assayed. The study was conducted according to Guidelines for Concentrations of FSH and LH were measured using rat Animal Experiments and approved by the Animal Care ELISA kits (EIAab Science Co., Ltd., Wuhan, China), and Use Committee at the China Agricultural Univer- as described and validated previously [30]. The mini- sity. mum detectable dose was 0.078 mIU/ml for FSH and 0.195 mIU/ml for LH, respectively. The intra- and in- Experimental design terassay variations for FSH and LH were 4.8 and 7.4%, Quinestrol (Zizhu Medicine Co., Ltd., Beijing, China) respectively. Serum E2 and P4 levels were determined was dissolved in peanut oil. Fifty virgin female gerbils by a chemiluminescence immunoassay (CLIA) [21] us- were randomly divided into five groups. The gerbils ing CLIA kits (Furui Biotechnology Co., Ltd., Beijing, were given quinestrol intragastrically daily at single China). The minimum detectable dose was 1.50 pg/ml doses of 0, 0.1, 0.3, 0.9, and 2.7 μg/g body weight (BW) for estradiol and 0.05 ng/ml for progesterone. The intra- for 6 days [32]. The control group was given peanut oil. and interassay variations for both were less than 10% The feeding habits of all experimental groups were ob- and 15%, respectively. served. The body weight of all animals was measured daily. Vaginal smears were also taken daily to assess the Statistical analysis effect of quinestrol on the estrous cycles during the treat- The data were analyzed by one-way ANOVA with QUINESTROL EFFECTS IN MONGOLIAN GERBILS 491 Table 1. Effects of quinestrol on the body weights and gonadosomatic indices of Mongolian gerbils Gonadosomatic index Initial body Final body Dose (μg/g) N (gonad weight/body weight × 1000) weight (g) weight (g) Ovaries Uteri 0 5 59.72 ± 2.55 61.44 ± 2.46 0.43 ± 0.11 2.21 ± 0.45 0.1 5 58.72 ± 1.95 64.57 ± 1.51 0.28 ± 0.03 16.81 ± 2.17* 0.3 5 57.37 ± 1.01 60.42 ± 1.64 0.28 ± 0.03 14.72 ± 2.08* 0.9 5 56.53 ± 1.88 59.86 ± 2.44 0.47 ± 0.03 15.24 ± 1.96* 2.7 5 59.01 ± 2.02 59.00 ± 1.33 0.25 ± 0.01 6.89 ± 0.79 * Significant compared with the control groups (P<0.05). Tukey’s test for post hoc multiple comparison analysis. quinestrol treatment (Table 1). The gonadosomatic in- Pearson correlation coefficients were calculated. Values dices of the uteri from groups treated with 0.1–0.9 μg/g were considered statistically significant at P<0.05 and quinestrol were significantly higher than those of the highly significant at P<0.01. The analyses were per- groups treated with 0 and 2.7 μg/g quinestrol (P<0.05). formed using SPSS 16.0 for Windows. Data are pre- The correlation coefficients between the quinestrol sented as means ± SEM. doses and the gonadosomatic indices of uteri were not significant. The percentages of uterine edema were 60, Results 100, 100, and 80% after quinestrol treatment at 0.1, 0.3, 0.9, and 2.7 μg/g, respectively. Histologic examination Effects of quinestrol on body weight and sex organs of uteri treated with quinestrol showed thinning of the The feeding habits of gerbils from all experimental myometrium and endometrium (Fig. 1G–J). Addition- groups were unaltered during the course of the study. ally, the endometrium showed reduced epithelial hyper- There was no significant difference in initial and final plasia, few profound glands, hyalinized stroma, and body weights for the gerbils in the different groups shedding cilia. (Table 1). However, each group exhibited a significant increase in final body weight compared with initial body Effects of quinestrol on estrous cycles weight (P<0.05), except for the group treated with the The regular estrous cycle of Mongolian gerbils was dose of 2.7 μg/g quinestrol. There was a significant interrupted treatment with 0.1–2.7 μg/g doses of quin- negative correlation between dosage and the change in estrol. Persistent estrous appeared in quinestrol-treated body weight (r=–0.392, P<0.01).
Recommended publications
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Quinestrol Item No. 10006320 CAS Registry No.: 152-43-2 Formal Name: 3-(cyclopentyloxy)-19-norpregna- 1,3,5(10)-trien-20-yn-17α-ol Synonyms: Ethylnyl Estradiol-3-cyclopentyl ether, W 3566 MF: C25H32O2 FW: 3645 Purity: ≥98% UV/Vis.: λmax: 202, 281 nm Supplied as: A crystalline solid Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Quinestrol is supplied as a crystalline solid. A stock solution may be made by dissolving the quinestrol in an organic solvent purged with an inert gas. Quinestrol is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF). The solubility of quinestrol in ethanol is approximately 20 mg/ml and approximately 30 mg/ml in DMSO and DMF. Quinestrol is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, should first be dissolved in DMSO and then diluted with the aqueous buffer of choice. Quinestrol has a solubility of approximately 0.5 mg/ml in a 1:1 solution of DMSO:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. Description Quinestrol is a synthetic estrogen that is effective in hormone replacement therapy.1,2 It is a 3-cyclopentyl ether of ethynyl estradiol. After gastrointestinal absorption, it is stored in adipose tissue, where it is slowly released and metabolized in the liver to its active form, ethynyl estradiol. Quinestrol has found limited use in suppressing lactation in postpartum women and, in combination with synthetic progestogens, as contraceptive therapy, although additional studies are needed for both applications.
    [Show full text]
  • Enhanced Solubility and Dissolution Rate of Raloxifene Using Cycloencapsulation Technique
    Journal of Analytical & Pharmaceutical Research Enhanced Solubility and Dissolution Rate of Raloxifene using Cycloencapsulation Technique Research Article Abstract Volume 2 Issue 5 - 2016 The aim of this study was to improve the water solubility of raloxifene by aqueous solution and solid state was evaluated by the phase solubility diagram, powdercomplexing X-ray it diffractometer,with sulphobutylether-β-cyclodextrin. Fourier-transform infrared Inclusion spectroscopy, complexation nuclear in magnetic resonance, scanning electron microscopy, hot stage microscopy and transmission electron microscopy. The inclusion complex behavior of raloxifene 1Department of Pharmaceutical Technology (Formulation), National Institute of Pharmaceutical Education and Research, classifiedand sulphobutylether-β-cyclodextrin as AL-type curve, indicating the were formation examined of 1:1 by stochiomatric molecular modelinginclusion India method. The phase solubility diagram with sulphobutylether-β-cyclodextrin was complex. The apparent solubility constants calculated from phase solubility 2 -1 Technology Development Center, National Institute of diagram was 753 M . Aqueous solubility and dissolution studies indicated that Pharmaceutical Education and Research, India the dissolution rates were remarkably increased in inclusion complex, compared 3Department of Pharmacoinformatics, National Institute of with the physical mixture and drug alone. In conclusion, inclusion complexation Pharmaceutical Education and Research, India 4 solubility and dissolution rate
    [Show full text]
  • Pp375-430-Annex 1.Qxd
    ANNEX 1 CHEMICAL AND PHYSICAL DATA ON COMPOUNDS USED IN COMBINED ESTROGEN–PROGESTOGEN CONTRACEPTIVES AND HORMONAL MENOPAUSAL THERAPY Annex 1 describes the chemical and physical data, technical products, trends in produc- tion by region and uses of estrogens and progestogens in combined estrogen–progestogen contraceptives and hormonal menopausal therapy. Estrogens and progestogens are listed separately in alphabetical order. Trade names for these compounds alone and in combination are given in Annexes 2–4. Sales are listed according to the regions designated by WHO. These are: Africa: Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Comoros, Congo, Côte d'Ivoire, Democratic Republic of the Congo, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria, Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, South Africa, Swaziland, Togo, Uganda, United Republic of Tanzania, Zambia and Zimbabwe America (North): Canada, Central America (Antigua and Barbuda, Bahamas, Barbados, Belize, Costa Rica, Cuba, Dominica, El Salvador, Grenada, Guatemala, Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Puerto Rico, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Suriname, Trinidad and Tobago), United States of America America (South): Argentina, Bolivia, Brazil, Chile, Colombia, Dominican Republic, Ecuador, Guyana, Paraguay,
    [Show full text]
  • Supplementary Tables, Figures and Other Documents
    Clinical Relevance of a 16-Gene Pharmacogenetic Panel Test for Medication Management in a Cohort of 135 Patients David Niedrig1,2, Ali Rahmany1,3, Kai Heib4, Karl-Dietrich Hatz4, Katja Ludin5, Andrea M. Burden3, Markus Béchir6, Andreas Serra7, Stefan Russmann1,3,7,* 1 drugsafety.ch; Zurich, Switzerland 2 Hospital Pharmacy, Clinic Hirslanden Zurich; Zurich Switzerland 3 Swiss Federal Institute of Technology Zurich (ETHZ); Zurich, Switzerland 4 INTLAB AG; Uetikon am See, Switzerland 5 Labor Risch, Molecular Genetics; Berne, Switzerland 6 Center for Internal Medicine, Clinic Hirslanden Aarau; Aarau, Switzerland 7 Institute of Internal Medicine and Nephrology, Clinic Hirslanden Zurich; Zurich, Switzerland * Correspondence: [email protected]; Tel.: +41 (0)44 221 1003 Supplementary Tables, Figures and Other Documents Figure S1: Example of credit-card sized pharmacogenomic profile issued to patients 1 Table S2: SNPs analyzed by the 16-gene panel test Gene Allele rs number ABCB1 Haplotypes 1236-2677- rs1045642 ABCB1 3435 rs1128503 ABCB1 rs2032582 COMT Haplotypes 6269-4633- rs4633 COMT 4818-4680 rs4680 COMT rs4818 COMT rs6269 CYP1A2 *1C rs2069514 CYP1A2 *1F rs762551 CYP1A2 *1K rs12720461 CYP1A2 *7 rs56107638 CYP1A2 *11 rs72547513 CYP2B6 *6 rs3745274 CYP2B6 *18 rs28399499 CYP2C19 *2 rs4244285 CYP2C19 *3 rs4986893 CYP2C19 *4 rs28399504 CYP2C19 *5 rs56337013 CYP2C19 *6 rs72552267 CYP2C19 *7 rs72558186 CYP2C19 *8 rs41291556 CYP2C19 *17 rs12248560 CYP2C9 *2 rs1799853 CYP2C9 *3 rs1057910 CYP2C9 *4 rs56165452 CYP2C9 *5 rs28371686 CYP2C9 *6 rs9332131 CYP2C9
    [Show full text]
  • Enhancement of Hepatocarcinogenesis in Female Rats by Ethinyl Estradici and Mestranol but Not Estradici1
    [CANCER RESEARCH 44, 3862-3869, September 1984] Enhancement of Hepatocarcinogenesis in Female Rats by Ethinyl Estradici and Mestranol but not Estradici1 James D. Yager,2 Harold A. Campbell, Daniel S. Longnecker, B. D. Roebuck, and Mary C. Benoit Departments ölAnatomy [J. D. Y.¡,Pathology [D. S. L], Pharmacology and Toxicology [B. D. R.¡,and Medicine [M. C. B.], Dartmouth Medical School, Hanover, New Hampshire 03756, and McArdle Laboratory tor Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706 [H. A. C.] ABSTRACT In experimental studies in animals, results have been obtained which suggest that synthetic estrogen treatment following car The effect of dietary exposure to synthetic estrogens on cinogen exposure (initiation) can enhance hepatic neoplasia. hepatocarcinogenesis was evaluated. Diethylnitrosamine-initi- Taper (32) was the first investigator to demonstrate that 2 ated and 0.85% NaCI solution-treated noninitiated female synthetic steroids used in oral contraceptive preparations in Sprague-Dawley rats were transferred to semisynthetic diets Europe, estradiol 17-phenylpropionate and estradiol benzoate, containing mestranol (0, 0.1, or 0.5 ppm), ethinyl estradiol (0.5 enhanced hepatocarcinogenesis in castrated female rats previ ppm), estradiol (0.6 ppm), or mestranol plus 0-methasone (0.5 ously initiated with A/-nitrosomorpholine In the United States, 2 and 0.2 ppm, respectively). 7-Glutamyl transferase (GGT>posi- synthetic estrogens, mestranol (170-ethinyl estradiol 3-methyl tive transections and hematoxylin and eosin-detectable nodules ether) and EE, are widely used in oral contraceptive preparations. and carcinomas were scored at 9 and 12 months. Quantitative We reported that, in intact, DEN-initiatedfemale Sprague-Dawley stereological calculations were performed to determine GGT rats, mestranol alone and together with norethynodrel enhanced lesion number and size.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,723,320 B2 Bunschoten Et Al
    US007723320B2 (12) United States Patent (10) Patent No.: US 7,723,320 B2 Bunschoten et al. (45) Date of Patent: May 25, 2010 (54) USE OF ESTROGEN COMPOUNDS TO DE 23,36434. A 4, 1975 INCREASE LIBDO IN WOMEN WO WO96 O3929 A 2, 1996 (75) Inventors: Evert Johannes Bunschoten, Heesch OTHER PUBLICATIONS (NL); Herman Jan Tijmen Coelingh Bennink, Driebergen (NL); Christian Holinka CF et al: “Comparison of Effects of Estetrol and Taxoxifen Franz Holinka, New York, NY (US) with Those of Estriol and Estradiol on the Immature Rat Uterus'; Biology of Reproduction; 1980; pp. 913-926; vol. 22, No. 4. (73) Assignee: Pantarhei Bioscience B.V., Al Zeist Holinka CF et al; "In-Vivo Effects of Estetrol on the Immature Rat (NL) Uterus'; Biology of Reproduction; 1979: pp. 242-246; vol. 20, No. 2. Albertazzi Paola et al.; "The Effect of Tibolone Versus Continuous Combined Norethisterone Acetate and Oestradiol on Memory, (*) Notice: Subject to any disclaimer, the term of this Libido and Mood of Postmenopausal Women: A pilot study': Data patent is extended or adjusted under 35 base Biosis "Online!; Oct. 31, 2000: pp. 223-229; vol. 36, No. 3; U.S.C. 154(b) by 1072 days. Biosciences Information Service.: Philadelphia, PA, US. Visser et al., “In vitro effects of estetrol on receptor binding, drug (21) Appl. No.: 10/478,264 targets and human liver cell metabolism.” Climacteric (2008) 11(1) Appx. II: 1-5. (22) PCT Filed: May 17, 2002 Visser et al., “First human exposure to exogenous single-dose oral estetrol in early postmenopausal women.” Climacteric (2008) 11(1): (86).
    [Show full text]
  • Hormone Replacement Therapy and Osteoporosis
    This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied. AHRQ is the lead Federal agency charged with supporting research designed to improve the quality of health care, reduce its cost, address patient safety and medical errors, and broaden access to essential services. AHRQ sponsors and conducts research that provides evidence-based information on health care outcomes; quality; and cost, use, and access. The information helps health care decisionmakers— patients and clinicians, health system leaders, and policymakers—make more informed decisions and improve the quality of health care services. Systematic Evidence Review Number 12 Hormone Replacement Therapy and Osteoporosis Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 2101 East Jefferson Street Rockville, MD 20852 http://www.ahrq.gov Contract No. 290-97-0018 Task Order No. 2 Technical Support of the U.S. Preventive Services Task Force Prepared by: Oregon Health Sciences University Evidence-based Practice Center, Portland, Oregon Heidi D. Nelson, MD, MPH August 2002 Preface The Agency for Healthcare Research and Quality (AHRQ) sponsors the development of Systematic Evidence Reviews (SERs) through its Evidence-based Practice Program. With guidance from the third U.S. Preventive Services Task Force∗ (USPSTF) and input from Federal partners and primary care specialty societies, two Evidence-based Practice Centers—one at the Oregon Health Sciences University and the other at Research Triangle Institute-University of North Carolina—systematically review the evidence of the effectiveness of a wide range of clinical preventive services, including screening, counseling, immunizations, and chemoprevention, in the primary care setting.
    [Show full text]
  • Pharmacology/Therapeutics II Block III Lectures 2013-14
    Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine
    [Show full text]
  • A Pharmaceutical Product for Hormone Replacement Therapy Comprising Tibolone Or a Derivative Thereof and Estradiol Or a Derivative Thereof
    Europäisches Patentamt *EP001522306A1* (19) European Patent Office Office européen des brevets (11) EP 1 522 306 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: A61K 31/567, A61K 31/565, 13.04.2005 Bulletin 2005/15 A61P 15/12 (21) Application number: 03103726.0 (22) Date of filing: 08.10.2003 (84) Designated Contracting States: • Perez, Francisco AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 08970 Sant Joan Despi (Barcelona) (ES) HU IE IT LI LU MC NL PT RO SE SI SK TR • Banado M., Carlos Designated Extension States: 28033 Madrid (ES) AL LT LV MK (74) Representative: Markvardsen, Peter et al (71) Applicant: Liconsa, Liberacion Controlada de Markvardsen Patents, Sustancias Activas, S.A. Patent Department, 08028 Barcelona (ES) P.O. Box 114, Favrholmvaenget 40 (72) Inventors: 3400 Hilleroed (DK) • Palacios, Santiago 28001 Madrid (ES) (54) A pharmaceutical product for hormone replacement therapy comprising tibolone or a derivative thereof and estradiol or a derivative thereof (57) A pharmaceutical product comprising an effec- arate or sequential use in a method for hormone re- tive amount of tibolone or derivative thereof, an effective placement therapy or prevention of hypoestrogenism amount of estradiol or derivative thereof and a pharma- associated clinical symptoms in a human person, in par- ceutically acceptable carrier, wherein the product is pro- ticular wherein the human is a postmenopausal woman. vided as a combined preparation for simultaneous, sep- EP 1 522 306 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 1 522 306 A1 2 Description [0008] The review article of Journal of Steroid Bio- chemistry and Molecular Biology (2001), 76(1-5), FIELD OF THE INVENTION: 231-238 provides a review of some of these compara- tive studies.
    [Show full text]
  • Effects of Diethylstilbestrol, Norethindrone, and Mestranol on Selected Microbes
    Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1974 Effects of Diethylstilbestrol, Norethindrone, and Mestranol on Selected Microbes John N. Haan Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the Physiology Commons Recommended Citation Haan, John N., "Effects of Diethylstilbestrol, Norethindrone, and Mestranol on Selected Microbes" (1974). Master's Theses. 2756. https://ecommons.luc.edu/luc_theses/2756 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1974 John N. Haan EFFECTS OF DIETHYLSTILBESTROL, NORETHINDRONE, AND MESTRANOL ON SELECTED MICROBES by John N. Haan A Thesis Submitted to the Faculty of the Graduate School of Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Master of Science November 1974 TABLE OF CONTENTS ,.' I. Introduction and Review of the Literature ................... 1 'II. Materials and Methods....................................... 7 III. Results· ..................................................... 13 A. Effects of Ethanol on the Microbes Studied .............. 13 1. Growth Studies ...................................... 13 B. Effects of Norethindrone
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,284,263 B1 Place (45) Date of Patent: Sep
    USOO6284263B1 (12) United States Patent (10) Patent No.: US 6,284,263 B1 Place (45) Date of Patent: Sep. 4, 2001 (54) BUCCAL DRUG ADMINISTRATION IN THE 4,755,386 7/1988 Hsiao et al. TREATMENT OF FEMALE SEXUAL 4,764,378 8/1988 Keith et al.. DYSFUNCTION 4,877,774 10/1989 Pitha et al.. 5,135,752 8/1992 Snipes. 5,190,967 3/1993 Riley. (76) Inventor: Virgil A. Place, P.O. Box 44555-10 5,346,701 9/1994 Heiber et al. Ala Kahua, Kawaihae, HI (US) 96743 5,516,523 5/1996 Heiber et al. 5,543,154 8/1996 Rork et al. ........................ 424/133.1 (*) Notice: Subject to any disclaimer, the term of this 5,639,743 6/1997 Kaswan et al. patent is extended or adjusted under 35 6,180,682 1/2001 Place. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/626,772 Primary Examiner Thurman K. Page ASSistant Examiner-Rachel M. Bennett (22) Filed: Jul. 27, 2000 (74) Attorney, Agent, or Firm-Dianne E. Reed; Reed & Related U.S. Application Data ASSciates (62) Division of application No. 09/237,713, filed on Jan. 26, (57) ABSTRACT 1999, now Pat. No. 6,117,446. A buccal dosage unit is provided for administering a com (51) Int. Cl. ............................. A61F 13/02; A61 K9/20; bination of Steroidal active agents to a female individual. A61K 47/30 The novel buccal drug delivery Systems may be used in (52) U.S. Cl. .......................... 424/435; 424/434; 424/464; female hormone replacement therapy, in female 514/772.3 contraception, to treat female Sexual dysfunction, and to treat or prevent a variety of conditions and disorders which (58) Field of Search ....................................
    [Show full text]
  • Quinestrol Treatment Induced Testicular Damage Via Oxidative Stress in Male Mongolian Gerbils (Meriones Unguiculatus)
    Exp. Anim. 60(5), 445–453, 2011 —Original— Quinestrol Treatment Induced Testicular Damage via Oxidative Stress in Male Mongolian Gerbils (Meriones unguiculatus) Wei SHEN1), Dazhao SHI1), Deng WAND1), Yongwang GUO2), Shuzhen HAI1), and Zhuo YUE3) 1)College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, 2)National Agro-tech Extensions and Service Center, Beijing 100125, and 3)College of Veterinary Medicine, China Agricultural University, Beijing 100193, China Abstract: The hypothesis that quinestrol exerts testicular damage via oxidative stress was investigated in male gerbils using a daily oral gavage of 3.5 mg/kg body weight for 2 weeks (the multidose-treated group) or 35 mg/kg body weight (the single-dose-treated group). The testicular histological morphology, antioxidant capacity and malondialdehyde (MDA) concentration in testicular tissue and plasma were assessed at 15, 30, and 60 days following treatment. The results showed that the activity of the antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxide (GSH-Px), and total antioxidant capacity (T-AOC), at 15 days after treatment in testicular tissue decreased, which led to the MDA concentration increasing while at the same time germ cells were rarefied and showed an irregular distribution in seminiferous tubules of quinestrol-treated gerbils. At 30 days, the testicular weight and antioxidant capacity continued to decrease, while the MDA concentration continued to increase, and testicular histopathological changes were more pronounced. Single-dose and multidose drug treatment had a similar effect on the antioxidant enzymes and MDA, but testicular damage was relatively severe at 15 and 30 days after multidose treatment. By 60 days of treatment withdrawal, however, the above parameters recovered to control levels.
    [Show full text]