4 GEOGRAPHY 1 which ismainly devoted to thispaper. Yu.K.Vasilchuk analysis [2012, 2014],acritical monographsummarized inthe two-volume ofmassive iсeare stable isotope geochemistry most ofthecurrently available dataonthe A newclassificationofmassive ice, aswell as ofwhicharebasic principles setoutinFig. 1. classificationby massive-ice Y.K. Vasil’chuk, the significantly to thedevelopment ofanew (intrusive) ice. This exposure hascontributed rivericeandinjection assemblage ofburied bodiesthatprobably representmassive-ice an author encountered acomplexexposure of Peninsula, westHere, Siberia. thesenior valley (68°26´N,72°08´E)oncentral Yamal State inthe University Moscow Yuribey River expedition oftheGeological Faculty of theboating the authorsinJuly1977during The research on massive icebeganfor oneof geneous and correlation oftheice. fromand deuterium massive iceplotted atauniform scaleinorder to assistinterpretation massive iceandhostsedimentsare considered together withisotope oxygen valuesofheavy of Arcticicecapsassistswithinterpretation agesof oftheorigin ofmassive ice. Radiocarbon Analysis ofpollenandspores inmassive icefrom regions Subarctic andfrom iceandsnowcover bodies. ormore andconsistoftwo homogeneousmassive-ice genetically withinalocality and spatially(intheirstructureandproperties) complexesheterogeneous vary massive-ice complexes have andgenesisthroughout,massive-ice asimilarstructure, whereas properties complexes: homogeneous ofmassive-ice newcategories distinguishestwo of massive ice. It complexes isproposed, classification ofmassive-ice encompassingtherangeandvariability formation. Arctic, American Anew andincludesthelatest understandingofmassive-ice North 2 Yurij K. Vasil’chuk DOI: 10.15356/2071-9388_03v09_2016_01 * Brighton, UK University, Russia119991,Moscow, Gory, Leninskie 1 INTRODUCTION KEY WORDS: ABSTRACT. OF MASSIVE ICE STABLE ISOTOPE GEOCHEMISTRY Permafrost ofGeography, Laboratory, Department University ofSussex, Faculty ofGeography andFaculty ofGeology, Lomonosov Moscow State Corresponding author The paper summarises stable-isotope research stable-isotope onmassiveThe papersummarises iceintheRussianand

massive ice, stableisotopes, dating, radiocarbon homogeneousandhetero- 1* , JulianB. Murton ; e-mail: [email protected] [email protected] ; e-mail: 2 and heterogeneous (Fig. 1).Homogeneous homogeneous newcategories: includes two bodiesandclassification of massive-ice Yu. Vasil’chuk [2012]presents anew Arctic islands, Chinaandthe Antarctic. ArchipelagoCanadian Arctic andRussian and Yukon, the Tuktoyaktuk Coastlands, the Alaska in westChukotka, andeastSiberia, exposures withlarge bodiesofmassive ice researchers,international and describes ofmany alsosummarizes theexperience It massive concerning iceinRussianpermafrost. 1977 to 2014)innumerous expeditions studies over more than35years (from author’s experience, involvement andfield onthesenior The paperisbasedprimarily MASSIVE-ICE CLASSIFICATION STUDY AREA Vasil’chuk Yu.K.,ST J.B. Murton first terrace of the Gyda River estuary (70°53 oftheGydafirst terrace estuary River were studiedby Y.K. Vasilchuk [1992]inthe segregated (orinfiltrated andsegregated) ice of thesamegenesis. Typical examplesof of iceor, lesscommonly, asmultiplelayers m usually nomore thanafew meters high, complexes areHomogeneous massive-ice Homogeneous massive-ice complexes mechanisms oficeformation. and encouragesthesearch for different bodiescomplex structure ofmassive-ice bodieselucidates thewidermassive-ice homogeneousandheterogeneousbetween homogeneous icebodies. The distinction ormoreice complex,andconsistoftwo across amassive- composition andproperties bodieshave genesis, avariable massive-ice complex,whereas heterogeneous massive-ice ofa inallparts composition andproperties bodieshave asimilargenesis,massive-ice ice bodiesand theirbeddingparallelto the rule, associated with peat. ofthe The structure wide) were composed ofcleariceand, as a massive ice(upto 0.3–0.4mthickand6–8 78°30´E). Four similarlens-shapedbodiesof ice types. 3) specific (tier and categories, allochthonous and 2) autochthonous (tier categories, heterogeneous and 1) (tier homogeneous system: athree-tier involving bodies, massive-ice of 1. classification Fig. The 20–30mwideandoccurassinglelayers ′ N, N, ABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE were about–22 δ the water ledto theformation oficewith freeze. The lowaverage –34 provided low extremely to –25 while the of thewater had form ( form when isotopically heavier icewasthefirstto under conditionsofclosed-system freezing, was closeto –20 waters whoseinitialaverage composition freezing during of fractionation cryogenic oxygenthe heavy values indicates significant from outsidethesystem. Suchawiderangeof system freezing withasmallinflowofwater –16.2 ice formed underconditions more severe than massive ice(about–20 origin. The widerangeof ice isinterpreted asinfiltrated orsegregated in sequence. ice wedge inthesedimentary The with theoccurrence ofa4.5mhighsyngenetic and freezing oftheground mass, consistent formed synchronously withtheaccumulation stratificationsuggestthatthey sedimentary 18 O valuesofabout–20 O O δ O ) in the last portions ofthewater to ) inthelastportions 18 ) intheseicebodiesindicates closed- O valuesofabout–16and–18 δ . Repeated freezing ofthiswater 18 O valuesoftheremaining water O O δ 18 . freezing of The partial . This couldoccuronly O valuesofabout–24 O δ δ δ 18 O 18 18 ) indicate thatthe O values (–33.8 to O values(–33.8to O values(about O valuesinthis , whiletherest O ),

5 GEOGRAPHY 6 GEOGRAPHY age oftheground mass(more than15 viewoftheradiocarbon those atpresent. In GEOGRAPHY. ENVIRONMENT. SUSTAINABILITY. 03(09)2016 9 – scree; 109 –scree; material –slumped 8–laminated ; andpeat; loam andsandy loam lacustrine–marsh 7 –Holocene massive5 –segregated layered ice; 6 –intrusive massive layered ice; vertically ice;1 –sand; pure 4–de 2–loam; 3–layered (b). Yamal Peninsula southern valley, River Erkutayaha ice, intrusive and segregation of assemblages and (a) Yamal Peninsula central valley, River Yuribey upper the in ice intrusive and buried of assemblage Siberia: west in bodies massive-ice heterogeneous through sections stratigraphic Vertical 2. Fig. of itsoccurrence. Examplesincludemassive shape oftheicecomplexandconditions or adjacentto eachother, influencingthe different genesis. The layers may beincontact ormore two comprise icelayers (tiers)of complexesHeterogeneous massive-ice Heterogeneous massive-ice complexes 1992]. [Y.K. Vasilchuk, than14,000–11,000years agono earlier ice andthesyngeneticwedge occurred ground massandtheformation ofmassive allochthonous peat),theaccumulationof ages from 10,260to 15,890BPobtainedon (i.e. debris covering thesection) formed intrusiveformed ice richinmineral inclusions; 14 C specific geneticprocess (e.g., injection, classifies themassive iceaccording to its allochthonous deposits. The third division combination ofautochthonous and complexes canincludeamassive-ice (i.e. ice(seeFig. buried) 1).Heterogeneous and Dallimore [1992])andallochthonous (i.e., ofMackay intrasedimentalinterms autochthonousdistinguishes between The second divisionoftheclassification [Y.K. Vasil’chuk 2012]. etal., 2009,2014;Kritsuk, gascondensate placesintheBovanenkovo field Yamal Peninsula (Fig. 2b, 3),andinmany [Y.K. Vasil’chuk etal., 2012]inthesouthof valley River massive iceintheErkutayaha ice ofthe Yuribey valley(Fig. River 2a), massive ice, and–36.1 for reticulate ice, –33.1and–36.8 –28.9and–34.8 the icerangebetween that the overlying sediment wasdepositedthat theoverlying ,to marine theoverlying indicating within inclusions inthemassive iceissimilar would ice;andb)sediment indicate buried thaw orerosional which contacts, primary theicelacks evidence forupper icecontact; structuresparallelthe and containsinternal sediments it isconformably bymarine overlain interpreted asintrasedimentalicebecause:a) adjacent Tertiary sandstone. The massive iceis Pollard andBell, 1998]. The (79°59´N,85°56´W;in theCanadianArctic on theFosheim Peninsula, Ellesmere Island, Holocene massive segregated ice8–9mthick analogues ofPleistocene massive iceis sediments. Oneofthemostconvincing ice, beginning withmassive iceinmarine Holocene analoguesofPleistocene massive Vasil’chuk and [2012]discussesmodern formation. the mainhypotheses ofmassive-ice monograph examines [2012],whichcritically through examplesin Yu.Vasil’chuk’s The proposed classificationisillustrated ofgeneticice types. the widediversity segregation, infiltration, Vasil’chuk Yu.K.,ST J.B. Murton OF MASSIVE-ICE FORMATION AND THE MAIN HYPOTHESES OF MASSIVE ICE, MODERN AND HOLOCENE ANALOGUES Fig. 3. Assemblages of segregation and intrusive ice, Erkutayaha River valley, southern Yamal Peninsula. Yamal Peninsula. southern valley, River Erkutayaha ice, intrusive and segregation of Assemblages 3. Fig. O burial) andshows for anicevein in δ 18 O valuesof Photograph byYu.Vasil’chuk.Photograph O for for O

ABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE from –107to –199.7 m of Holocene silty sand. m ofHolocenesilty Their ice bodiesupto 5.7mthickintheupper 5–10 [Y.K. Vasilchuk etal., 2016b]andshowmassive- and floodplaindepositshave beenanalyzed boreholes through lagoon Holocenemarine (71°15´N,72°06´E).More than1000Siberia the mouthofSabettayaha River, inwest floodplainoftheObBay,lagoon-marine at andthemodern terrace first lagoon-marine widespread inHolocenesedimentsofthe bodiesare extraordinarilyMassive-ice developed. (according to Y.K. Vasil’chuk’s classification) result, complex aheterogeneous massive-ice massive ice[RobinsonandPollard, 1998].As a Soundformedbedrock intrusive atEureka under highpressure into frozen theoverlying ample water source. ofwater The injection silt thatoverlay saturated sandswithan layerdownward of through afine-grained segregation occurred aspermafrost aggraded theHolocene[Pollardring andBell, 1998].Ice mafrost aggraded sedimentsdu- into marine deposits formed timetransgressively asper- BPorlater.limit) until8.7ka The massive-ice sea level remaining high(within10mofmarine BP, establishedby10.6ka limit waslikely with valleysuggestthattheHolocenemarine River shells from depositsintheSlidre raisedmarine before agesof theiceformed. Radiocarbon origin [Y.K. Vasil’chuk formed etal., 2016b].It is mostlyautochthonous andofsegregated vary from –15.7to –26.5 vary O , andtheir O . The massive ice δ D values vary D valuesvary δ 18 О values О values

7 GEOGRAPHY 8 GEOGRAPHY to thoseofprecipitation ( (+13.5 than thoseoflakewater lenses (–10.6to –11.5 Pestsovoe gasfieldarea (66°10 Ice inthecore oftheHolocenepingoin under conditionsofopenandclosedsystems. pingo icecores indicates thattheiceformed deposits. ofstableisotopes in The distribution another analogueofPleistocene massive-ice Ice inthecores pingosprovides ofmodern snow –13.2 Chang, 1984]. The and by playa depositsorsaltcrusts[Hurlbert are completely surrounded bywater, others margins; some desert) orsalar(salt-crust lake or playa surface. They are located nearthe wide andelevated upto 7mabove thelake 1 mthick)are upto several hundred meters (consisting ofseveral icelenses, eachupto sea level (asl)inBolivia. The icedeposits at4117–4730mabove(up to 103g/1)lakes freshwater icedepositsinshallow, saline analogues ofPleistocene massive iceare andHolocene possiblemodern Other sediments. lakes) (meromictic bodiesinsalinelake of theformation oficy Vasil’chuk proposed theoriginal mechanism Gulf(Chukotka). of theMechigmen Y.K. m insedimentsbeneaththeshallowwaters thick layer iceatthedepthabout 10 ofsalty andSpesivtsev,[Melnikov 2000],anda1.5m depth of19–29mbeneaththeseabottom fresh is620mg/l)massive iceata (salinity [Ponomarev, River of theKhatanga 1960], ice layer inbeachsedimentsnearthemouth sediments, for examplea14mthickmassive bodiesalsooccurinsalinemassive-ice inthelate Holocene.fractionation Thick saturated soilsunderintensive cryogenic freezingsyngenetically during ofwater- GEOGRAPHY. ENVIRONMENT. SUSTAINABILITY. 03(09)2016 intrusive, repeated intrusive andburied formation identifytheiceassegregated, The mainhypotheses of massive-ice [Y.K. Vasil’chuk etal., 2016a]. δ δ formed inclosed-system conditions; its D values vary from –93.2to –123 D valuesvary 18 О values vary from –11.6to –15.8 О valuesvary O ). δ 18 O O valuesfor theice δ ) are muchlower 18 O valueinfresh O ′ ) but similar ) butsimilar N 76°30 O , and O ′ E)

Mesozoic andPalaeozoic age. Fourth, pollenof ofCenozoic, palynomorphs pre-Quaternary deposits frequently containredeposited deposits. massive-ice Third, themassive-ice pollen andgreen moss spores, occurinmost birch andericaceous predominance ofdwarf to thoseofsubfossil ,includingthe similar withcharacteristics pollen spectra iceor1litre1 kg of icemeltwater. Second, concentrations from 50to 1500unitsper ofdeposit-formingall types ground ice, at pollen andspores are present inalmost First, ofthepollenspectra. characteristics ground icehasidentifiedseveral distinctive Palynological analysisofdeposit-forming formation. also applyto themechanismofmassive-ice is widelyappliedto explainpingogrowth can segregation inclosed-system conditionsthat andthe mechanismofwater injection [1971,1973]proposed thatMackay repeated intrusive iceandhydrolaccoliths. permafrost), intrusive ice,ice (short-term seasonal intrusive ice, multi-seasonalintrusive distinguished different ofintrusive ice: types oficeformationfactor iswater intrusion,and [1969]hypothesizedGasanov that themain sediments. and water-bearing coarse-grained clayey between sediments near thecontact formation ofmassive segregated icebeing with themostfavorable conditionsfor the [1975]favoured icesegregation,Vtyurin and Shur,the top [seealsoZhestkova 1978]. ground andthefreezing of thiswater on water through seasonallythawed of surface ground-ice to theinfiltration depositsislinked the formation ofthick(upto 15m)massive genesis. Hehypothesizedmassive-ice that the infiltrated andsegregated hypothesis of Belova, 2014].Holmsen[1914]proposed etal.,Solomatin, 2013;Streletskaya 2013; 2005,2009;French,2002; Murton, 2007; Y.K. Vasil’chuk, 1992,2012,2014;Dubikov, andShur, 1988;Zhestkova Rampton, 1978; 1975;Mackay, 1973; glacier ice[Vtyurin, CRYOGENIC INDICATION OF MASSIVE ICE AND GLACIERS FOR COMPARISON OF POLLEN SPECTRA (68 Shpindler, valley River andtheOyuyakha including theMore-Yu valley, River Cape is considered for anumberoflocalities, European ice depositsinnorthern The isotope compositionofthemassive- comparison. andhorizontal scaleto facilitate their vertical are plotted atasingleThe isotope curves 2012;Belova,2014]. al., 2012;Ivanova, 2010;Slagodaet 2011, 2012,2014;Kritsuk, 2003; Lokrantz, Y.K. Vasil’chuk etal., 2009, 2002; Leibman etal., and 2003;Ingólfsson 1991; Korolyov, 1993;Kotov, 1998;Dubikov, Trofimov,and Y.K.1988; Vaikmäe Vasil’chuk, and Karpov,1986; Y.K. Vasil’chuk and plots publishedinthelast30years [Vaikmäe inmore variations than35isotopevertical others [Vasil’chuk, 2012].Heconsidersthe interprets theisotope records obtainedby of studies The seniorauthorconsidershisownisotopic 2012]. [A.C. Vasil’chukand Y.K. Vasul’chuk,2010, inorigin of westismainlynon-glacial Siberia that themassive iceonthe Yamal Peninsula spores. This palynological approach indicates the presence ofredeposited pollenand as well asgreen mossandhorsetail;3) presence species, aquiherbosa ofcloudberry, and Acer, Fraxinus, lack ofexotic speciessuchas thermophilic 1)a deposit-forming iceshow: non-glacial of theice. Pollen of thatare typical spectra genesis ice deposits, indicatinganon-glacial also occurinmostofthestudiedmassive- limnetic andgreen algaeremains and reed mace),aswell as horsetail spores, hydrophilous plants(e.g., pondweed, burreed Vasil’chuk Yu.K.,ST J.B. Murton 190–200 kyr, whereas Leibman etal. [2003], ice andsuggested that itisolderthan glacier[2003] concluded thatitisburied andLokrantz (69°43´N; 62°48´E),Ingólfsson at CapeShpindlerinthe Yugorski Peninsula IN RUSSIAN PERMAFROST ISOTOPIC COMPOSITION OF MASSIVE ICE о 51´N, 66 Abies intheinitialoccurrence; 2)the о massive ice in Siberia andmassive iceinSiberia 44´E). For body themassive-ice Quercus, Ulmus, Populus,Ulmus, Tilia

ABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE characteristics: pure whitecharacteristics: icehas isotopic compositionfor icewithdifferent ofthecomparatively smallfluctuations Yuribey valley(68 River Marre-Sale meteostation (69°45 Marre-Sale settlement (71°10 valley(68°11 River Erkutayaha LocalitiesSiberia. there include:1)the deposits isalsoconsidered for northwest The isotope compositionofmassive-ice segregation inaclosedsystem. ice during may beexplainedbyfractionation from –13.1to –25.6 vary different ofmassive iceatCapeSpindler types (69°33 68°26 gasfieldarea2) theBovanenkovo (70°21 from –19.6to –20.5 near Tab-Salya settlement(71°45 82°58 11) nearDorofeevskaya settlement(71°23 (~4 autochthonous becausethe ice isintrasedimental, heterogeneous and The seniorauthorassumesthatthismassive epigenetic freezing regression. marine after massive ice, itto attributed syngeneticor stratigraphy andisotopic compositionofthe structures,who alsoexaminedtheinternal Voivareto (68°43 Lake 6) at Tyurinto (70°44 Lake (71°50 Gyda settlement(70 in the Yenisey valley(66°35 River River (68°11 River bankoftheErkutayaha is located ontheleft heterogeneous autochthonous massive ice On thesouthernmost Yamal Peninsula horizontally layered ice. The rangeof layers, comprise whereas parts theperipheral ice andsubvertical intrusion), withvertical a form similarto ofigneous astock (atype bodytakes ofthemassive-ice The centralpart the massive iceappearsatadepth of8m. and just15mfrom thecentre thecover of dropsharply onbothsidesofthecentralpart, predominantly instratifiedsand. The icelayers approximately 100mlongisembedded O ′ ′ E), 12) at the Sopochnaya Karga Cape E), 12)attheSopochnaya Karga ′ E), 3) the Mordyyakha River valley River E), 3)theMordyyakha ) and ′ N, 82°40 N, 68°59 ′ N, 68°51 δ D (~20 ′ E) and13)Ledyanaya Gora ′ E), 4)theKharasavey O ′ о ′ N, 66°51´E),5)near E). A massive-ice body E). Amassive-ice 53 O ′ , and N; 72°25 о O ′ 26 N, 78 ) valuesindicates ′ N, 67°57 ′ . Such variability . Suchvariability N, 72 δ δ D varies fromD varies 18 о ′ 30 ′ ′ N, 68°51 ′ ′ О valuesin N; 66°50 δ N, 86°34 N; 82°45 E), 8)near о 18 ′ 08 E), 9)the ′ О values О values E), 7)at ′ E), 10) δ 18 ′ ′ ′ ′ ′ ′ E). E), E), E), N, N; О

9 GEOGRAPHY 10 GEOGRAPHY δ –152.4 to –156.9 GEOGRAPHY. ENVIRONMENT. SUSTAINABILITY. 03(09)2016 occur aslayers, laccoliths, rods andlenses. and allochthonous massive-ice 68°26´E) heterogeneous autochthonous gasfieldarea theBovanenkovo (70°21´N, In drained. freezing during aformer ofatalikafter lake be assumedthattheicedeposits formed can for It sedimentsofsmallfloodplainlakes. dominant. Suchspecificfeatures were noted plants, withsedgepollenandhorsetailspores contents ofpollenandspores ofhygrophilous are byhigh characterized The pollenspectra occurred underopen-system conditions. to –23.4 gray icehas dirty –150.3 to –163.8 from –19.4to –21.3 gray icewithasteely shimmerhas fromvaries –149.6to –160.7 δ (fromisotopic variations –22.4to –23.3 oftheoutcrop showsinsignificant part north lenses (lenticular-layered inthe cryostructure) composition oficefrom ice obliquelyoriented ice wedges 4–5minhigh. The isotopic beddingandiscrossed bysyngenetic vertical horizontal beddingthatpasseslaterally into The icebodyismore than4mthick and has bodyat autochthonous massive-ice isaheterogeneous River Mordyyakha (69°33 ofthe On thecentralpart Yamal Peninsula spores (35%). pollenand high concentrationofreworked infiltration-segregation genesis)containa ofsegregation ice(mostlikely peripheral or whereas thosefrom thehorizontally layered pollenandspores,genesis) lackreworked from ofinjection thecentralstock (mostlikely layered inthevertically icepollen spectra when free water freezes. Significantly, the difference thatresults from fractionation almost didnotexceed theusualisotopic comparatively small. The isotopic differences isotope signal oftheinitialwater andiceis –172.7 18 18 O) andthussuggeststhaticesegregation О valuesfrom –19.2to –20.3 O ′ N, 68°59 O . Hence, thedifference the between , and O O δ ′ E) besidetheupper D varies fromD varies –165.5to δ ; cleartransparent icehas ; andgray iceandinthe O 18 О valuesfrom –22.1 , and O δ D varies fromD varies ; transparent O

δ 66–70 m asl. 66–70 masl. 18

, and О values О values bodies O δ D

from –91.7to –177.1 et al., ( 2009],anddeuterium –12.4 to –22.9 δ Gora massive iceisproblematic. ofthe Most However, interpretation oftheLedyanaya theEarly emplaced during Weichselian. interpret theiceasrelictglacierice, probably andIsayeva [1988]to[1986] andAstakhov its hostsedimentsled Vaikmäe andKarpov and isotopic studyofthismassive ice and andGlazovskiy, 1986].Stratigraphic [Vtyurin canform bythesamefreezingtypes processes distinguish from basalglacierice, asbothice because intrasedimentalicemay bedifficultto on the Yenisei valley(66°35´N,86°34´E) River massive iceinLedyanaya Gora(IceMountain) different hypotheses abouttheorigin of theauthorshave expressedthe samearticle, massive iceisstillfarfrom ideal. Even within methodological useofisotopic datafrom presentedThe material showsthatthe the large butshallowlakes. the formation icelayers ofextensive under caused freezing andicesegregation, with of coldseawaters onacoastalfloodplain The seniorauthorinferred thattheingress and coastalfloodplainsedimentsinthearea. lacustrine ofmodern pollen characteristics from themassivespectra iceare similarto origin oftheice. Pollen, spores andalgal a segregated and/orinfiltrated-segregated ( –21.5 diamicton ( diamicton iceschlieren intheoverlying that ofvertical composition ofthemassive iceissimilar to of theoxygen isotope profile. The isotopic Vaikmäe etal., 1993],pointingto uniformity very longteeth ofdifferentvery lengths) with bilateral rake vertical (like distribution 8 m. isabout is 28.5m,andthemeanthickness ofthetabularice The maximumthickness Y.K. Vasil’chuk, indicates anintrasedimental ofit,according the middleand lower parts the massive iceto one of 200–340mg/lin of of10–80mg/lintheupper part salinity coupled withasignificant changefrom a δ 18 D) vs. depthinmassive icebodies suggests O valuesfrom theicerangefrom –20to δ O 18 О valuesofmassive icerangefrom [Vaikmäe and Y.K. [Vaikmäe Vasil’chuk, 1990; δ 18 O O =–20.7 [Michel, 1998; [Michel, Y.K. Vasil’chuk O O . The contrasting . The ). This similarity, ). This δ D) values vary D) valuesvary δ 18 О and [1983] concluded thatmostofthemassive- Dallimore [1992] andothers. Fujino et al. [1983], Fujino and etal. [1983,1988],Mackay River, hasbeen isotopically studiedbyMackay nearthemouthofMackenzie 133°02´W), iceadjacenttoMassive Tuktoyaktuk (69°27´N, consider afew ofthem. Lacelle, 2011;Fritz etal., 2011].Here we 2005, 2009;Cardyn etal., 2007;French, 2007; Lacelle etal., 2004, 2007,2009,2011;Murton, etal., 2004,2005; 1998; Murton 1998; Hyatt, Robinson andPollard, 1998;Pollard and Bell, Dallimore, etal., 1996,1998; 1992;Moorman 1988; French and 1990;Mackay andHarry, 1983,2011;Dallimore1985; Michel, and Wolfe, 1983; Fujino etal., 1983;Lorrain and Demeur, massive ice from [Mackay, theCanadianArctic inmorevariations than30isotope plotsof Vasil’chuk [2014]examinesthevertical origin for 2012]. theupperhorizon [Ivanova, horizon ofmassive ice, andasegregation to origin indicatefor aninjected thelower different.very These datacanbeinterpreted upper andlower horizons ofmassive iceare 148°27´E). Ivanova [2012]showed that 148°27´E). Ivanova found Island(75°05´N, onNovaya Siberia bodiesareautochthonous massive-ice Finally, heterogeneous allochthonousand valley[Korolyov,River 1993]. autochthonous massive iceintheAmguema and heterogeneous allochthonousand 1992], Tanyurer valley[Kotov, River 1998], of Anadyr’ andatOnemenBay [Vasil’chuk, massive iceattheKoolen’ nearthetown Lake, include homogeneousautochthonous Isotope data summarized from Chukotka heterogeneous autochthonous massive ice. at Ledyanaya Goracanberegarded as conclusion,themassive iceorigin. In Vasil’chuk Yu.K.,ST J.B. Murton to –29 from –8.9values ofmassive icethere vary to –228.4 ARCTIC IN PERMAFROST OF THE CANADIAN ISOTOPIC COMPOSITION OF MASSIVE ICE O O , and . The δ D values vary from –66.8 D valuesvary δ 18 O and δ D valuesinthe δ 18 О ABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE 1.5 andasmallrange(about stable distribution byarelatively [1990]ischaracterized Harry byFrenchof themassive icedescribed and Lakes, Y.K. Vasil’chuk noted thatthebottom inicearoundthe isotopic variations theEskimo [Frenchinjection 1990].Assessing andHarry, are expla in the Western CanadianArctic, however, massive ground-iceglacier ice. Other bodies [1990],are interpreted asbasaland Harry Tuktoyaktuk Coastlands, according to French the so BanksIsland, ofsouthern andMoraine ground-iceMassive bodiesintheSandhills allochthonous. as heterogeneous: autochthonous and Vasil’chuk agreed andidentifiedtheice andsomeisintrasedimental.buried Y.K. [2005],someofthemassive iceisMurton the Tuktoyaktuk Coastlands. According to in on RichardsIsland(69°20´N,134°30´W), Head,exposed bycoastalerosion atNorth well complexis often A massive-ice allochthonous. site isheterogeneous: autochthonous and Vasil’chuk concludedthatmassive iceatthis massive iceisintrasedimentalinorigin. Y.K. common water source andsuggeststhatthe whichindicates diamicton, athe overlying from thatextended theiceintoice dikes of themassive icewere similarto thoseof geochemical andstableisotope values this interpretation. thattheThey reported and Dallimore [1992], however, rejected water in which itwassubmerged. Mackay iceformedsuperimposed bycongelationof ice bodyatPeninsula Point originated from deposits. isotope differentiation inthetop oftheice in aclosedsystem, leading to anappreciable or opensystem, andending in asemi-closed consistent withicesegregation commencing isotopic changesintheupper2mofice are –36 –31 2 mofice:upward, thevalueincreases to –35 O O O O uthern Eskimo Lakes region Lakes ofthe Eskimo uthern . Y.K. Vasil’chuk suggested thatthe ) andbyabruptchangesintheupper ) of , and then sharply decreases, andthensharply to ined better ofsegregation- interms δ 18 O values(from –33.5to

11 GEOGRAPHY 12 GEOGRAPHY by thedecay ofC of debris-rich massive ice.of debris-rich The Lacelle etal. [2004]examinedfour exposures Plateau (69°N,124°W), basin, ontheAklavik Within thelimitsof Willow drainage River allochthonous. ice asheterogeneous: autochthonous and interpretations themassive anddetermined deformation. Y.K. Vasilchuk agreed withthese becausetheirpostdateglacially disturbed icethathaveand ice-wedge notbeen eroded ormoved; and(2)segregated ice both ofwhichhave beenglaciallydeformed, permafrost: (1)massive iceandclasts, ground iceare identifiedinthedeformed grey, andbanded. debris-rich Two of types or andeitherwhite andbubble-rich, thick, 2004]. The massive iceisatleast2.5–8m etal., Murton Lakes; the centralEskimo Island; andonnorthern ‘Crane Island’, in Bay –70°N, 129°W, southwest ofNicholson lowlands near Tuktoyaktuk (e.g. atLiverpool deformed permafrost inthecoastal Massive icealsooccurswithinglacially GEOGRAPHY. ENVIRONMENT. SUSTAINABILITY. 03(09)2016 (mean Sea, ishighlydepleted isotopes inheavy Beaufort inthesouthern Island (69°N,139°W), limit oftheLaur icewithinbutclosetoMassive theglacial allochthonous. ice asheterogeneous: autochthonous and interpretations themassive anddetermined al., 2004]. Y.K. Vasilchuk agreed withthese CO icewasacquired movementrich of during the CO that itissegregated-intrusive ice, because oftheformer suggestisotopic properties to –22.6 of about–30 of theicechangeabruptlyfrom anaverage δ than thosefor airtrappedinglaciericeand concentrations thatare 3–9timeshigher massive iceonHerschelIsland. However, an water sourceindicate for afull-glacial the noted thatsuchstable isotope signatures [Fritz et al., 2011,2012]). These authors 13 2 C valuesintherangeofCO through thesediments, giving CO 2 content and δ O 18 O value:–33 (for Holoceneice).Physical and O entide IceSheet,onHerschel (for Late Pleistocene ice) 3 plant material [Lacelleet plantmaterial δ 13 C value in O ; δ D: –258 δ 2 18 produced the debris- O values O 2 ;

changes ( isotope plotswithanarrow rangeofisotopic formation. Homogeneous, undifferentiated of massive icerelates ofice to thetype laterally (Fig. 5). The shapeofisotopic plots when there isnoinflow ofwater (Fig. 6and7). for iceformation thefinal phaseofinjection ofsegregationtypical iceformation, orrarely inflowing water. Closed-system freezing is formed inaclosedsystem, where there isno Δδ of isotopic changes( contrast, isotope plotswithawiderange water underhomogeneousconditions. By an opensystem, withfreezing ofinflowing < 32 both heterogeneous Herschel Islandvaries, andtheiceincludes suggested thattheorigin ofmassive iceon the upper10–15mofpermafrost. Y.K. Vasil’chuk area andinplacesconstitutes upto 70%of inthis type is themostcommonmassive-ice Pollard [1990]concludedthatsegregated ice segregated-intrusive origin asglaciallydeformed segregated or of system leadsto acontrastingdistribution ice formation. Icesegregation inaclosed nature ofthewater andtheconditionsof An initialisotopic signature indicates the the regional isotopic record oficeformation. they have more thandifferences similarities in in RussiaandCanada(Fig. 5–7)showsthat Comparison of BP(Fig. theHoloceneand20–40 ka between 4). that mostofthemassive iceaccumulated Vasil’chuk [2014]. agessuggest The radiocarbon within massive iceinCanadaare analyzed by of organic microinclusions andtrappedgases (AMS) dating radiocarbon mass spectrometry acceleratorRussia andCanada,direct the sedimentsthatsurround massive icein datingoforganic in material Radiocarbon types. STABLE ISOTOPE CURVES NORTH AMERICA, AND CORRELATION OF DATING OF MASSIVE ICE OF RUSSIA AND D range>64 δ 18 O O and ) characterize massive) characterize iceformed in δ 18 O range<4 δ D values, both vertically andD values, bothvertically isotopic plotsofmassiveice O ) characterize massive) characterize ice ice cannotbeexcluded. Δδ and 18 O O range>8 homogeneous , Δδ D range< O , d –Bovanenkovo Vasil’chuk, [Y.K. 2012]; Lake [Wolfe, 1998]. Contwoyto 96BGS-06, e–borehole Vasil’chuk,c –Gyda [Y.K. 1992]; Vasil’chuk Yu.K.,ST J.B. Murton a–d Yamal Peninsula: a–d freezing. closed-system under formed permafrost, (e) Canadian and (a–d) Russian of ice massive of plots isotope oxygen of comparison 5.The Fig. g –Peninsula Point 1998]; al., et [Moorman 1996]. Island al., et [Moorman h–Herschel e –Tanyurer River valley [Kotov, 1998], f–Peninsula Point Tuktoyaktuk) of (4.5 southwest km [Kato 1988], al., et а –Bovanenkovo Vasil’chuk, [Y.K. 2012], b–Tyurinto Lake, c–Tab-Salya town, d–Gyda Vasil’chuk, town [Y.K. 1992], Sites: permafrost. Canadian in ice from material organic of 14C dating AMS direct by obtained f–h permafrost, Russian in ice massive surrounding sediments host from material organic of by14C dating obtained a–e ice: massive BP) of (years ages radiocarbon the of Comparison 4. Fig.

a – Erkutayakha [Y.K. Vasil’chuk, [Y.K. a –Erkutayakha 2012]; b–Kharasavey [Belova, 2012]; ABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

13 GEOGRAPHY 14 GEOGRAPHY GEOGRAPHY. ENVIRONMENT. SUSTAINABILITY. 03(09)2016

Fig. 6. The comparison of oxygen isotope plots of massive ice from Russian permafrost, formed under open- and closed-system freezing. a – Cape Shpindler on Yugorski Peninsula: 1–5 – different parts of exposure [Ingólfsson and Lokrantz, 2003]; b – Yuribey, Gydan Peninsula [Kritsuk, 2010]; c – i – different parts of the Ledyanaya Gora (or Ice Mountain) exposure, on the right bank of the Yenisey River near the Arctic Circle [Vaikmäe and Karpov, 1986; Vaikmäe and Y.K. Vasil’chuk, 1991]; j – Onemen Bay, Chukotka [Kotov, 2001]. Vasil’chuk Yu.K.,ST J.B. Murton ABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

Fig. 7. The comparison of oxygen isotope plots of massive ice of Canadian permafrost, formed under open- and closed-system freezing: a – Involuted Hill site, to the northeast of Tuktoyaktuk [Mackay, 1983]; b – Peninsula Point (4.5 km southwest of Tuktoyaktuk) [Fujino et al., 1988]; c – Peninsula Point [Moorman et al., 1998]; d – 7 km to the east of Ya Ya Lake, on southern Richard Island [Dallimore and Wolfe, 1988]; e – Lousy Point, near Ya Ya Lake, on southern Richard Island [Dallimore and Wolfe, 1988], f – g Willow River region, Aklavik Plateau, Richardson Mountains: f – profile of site WR-00-5, g – profile of site WR-00-3 [Lacelle et al., 2004]; h – 5 km southwest of Tuktoyaktuk [Kato and Fujino, 1981]; i – southern Eskimo Lakes region, Tuktoyaktuk Coastlands [French and Harry, 1990], j – Crumbling Point, Summer Island, Tuktoyaktuk Coastlands [Murton et al., 2005].

15 GEOGRAPHY 16 GEOGRAPHY 8. French H.M., Harry D.G. (1990). Observations on buried glaciericeandmassive French D.G. onburied seg- (1990).Observations H.M.,Harry 8. French H.M.(2007). The Periglacial Environment. Third Edition.John Wiley andSonsLtd: 7. (Com- tolshch ZapadnojSibiri stroenie merzlykh G.I.(2002).Sostav ikriogennoe Dubikov 6. DanilovI.D. iceandsubaquous (Massive 1989. Plastovye kriolitogenez ldyisubakvalnyj 5. Dallimore S.R., Wolfe ground S.A.(1988).Massive iceassociated withglacifluvialsedi- 4. Cardyn I.D., R.,Clark LacelleD., B., Lauriol Zdanowicz C.,CalmelsF. gasra- (2007).Molar 3. ice (Massive morya poberezhya BelovaN.G.2014.Plastovye ldyyugo-zapadnogo Karskogo 2. Astakhov V.I., Isayeva L.L.(1988). The anexampleof “Ice Hill”: ‘redarded deglaciation” inSibe- 1.  CONCLUSIONS GEOGRAPHY. ENVIRONMENT. SUSTAINABILITY. 03(09)2016   REFERENCES

proposed inthefuture. New mechanismswillundoubtedly be sediments.of massive iceinsalinelake the original mechanismoftheformation ice formation. The seniorauthorproposed agesandmechanismsofmassive- selected alltheThe studyconsiderspractically massive-ice deposits. massive-ice homogeneous andheterogeneous atitshighestlevel:new categories depositsintroduces twomassive-ice A newgeneticclassificationof the Yamal Peninsula ofwestand Siberia are commoninpermafrost exposures in Assemblages ofdifferent types massive-ice pp. 31–43.DOI: 10.1002/ppp.3430010105. regated ice, western coast,Canada.Permafrost arctic andPeriglacial Processes, vol. 1, Chichester. Geos Publishing House, 246pp. (inRussian). ofthePermafrost Structure position andCryogenic Strataof Western Moscow: Siberia). Press, University Moscow pp.ED (ed.). Moscow: 16–29.(inRussian). Study), Issledovaniya(Geocryological Yershov Geokriologicheskie In cryolithogenesis). ence onPermafrost, (ed.). SennesetK. Tapir Publishers: Trondheim, Norway, pp. 132–138. ments, Island, Richards N.W.T., Proceedings Canada.In oftheFifth Confer- International yqres.2007.05.003. Research, vol.ice bodiesinpermafrost. 68,pp. Quaternary 239–248.DOI:10.1016/j. tios ofairentrappedinice:Anewtool to theorigin determine ofrelictmassive ground MAKS Press, Sea).Moscow: beds ofsouth-western 180pp. coastoftheKara (inRussian). ScienceReviews, vol. 7,pp. Quaternary ria. 29–40.DOI:10.1016/0277-3791(88)90091-1. isotope analyses). Research (grant RFBRNo. 14-05-00795,stable a grant from theRussianFoundation for Basic generalisation ofstableisotope data)andby Foundation (grant RSFNo. 14-27-00083, bytheRussianScientificsupported Research by Yu.Vasil’chuk isfinancially  ACKNOWLEDGMENTS

northwest Canada. northwest the Tuktoyaktuk Coastlands and Yukon of of massive ice. assessment oftheisotopic characteristics and horizontal size facilitates objective ice ongraphs withasinglevertical Plotting ofisotopic datafrom massive  19. Kato K., F K., Kato 19. Ivanova V.V. plastovyk (2012). Geokhimiya 18. Ó., Ingólfsson ground H.(2003).Massive Lokrantz icebodyofglacialorigin at Yugorski 17. J.A. Hyatt (1998). ground iceat The origin oflake-bed Water Pond SupplyLake, Inlet, 16. S.H.,ChangC.C.Y. Hurlbert oftheCentral Andes. (1984).AncientIceIslandsinSaltLakes 15. HolmsenG.(1914).Spitsbergens jordbundsisharkun- ogdebidragdensundersøkelse 14. S.S.(1969).Stroenie Gasanov formirovaniya iistoriya myorzlyh porod Vostochnoj Chukot- 13. ofthe (1988).Characteristics SasaG.,Shimizu O., Fujino K. K., Sato S.,Matsuda Kato K., 12. F 11. Fritz M., Wetterich H.,LantuitPreusser L.,Meyer S.,Schirrmeister F., Pollard W.H. (2012). 10. Fritz M., Wetterich L.,LantuitH.,Pollard H.,Schirrmeister S.,Meyer W.H. (2011).Origin and 9. Vasil’chuk Yu.K.,ST J.B. Murton pp. 13–20. S.(ed.). ofLow Institute Kinosita Temperature University, Sapporo, Science: Hokkaido Canada,July to August 1980,andFebruary topermafrost, March, North 1981,S. JointStudies onphysical andbiological Canada.In environments inthe North tuk, Zemli, N1,pp. 56–70(inRussian). of formation ofmassive ground Island, Arctic).Kriosfera icebodies(NewSiberia Siberian genezisa(Geochemicalfeatures otrazheniye uslovijikh kak Arktika ostrova, Rossijskaya 10.1002/ppp.455. Peninsula, ArcticRussia. Permafrost andPeriglacial Processes, vol. 14,pp. 199–215.DOI: Nordicana, N57,pp. 757–762. Yellowknife. Canada,Lewkowicz A.G.,Allard ProceedingsNunavut, Canada.In Conference ofthe7thInternational onPermafrost, Science, vol. 224,pp. 299–302.DOI:10.1126/science.224.4646.299. 1–150pp. 1913, Kristiania: BXXIV, Årbok, found inArctic environments). Selskabs Geografiske 1912– Norske Det in Spitsbergen toward andcontributions theunderstandingofperennial ground ice isleierijorden.net gi landoptrædendevarige (Ground tilforstaaelsen ice adeiarktiske 168pp. (inRussian). Nauka, Moscow: oftheFrozen StructureandtheFormation History Grounds Chukotka): inEastern (The ki Norway, pp. 143–146. ConferenceInternational onPermafrost, (ed.). SennesetK. Tapir Publishers: Trondheim, massive ground icebodyinthewestern Proceedings CanadianArctic. In oftheFifth pp. 316–321. ConferenceInternational onPermafrost. NationalAcademy Press: Washington, D.C., delta,N.W.T.,from amassive icebodyinMackenzie Proceedings Canada.In oftheFourth ogy, vols. 319–320,pp. 28–45.doi:10.1016/j.palaeo.2011.12.015. along the Yukon Coastal Plain, Canada.Palaeogeography, Palaeoclimatology, Palaeoecol- BeringiaEastern andbeyond: Late Wisconsinan andHolocenelandscapedynamics Processes, vol. 22,pp. 26–38.DOI:10.1002/ppp.714. vealed bystablewater Isotope andhydrochemical signatures. Permafrost andPeriglacial asre- CanadianArctic) ofmassive groundcharacteristics iceonHerschelIsland(Western ujino K., Horiguchi K., Shinbori M., Kato ShinboriM.,Kato HoriguchiK., ujino K., ujino K. (1981). Oxygen isotopic (1981).Oxygen compositionofmassive iceat ujino K. Tuktoyak- ABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE K. (1983). Analysis and characteristics ofcores (1983).Analysisandcharacteristics K. M. (eds.). Universite Laval, Canada.Collection h ldovostrova Novaya Sibir, Novosibirskie

17 GEOGRAPHY 18 GEOGRAPHY 31. Mackay J.R. (1971). Mackay BedsinPermafrost, Icy The Origin ofMassive Western Coast, Arctic 31. Lorrain R.D., P. Demeur (1985). Isotopic evidencefor relic Pleistocene glaciericeon Vic- 30. Leibman M.O., H.-W., Hubberten Lein A.Y., I.D., Streletskaya Vanshtein B.G. (2003). Tabular 29. LacelleD., Davila A.F., Pollard W.H., AndersenD., C.P. M.,McKay HeldmannJ., Marinova 28. LacelleD., St-Jean B., I.D., M.,Lauriol Clark Lewkowicz A.,Froese D.G, KuehnS.C., 27. 26. LacelleD., J., Bjornson B., I.D., Lauriol Clark Troutet Y. (2004).Segregated-intrusive iceof 25. 2 . LacelleD. (2011).Onthe 24. L.N.(2010).Podzemnye Kritsuk (Ground ldyZapadnojSibiri Iceof Western Siberia). 23. vdolinereki KotovA.N.(1998).Kriolitogennye gryady Tanyurer, cryo- (The Chukotka 22. KorolevS.Y. Amguehmy pozdneplejstocenovogo vdolinereki gletch- (1993).Nakhodka 21. Sato datingbyaccelerator S.,Fujino massspectrometry K., (1988).Radiocarbon Kato K. 20. GEOGRAPHY. ENVIRONMENT. SUSTAINABILITY. 03(09)2016 Canada. Canadian Journal of Earth Sciences, vol. ofEarth 8/4,pp.Canada. Canadian Journal 397–422.DOI:10.1139/e71-043. 10.2307/1550964. Island,toria CanadianArcticArchipelago. ArcticandAlpineResearch, 17,pp. 89–98.DOI: Publishers:(eds.). A.A. Balkema Lisse, Netherlands, pp. 645–650. Conference8th International onPermafrost, M.Phillips M.,Springman S.M.,Arenson L. study. Proceedings In ground andisotope-geochemical ofthe iceorigin: cryolithological ScienceLetters, andPlanetary vol.Earth 301,pp. 403–411. isotope astracersofsublimationinhyper-arid UsingstableO–H of Antarctica: regions. ofmassive ground(2011). Stability icebodiesinUniversity Valley, McMurdo Dry Valleys 28, pp. 3401–3413.DOI:10.1016/j.quascirev.2009.09.013 Creek valley, Ogilvie Mountains, central Yukon, ScienceReviews, vol. Canada.Quaternary ofa30,000year oldperennial snowbankinRed andpreservation Zazula G.(2009).Burial Yukon Territory. Research, vol. 68,pp. Quaternary 249–260.DOI:10.1016/j.yqres.2007.05.002. massive ground-ice morainecomplex,central cene-age bodyexposedintheChapmanLake Lacelle D., B., I.D., Lauriol Clark Cardyn R.,Zdanowicz C.H.(2007).Nature andorigin ofaPleisto- rev.2003.09.005. N.W.T., ScienceReviews, vol. 23,pp. Canada.Quaternary 681–696.DOI:10.1016/j.quasci- origin inretrogressivesubglacial meltwater thaw flowheadwalls, Mountains, Richardson Periglacial Processes, vol. 22,pp. 13–25.DOI:10.1002/ppp.712. freezing: equilibrium theoreticalduring approach andfieldexamples. Permafrost and Nauchny Mir PublishingNauchny Mir House:Moscow, 351pp. (inRussian). 62–71 (inRussian). inthevalleyof lithogenic ridges Tanurer Zemli, Kriosfera vol. 4,pp. (Chukotka). River vol. 329,pp. 195–198(inRussian). Nauk, Akademii Rossijskoj Doklady Chukotka). (Northern valley oftheAmguemaRiver oftheLate Pleistocene glaciericeinthe discovery (The lda,Severnaya Chukotka ernogo Temperature University, Sapporo, Science:Hokkaido pp. 58–69. relatedCanadian Arctic to paleoclimatology 1986–1987,Fujino (ed.). ofLow Institute K. ofthemassive ground Characteristics icebodyinthewestern In report. preliminary on sedimentinacore N.W.T., Delta, from amassive icebodyinMackenzie Canada: δ 18 O, O, δ D and d-excess relationsD andd-excess precipitation inmeteoric and 3. Moor 39. F.A. Michel Canada.Permafrost ofground (2011).Isotope characterisation iceinnorthern 38. F.A. Michel (1998). The relationship ofmassive ground iceandtheLate Pleistocene his- 37. F.A. Michel inpermafrost (1983).Isotope waters variations alongtheDempsterHighway 36. 3. M 35. J.B., Murton Whiteman C.A., Waller R.I.,Pollard W.H., I.D., Clark Dallimore S.R.(2005). 44. J.B., Murton Waller J.K., R.I, Hart Whiteman C.A.,Pollard W.H., I.D. Clark (2004).Stratigraphy 43. J.B. Murton (2009). Stratigraphy andpalaeoenvironments ofRichards Island and the 42. J.B. Murton (2005). Ground-ice stratigraphyHead, andformation atNorth Tuktoyaktuk 41. B.J., F.A., Moorman Michel Wilson A.T. (1998). The development oftabularmassive 40. 3. aky J Mackay 34. J.R. inpermafrost, isotope (1983).Oxygen variations Mackay Tuktoyaktuk Peninsula area, 33. J.R. (1973).Problems Mackay intheorigin ofmassive icebeds, western ArcticCanada. 32. Vasil’chuk Yu.K.,ST J.B. Murton and Periglacial Processes, vol. 22,pp. 3–12.DOI:10.1002/ppp.721. S1040-6182(97)00005-0. vol. International, 45/46,pp. Quaternary 43–48.DOI:10.1016/ Siberia. ofNorthwest tory Fairbanks. NationalAcademy Press: Alaska. Washington, pp. 843–848. Proceedings In Conferencepipeline "corridor" ofthe4thInternational onPermafrost. BranchoftheRAS,Publishingrian House, Branchofthe RAS,2000,343pp. Siberian version). Konishchev VN (ed.). ScientificPublishing Novosibirsk: Center oftheUIGGM,Sibe- Canada. Canadian Journal of Earth Sciences, vol. ofEarth 29,pp.Canada. CanadianJournal 1235–1249. DOI:10.1139/e92-099. Basal ice facies and supraglacial melt–out till oftheLaurentide IceSheet, Basal icefacies andsupraglacialmelt–out Tuktoyaktuk pp. 399–412.DOI:10.3189/172756504781829927. the Laurentide IceSheet, Tuktoyaktuk Coastlands, ofGlaciology, Canada. Journal vol. 49, and glaciotectonic structuresof permafrost margin deformed beneaththenorthwest of and Periglacial Processes, vol. 20,pp. 107–125.DOI:10.1002/ppp.647. thelastglacial–interglacial Continental Shelfduring Beaufort eastern Permafrost cycle. frost andPeriglacial Processes, vol. 16,pp. 31–50.DOI:10.1002/ppp.513. Coastlands, western ArcticCanada:aproductofglacier–permafrost interactions. Perma- Nordicana, N57,pp.lection 757–762. Conference onPermafrost, Lewkowicz AG, Allard M.(eds.). Universite Laval, Canada.Col- ground ice atPeninsula Point, N.W.T., Proceedings Canada.In ofthe7thInternational 2-P. pp. 257–266.DOI:10.1002/(SICI)1099-1530(199609)7:3<257::AID-PPP220>3.0.CO; ground ice, Western CanadianArctic. Permafrost andPeriglacial Processes, vol. 7, 83–1B, pp. 67–74. Northwest Territories. Current Research, In ofCanada,Paper Part B. Geological Survey Contributions, American pp. 223–238. North July 1973,Péwé JR(eds).NationalAcademy ofSciences: TL, Mackay Washington D.C., ProceedingsIn Conference ofthe2ndInternational onPermafrost, Yakutsk, USSR,13–28 elnikov elnikov V.P., Spesivtsev V.I. (2000).Cryogenic man B.J., F.A., Michel Wilson A.(1996). .R., Dallimore S.R.(1992).Massive iceofthe Tukt ABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE formations intheearth’s lithosphere (graphic 14 C datingoftrappedgasesinmassive oyaktuk area, western Arctic coast,

19 GEOGRAPHY 20 GEOGRAPHY 5 . Vaikmäe R.A., Vasil’chuk Y.K. ldovsevera analizpodzemnykh kislorodnyj (1991).Izotopno 55. Vaikmäe R.A.,Karpov Y.G. (1986).Studyoftabular ground icebodiesfrom theLedyanaya 54. 5. Str 53. Solomatin V.I. (2013).Fizika igeografiya podzemnogo oledeneniya (Physics andGeog- 52. N.A.(2014).Permafrost Shelf. Shpolyanskaya oftheRussianArctic (Cryolithozone) Univer- 51. 50. RobinsonS.,Pollard W. Fos- ground (1998).Massive Soundbedrock, icewithinEureka 49. Rampton V.N. (1988).Origin ofmassive ground iceon Tuktoyaktuk Peninsula, Northwest 48. Ponomarev V.M. (1960).Formirovanie vod podzemnykh popoberezhyu morej severnykh 47. Pollard W., Bell T. SoundLowlands: iceformation (1998).Massive intheEureka Aland- 46. Pollard W. (1990). The nature andorigin ofground iceintheHerschelIslandarea, Yukon 45. GEOGRAPHY. ENVIRONMENT. SUSTAINABILITY. 03(09)2016 Zapadnoj Sibiri, Zapadnoj Sibiri, Yakutii isotope (Oxygen analysesofground ice north-west iChukotki and Geology, vol. 10,pp. 32–38.DOI:10.1080/10889378609377270. inthe Gora section Yenisey isotope valleyusingthe Oxygen method. Polar Geography pp. 60–76. Russia). Geography, Seacoasts(NWSiberia, the Kara Environment, Sustainability, N3, Pleistocene –Holocenepaleoenvironmental records from permafrost sequencesat Russian). raphy ofGround Academic Glaciation).Novosibirsk: Publishing House “Geo”, 246pp. (in ofGeoscience,sal Journal vol. 2,pp. 7–17.DOI:10.13189/ujg.2014.020102. pp. 415–420. 25–29 June2012. Vol. 2. Russia, Salekhard, Publisher: The Northern ence onPermafrost, Melnikov V.P., Drozdov D.D., Romanovsky V.E. (eds.). Salekhard, Cape, the Marre-Sale West Yamal. Proceedings In ofthe Tenth Confer- International position ofcomplexmassive sediments of icebodiesinLate Pleistocene-Holocene O.L.,Slagoda E.A.,Opokina Kurchatova A.N.,Rogov V.V. andcom- (2012).Structure Laval, Nordicana, Canada.Collection N57,pp. 949–954. ence onPermafrost, Yellowknife. Canada,Lewkowicz A.G.,Allard M.(eds.). Universite heim Peninsula, Ellesmere Island, N.W.T. Proceedings In Confer- ofthe7thInternational (ed.). Senneset K. Tapir Publishers: Trondheim, Norway, pp. 850–855. Territories, Proceedings Canada.In oftheFifth Conference International onPermafrost, ences. 1960.95pp. (inRussian). Publishing HouseoftheUSSRAcademy ofSci- seas).Moscow: coast ofthenorthern (Undergroundv zone vechnoj merzloty waters formation inthepermafrost alongthe Nordicana, N57,pp. 903–908. lowknife. Canada,Lewkowicz A.G.,Allard M. Proceedingsscape model. In Conference ofthe7thInternational onPermafrost, Yel- National Research Council ofCanada,pp. 23–30. ence. Nordicana, Collection N54.Centre d’etudes Nordiques, Universite Laval. Quebec: Territory. Permafrost In –Canada.Proceedings oftheFifth CanadianPermafrost Confer- DOI: 10.1016/j.quascirev.2004.06.008. ScienceReviews,Coastlands, vol. western Arctic24:681–708. Canada.Quaternary eletskaya I.D.,eletskaya GusevE.A., Vasiliev A.N.(2013). A.A.,OblogovG.E.,Molodkov (eds.). Universite Laval, Canada. Collection 6 . Vasil‘chuk Y.K., Vasil‘chuk A.C.,Budantseva N.A.,ChizhovaJ.N., Papesch W., Podborny Y.Y.,66. Vasil‘chuk Y.K., Trofimov andmassive inice-wedge isotopeVT. (1988).Oxygen variations 65. Vasil‘chuk Y.K. (2014).Izotopnye metody vgeografii. Chast2.Geohimiyastabilnyh izotop- 64. Vasil‘chuk Y.K. formation,age (2013).Syngeneticicewedges: radiocarbon cyclical 63. Vasil‘chuk Y.K. (2012).Izotopnye metody vgeografii. Chast2.Geohimiyastabilnyh izotop- 62. Vasil‘chuk Y.K. Proceedings Ice. (2012).Classificationof Massive In ofthe Tenth In- 61. Vasil‘chuk Y.K. (2011).Gomogennye igeterogennye plastovye ledyanye zalezhivmno- 60. Vasil‘chuk Y.K. sostav ldov(opytpaleogeokrio- kislorodnyj (1992).Izotopno podzemnykh 59. Vasil‘chuk A.C., Vasil‘chuk Y.K. (2012).Pollen andSpores IceOrigin asMassive Indicators. In 58. Vasil‘chuk A.C., Vasil‘chuk Y.K. for 2010.Local asanewcriterion nonglacial pollenspectra 57. F.A., Vaikmäe R.,Michel Solomatin V.I. (1993).Morphology, stratigraphy andoxygen 56. Vasil’chuk Yu.K.,ST J.B. Murton Sulerzhitsky L.D. oftheOrigin and Indication IsotopeSulerzhitsky 2009.Oxygen andDeuterium Trondheim. Norway. Tapir Publishers, pp. 489–492. Proceedingsice. In oftheFifth Conference International onPermafrost, (ed.). Senneset K. Uiversiteta, 244pp. Moskovskogo (inRussian). Izdatelstvo ldov.ov plastovyh Tom Ice. ofMassive 2.(StableIsotope Geochemistry Vol. 2.).Moscow: DOI: 10.1002/ppp.1764. records.and stable-isotope Permafrost andPeriglacial Processes, vol. 24,pp. 82–93. Uiversiteta, 472pp. Moskovskogo (inRussian). Izdatelstvo ldov.ov plastovyh Tom Ice. ofMassive 1.(StableIsotope Geochemistry Vol. 1.).Moscow: pp. 493–497. (eds.). 25–29June2012. Salekhard, Vol. Publisher, 2.Salekhard: The Northern Russia, Conferenceternational onPermafrost, Melnikov V.P., Drozdov D.D., Romanovsky V.E. frost). Zemli Kriosfera 1,vol. 40–51(inRussian). (HomogeneousandHeterogeneous porodakh IceinPerma- Massive goletnemyorzlykh volumes. Vol. 1,420pp., vol. 2,264pp. (inRussian). 2 for In University, Construction). Research ofEngineering Survey Institute Industrialand oftheoretical problems theRussianAcademy(Department ofSciences. State Moscow problem teoreticheskih Paleogeocryological ran,MGU, Izd. Otdel Reconstruction)). PNIIIS Isotope (Oxygen compositionofGround rekonstrukcij Ice(Application to logicheskikh Russia,pp.Salekhard, 487–491. D.D., Romanovsky V.E. (eds.). 25–29June2012. Salekhard, Vol. 2. Publisher: The Northern Proceedings ofthe Tenth Conference International onPermafrost, Melnikov V.P., Drozdov ences, vol. 433,pp. 985–990.DOI:10.1134/S1028334X10070305. origin ofmassive ice. Transactions ofRussianAcademy Sci- (Doclady) ofSciences, Earth Boreas, vol. 22,pp. 205–213.DOI: 10.1111/j.1502-3885.1993.tb00180.x. isotope compositionoffossil glaciericeatLedyanaya Russia. Siberia, Gora,Northwest oftheEstonia AcademyInstitute ofScience).70 pp. (inRussian). Siberia, Yakutia andChukotka). Tallinn: NaukEhstonii (Geology geologii Akademii Iinstitut 429, pp. 1326–1332. DOI:10.1134/S1028334X09080194. Age Ice, oftheMassive Bovanenkovo, Central Yamal Sciences Earth Peninsula. Doklady ABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE 14 C

21 GEOGRAPHY 22 GEOGRAPHY eevd2.421 Accepted 29.08.2016 Received 24.04.2016 76. Wolfe deltasedimentsSlave iceassociated S.A. (1998).Massive withglaciolacustrine 75. A.F. B.I., Glazovskiy Vtyurin (1986).Composition andstructureoftheLedyanaya Gora 74. B.I. (1975).Podzemnye Nauka, Vtyurin ldySSSR(Ground Iceofthe USSR).Moscow: 73. Vasil’chuk Y., BudantsevaN., Vasil’chuk A.,ChizhovaJ., Podborny Y., 72. Vasil’chuk J. (2016b). 7. V 70. Vasil'chuk Y, Vasil'chuk ofmeanwinter airtemperatures A.(2014).Spatialdistribution in 69. Vasil'chuk Y.K., Vasil'chuk A.C.,BudantsevaN.A.(2012).Isotopic andpalynological compo- 68. 7. V 71. 6 . Vasil’chuk Y.K., BudantsevaN.A., Vasil’chuk A.C.(2011). Variations in 67. GEOGRAPHY. ENVIRONMENT. SUSTAINABILITY. 03(09)2016 sive ice). universiteta.Vestnik geologiya, Seria N3,pp. Moskovskogo 35–42(inRussian). Zhestkova T.N, Shur Y.L. ldov (On the genesisoftabularmas- (1978).Ogeneziseplastovykh Nordicana, N57.Canada,pp.lection 1133–1139. Proceedings. Yellowknife. Canada.Lewkowicz AG, Allard M(eds.). Universite Laval, Col- geological province, N.W.T., Permafrost. Canada.In Conference. Seventh International 273–285. DOI:10.1080/10889378609377297. tabular ground icebodyonthe Yenisey. Polar Geography andGeology, vol. 10,pp. 214 pp. (inRussian). west GeoResJ, Siberia. 9,pp. 54–67.DOI:10.1016/j.grj.2016.09.002. mouth, Holocene multistagemassive River ice, Sabettayakha Yamal Peninsula, northern- Cold Regions Siberia. Scienceand northwestern Technology, vol. 128,pp. 13–21. A.C. (2016a).StableIsotopes intheclosed-system Weather Pingo, andPestsovoye Alaska Pingo, DOI: 10.1111/bor.12033. BPusingoxygen isotope data.Boreas, permafrost at20–18ka Siberian vol. 43,pp. 43–52. Sciences, vol. 446,pp. 1105–1109.DOI:0.1134/S1028334X12090164. River,sitions ofamassive iceintheMordyyakha Central Yamal Earth Peninsula. Doklady 438, pp. 721–726.DOI:10.1134/S1028334X11050382. ofthe part inthesouthern River Erkutayaha Yamal Sciences, vol. Earth Peninsula. Doklady concentration ofpollenandspores inautochthonic heterogeneous massive iceonthe field, Central Yamal Peninsula. Geography, Environment, Sustainability, N2,pp. 49–70. 14 asil’chuk Y.K., Lawson D.E., Yoshikawa BudantsevaN.A.,ChizhovaJ.N., Podborny K., Y.Y., Vasil’chuk asil'chuk Y.K., Vasil’chuk A.C.,BudantsevaN.A.,ChizhovaJ.N., Papesch W., Podborny Y.Y. (2014). C age, stableisotope compositionandpollenanalysisofmassive ice, gas Bovanenkovo δ 18 O, O, δ D, andthe Vasil’chuk Yu.K.,ST J.B. Murton Siberian yedoma andmassiveSiberian ice. monographs, more ofthemare devoted to ageof isotope compositionandradiocarbon papers into four English).Hehaswritten and15geocryological textbooks university lithalsas, pingosandglaciers, aswell asinsoilsandlandscapes (including more than60 isotopesabout 250papersonstableandradioactive intheicewedges, massive ice, palsas, mouth, Yamal etc. publicationsincludeaslead-author Peninsula, His Chukotka, ofeastern anduniqueHolocenemultistagemassive River River ice, Sabettayakha in theMordyyakha studied theisotope compositionofmassive iceatBovanenkovo, River, ontheErkutayaha complexesGora polygonal ice-wedge ofAldanRiver, , etc. River Mayn Hehas River, complexes mountainpolygonaland Utinaya atupperKolyma ice-wedge Mamontova Plakhinsii Mys, Yar, Bison,Duvanny Yar, River, inthelower northern Yakutia, Phoenix the ‘Yedoma Suite’, atZelyony Siberia, northwestern atSeyahaandMongatalyangyakha, wedge isotopeof isbasedonafieldstudyin1976–2016oftheRussianstratotypes work massive iceandwedges, palsasandpingos, aswell ice- asinsoilsandlandscapes. His research interests have isotopes withtheuseofstableandradioactive in beenconcerned asamemberoftheRussianAcademy2009. Hewaselected ofNaturalSciencesin2004.His YurijVasil’chuk Department Landscape Geochemistry andSoilGeography in LandscapeGeochemistry Department and wasappointed to thepositionoffullprofessor atthe State in1996, University ofMoscow and GlaciologyDepartment in 1991.Hehasheldprofessorial positionsattheCryolithology in 1982,andhisD. Sc. degree from thePermafrost ofRAS Institute glaciers. Heobtained hisPhD from State University theMoscow researchHis focuses onisotope geochemistry, ground iceand and geologist whospecializes inthepermafrost environments. andSoilGeography.Landscape Geochemistry Heisageographer Lomonosov State of University, Moscow theDepartment isProfessor ofPermafrost Scienceatthe ABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

23 GEOGRAPHY 24 GEOGRAPHY GEOGRAPHY. ENVIRONMENT. SUSTAINABILITY. 03(09)2016 outburst floodingpublishedin Periglacial Geomorphology, andlead-authorpapersonrock Agassiz fracture andLake papersongroundtwo iceandinvolutions reproduced volume on inabenchmark inthe megaslump atBatagaika, Yana Uplandsofnorthern Yakutia. publicationsinclude His the ‘Yedoma Suite’, atDuvanny Yar, River, inthelower Kolyma northern Yakutia anda 2 and3. This research of isbasedonafieldstudyin2009–2016 of theRussianstratotypes current focus isonyedoma sedimentology Isotope andstratigraphy Stages Marine during environments.of glacier-permafrost andto interactions reconstructcold Quaternary A andinpastpermafrost regionsand Siberia) (NWEurope) to examinethegeological effects is complemented bygeological research inpresent-day permafrost regions (Canada,Alaska processesdevelop newtechnologies inrock andsoil. oncryogenic work This experimental intheSussexPermafrost tomodelling experiments test hypotheses and Laboratory on Siberian yedoma. on Siberian JulianMurton periglacial). periglacial). To physical achieve these aims, heperforms environments (glacial,reconstruction ofcoldQuaternary and Laurentide IceSheet,Canada;Anglian IceSheet,UK), (e.g. interactions permafrost-glacier solifluction); thermokarst, ground-ice andpermafrost thaw processes (e.g. rock fracture, archive ofenvironmental change, withtheaimsto elucidate: environments. research His focuses onpermafrost asadriverand geomorphology, sedimentology andstratigraphy ofpermafrost in1993.Heisageologist whospecialisesintheOttawa of Sussex.HeobtainedhisPhD ingeologyfrom of theUniversity Science and isProfessor ofPermafrost ScienceattheUniversity Nature . He has written ageological. Hehaswritten monograph