Astrophysical Implications of the Bumblebee Model of Spontaneous Lorentz Symmetry Breaking

Total Page:16

File Type:pdf, Size:1020Kb

Astrophysical Implications of the Bumblebee Model of Spontaneous Lorentz Symmetry Breaking Astrophysical implications of the Bumblebee model of Spontaneous Lorentz Symmetry Breaking Gonçalo Dias Pereira Guiomar Thesis to obtain the Master of Science Degree in Engineering Physics Supervisor(s): Prof. Dr. Vítor Manuel dos Santos Cardoso Prof. Dr. Jorge Tiago Almeida Páramos Examination Committee Chairperson: Prof. Dr. Ana Maria Vergueiro Monteiro Cidade Mourão Supervisor: Prof. Dr. Jorge Tiago Almeida Páramos Members of the Committee: Prof. Dr. Amaro José Rica da Silva November 2014 Acknowledgments This thesis could not have been possible without the help and guidance of my supervisor, Professor Jorge Páramos, with whom I rediscovered the joy of doing Physics. His immense patience when dealing with my incompetence, along with his immense knowledge of unorthodox working places made this work a fun and rewarding experience. Also, I would like to thank Professor Vítor Cardoso for his help and availability in the process of realizing this thesis. For my family, I am truly grateful for your continuous support and for providing me the opportunity of realizing my goals, no matter how uncertain they might have seem in the past. For my friends, who accompanied me throughout this journey, thank you for joining me in my culinary digressions. This last paragraph I dedicate to Geisa, for helping me collapse onto a better state of being. i Abstract In this work the Bumblebee model for spontaneous Lorentz symmetry breaking is considered in the context of spherically symmetric astrophysical bodies. A discussion of the modied equations of motion is presented and constraints on the parameters of the model are perturbatively obtained. Along with this, a detailed review of this model is given, ranging from the questioning of the basic assumptions of General Relativity, to the role of symmetries in Physics and the Dark Matter problem. Keywords General Relativity, Bumblebee Model, Lorentz Symmetry Breaking, Stellar Equilibrium (English) iii Resumo Neste trabalho, consideramos o modelo Bumblebee para a quebra espontânea da simetria de Lorentz no contexto de corpos celestes com simetria esférica. Uma discussão das equações de movimento mod- icadas é apresentada, juntamente com os constragimentos do modelo obtidos de modo perturbativo. De modo a contextualizar o modelo e o problema em questão, uma revisão é apresentada, onde se abordam temas tais como os fundamentos da Relatividade Geral, o papel das simetrias na física e o problema da matéria escura. Palavras Chave Relatividade Geral, Modelo Bumblebee, Quebra da simetria de Lorentz, Equilíbrio Estelar v Contents 1 Introduction 2 1.1 Thesis Outline.........................................3 1.2 Essential concepts.......................................3 1.3 General Relativity.......................................4 1.4 The limits of Einstein's Relativity..............................5 2 Astrophysics 9 2.1 Introduction........................................... 10 2.2 Tolman-Openheimer-Volkov equation............................. 10 2.3 Polytropes and the Lane-Emden Equation.......................... 12 3 Symmetry Breaking 15 3.1 Introduction........................................... 16 3.2 Explicit and Spontaneous Breaking of Symmetries..................... 17 3.3 Observer and Particle LSB.................................. 20 3.4 Standard Model Extension and LSB............................. 21 4 Vector Theories 25 4.1 Introduction........................................... 26 4.2 Aether Theories......................................... 26 4.3 The Bumblebee Model..................................... 34 5 Astrophysical constraints on the Bumblebee 37 5.1 Introduction........................................... 38 5.2 Static, spherically symmetric scenario............................ 38 5.3 Perturbative Eect of the Bumblebee Field......................... 39 5.4 Numerical analysis....................................... 41 6 Conclusions 45 Bibliography 47 vii List of Figures 2.1 Lane-Emden solution for a spherical body in hydrostatic equilibrium............ 14 3.1 Snowakes generated through a Linenmayer rule set for the rst, second and third iterations............................................. 16 3.2 The Mexican Hat potential.................................. 19 4.1 The Bullet Cluster....................................... 28 5.1 Prole of the relative perturbations pb=p0, pV =p0, ρb/ρ0 and ρV /ρ0 induced by the Bumblebee............................................ 42 5.2 Allowed region (in grey) for a relative perturbation of less than 1% for pb and ρb..... 43 5.3 Allowed region (in grey) for a relative perturbation of less than 1% for pV and ρV .... 44 ix List of Tables 5.1 Selected stars that used as models for the numerical analysis of the Bumblebee pertur- bation............................................... 43 5.2 Table of non-dimensional parameters............................. 44 xi Abbreviations GR - General Relativity TOV - Tolman-Oppenheimer-Volko LE - Lane-Emden EP - Equivalence Principle LLI - Local Lorentz Invariance LPI - Local Position Invariance EP - Equivalence Principle WEP - Weak Equivalence Principle SEP - Strong Equivalence Principle LSB - Lorentz Symmetry Breaking PPN - Parametrized Post Newtonian CPT - Charge Parity Time Symmetry GZK - Greisen-Zatsepin-Kuzmin CMBR - Cosmic Microwave Background Radiation CMBR - Cosmic Microwave Background Radiation HI-RES - High Resolution Fly's Eye SME - Standard Model Extension SM - Standard Model SSB - Spontaneous Symmetry Breaking QED - Quantum Electrodynamics MOND - Modied Newtonian Dynamics FLRW - Friedmann-Lemaitre-Roberston-Walker VEV - Vacuum Expectation Value 1 1 Introduction Contents 1.1 Thesis Outline...................................3 1.2 Essential concepts.................................3 1.3 General Relativity.................................4 1.4 The limits of Einstein's Relativity.......................5 2 1.1 Thesis Outline 1.1 Thesis Outline This work will begin by a small introduction of the relevant concepts needed from General Relativity in the subsection 1.2 and the current observed limitations of the theory in subsection 1.4. The Tolman- Oppenheimer-Volko equations are then introduced in Chapter2 along with the Lane-Emden (LE) model for spherical bodies, which will be needed in order to understand Chapter5. In Chapter3, the concept of Lorentz Symmetry Breaking (LSB), in both its explicit and spontaneous form, is introduced as a way to portray one of the fundamental properties of the model being used, the Bumblebee Model. This will later be introduced in4 as a particular case of the more general Aether Theories. The two nal chapters (5,6) contain the kernel of this work: The application of the models presented as a way of constraining their parameters using a spherical astrophysical body modeled by a polytrope. This thesis closely follows the work done in [1]. 1.2 Essential concepts Presently, Einstein's general theory of relativity serves as a tool to understand a wide range of phenomena. From the dynamics of compact astrophysical bodies, such as stars and black holes, to cosmology, its striking predictions have sustained this theoretical framework and made it one of the most relevant scientic achievements in the history of science [2]. The experimental conrmation of the existence of gravitational lensing, time dilation and gravi- tational redshift have solidied this fact but this by no means imply that the theory is completely correct; in fact, such consistence is a motivating factor for testing its limits even further. Questioning the basic assumptions of General Relativity is thus a valid way to achieve this goal, as they are the fundamental rule set from which it emerges. These basic assumptions can be expressed in the following manner [3]: Weak Equivalence Principle - Bodies in free fall have the same acceleration independently of • their compositions. Local position invariance - The rate at which a clock ticks is independent of its position. • Local Lorentz invariance - The rate at which a clock ticks is independent of its velocity. • This work shall focus on the second and third basic assumptions presented above. A more detailed discussion will be presented in3 in how this principle can be used to test the validity of physical theories. As a short introduction to the review that will be made in the following section, a small appetizer is given in the context of special relativity, showing how one can test the limits of such theory. The tests are based on testing the principles of relativity (physical laws are independent of the inertial frame of reference used to describe them) and the constancy of the speed of light. In the case of inertial frames of reference (which can always be found, at least in the vicinity of any given point in spacetime), this translates into invariance under Lorentz transformations, a tenet of Special Relativity: deviations from these transformations would also imply deviations from the underlying principles. 3 1. Introduction This can be approached through the Robertson-Sexl-Mansouri formalism, which consists on the known Lorentz transformations, vx t 2 x vt t0 = − c ; x0 = − ; y0 = y; z0 = z; (1.1) 1 v2 1 v2 − c2 − c2 q q altered in a way as to express a preferred frame of reference Σ(T; X~ ). The transformations now take the form, t ~.~x ~x 1 1 ~v~x T = − ; X~ = ~v + ~vT: (1.2) a d − d − b v2 With these transformations, it can be shown [3] that through an expansion of a; b; d and ~ around v=c2 one can obtain the following expression for the relative shift in the two way
Recommended publications
  • Oxford Physics Department Notes on General Relativity
    Oxford Physics Department Notes on General Relativity S. Balbus 1 Recommended Texts Weinberg, S. 1972, Gravitation and Cosmology. Principles and applications of the General Theory of Relativity, (New York: John Wiley) What is now the classic reference, but lacking any physical discussions on black holes, and almost nothing on the geometrical interpretation of the equations. The author is explicit in his aversion to anything geometrical in what he views as a field theory. Alas, there is no way to make sense of equations, in any profound sense, without geometry! I also find that calculations are often performed with far too much awkwardness and unnecessary effort. Sections on physical cosmology are its main strength. To my mind, a much better pedagogical text is ... Hobson, M. P., Efstathiou, G., and Lasenby, A. N. 2006, General Relativity: An Introduction for Physicists, (Cambridge: Cambridge University Press) A very clear, very well-blended book, admirably covering the mathematics, physics, and astrophysics. Excellent coverage on black holes and gravitational radiation. The explanation of the geodesic equation is much more clear than in Weinberg. My favourite. (The metric has a different overall sign in this book compared with Weinberg and this course, so be careful.) Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1972, Gravitation, (New York: Freeman) At 1280 pages, don't drop this on your toe. Even the paperback version. MTW, as it is known, is often criticised for its sheer bulk, its seemingly endless meanderings and its laboured strivings at building mathematical and physical intuition at every possible step. But I must say, in the end, there really is a lot of very good material in here, much that is difficult to find anywhere else.
    [Show full text]
  • Chapter 5 the Relativistic Point Particle
    Chapter 5 The Relativistic Point Particle To formulate the dynamics of a system we can write either the equations of motion, or alternatively, an action. In the case of the relativistic point par- ticle, it is rather easy to write the equations of motion. But the action is so physical and geometrical that it is worth pursuing in its own right. More importantly, while it is difficult to guess the equations of motion for the rela- tivistic string, the action is a natural generalization of the relativistic particle action that we will study in this chapter. We conclude with a discussion of the charged relativistic particle. 5.1 Action for a relativistic point particle How can we find the action S that governs the dynamics of a free relativis- tic particle? To get started we first think about units. The action is the Lagrangian integrated over time, so the units of action are just the units of the Lagrangian multiplied by the units of time. The Lagrangian has units of energy, so the units of action are L2 ML2 [S]=M T = . (5.1.1) T 2 T Recall that the action Snr for a free non-relativistic particle is given by the time integral of the kinetic energy: 1 dx S = mv2(t) dt , v2 ≡ v · v, v = . (5.1.2) nr 2 dt 105 106 CHAPTER 5. THE RELATIVISTIC POINT PARTICLE The equation of motion following by Hamilton’s principle is dv =0. (5.1.3) dt The free particle moves with constant velocity and that is the end of the story.
    [Show full text]
  • SPINORS and SPACE–TIME ANISOTROPY
    Sergiu Vacaru and Panayiotis Stavrinos SPINORS and SPACE{TIME ANISOTROPY University of Athens ————————————————— c Sergiu Vacaru and Panyiotis Stavrinos ii - i ABOUT THE BOOK This is the first monograph on the geometry of anisotropic spinor spaces and its applications in modern physics. The main subjects are the theory of grav- ity and matter fields in spaces provided with off–diagonal metrics and asso- ciated anholonomic frames and nonlinear connection structures, the algebra and geometry of distinguished anisotropic Clifford and spinor spaces, their extension to spaces of higher order anisotropy and the geometry of gravity and gauge theories with anisotropic spinor variables. The book summarizes the authors’ results and can be also considered as a pedagogical survey on the mentioned subjects. ii - iii ABOUT THE AUTHORS Sergiu Ion Vacaru was born in 1958 in the Republic of Moldova. He was educated at the Universities of the former URSS (in Tomsk, Moscow, Dubna and Kiev) and reveived his PhD in theoretical physics in 1994 at ”Al. I. Cuza” University, Ia¸si, Romania. He was employed as principal senior researcher, as- sociate and full professor and obtained a number of NATO/UNESCO grants and fellowships at various academic institutions in R. Moldova, Romania, Germany, United Kingdom, Italy, Portugal and USA. He has published in English two scientific monographs, a university text–book and more than hundred scientific works (in English, Russian and Romanian) on (super) gravity and string theories, extra–dimension and brane gravity, black hole physics and cosmolgy, exact solutions of Einstein equations, spinors and twistors, anistoropic stochastic and kinetic processes and thermodynamics in curved spaces, generalized Finsler (super) geometry and gauge gravity, quantum field and geometric methods in condensed matter physics.
    [Show full text]
  • Mathematical Theory and Physical Mechanics for Planetary Ionospheric Physics Jonah Lissner* Independent Researcher, USA
    emote Se R ns f i o n Lissner, J Remote Sensing & GIS 2015, 4:3 l g a & n r G u DOI: 10.4172/2469-4134.1000148 I S o J Journal of Remote Sensing & GIS ISSN: 2469-4134 Research Article Open Access Mathematical Theory and Physical Mechanics for Planetary Ionospheric Physics Jonah Lissner* Independent Researcher, USA Abstract In a dynamic system, e.g., Geometrodynamics geophysical isomorphisms from plasmasphere^i to ionosphere^ii, e.g., Upper-atmospheric lightning (UAL, sferics), Middle-atmospheric lightning and Lower-atmospheric lightning (MAL, LAL, sferics) and Terrestrial and Subterranean Perturbation Regimes (TSTPR, terics) real Physical space is represented as (M,g) R^ 5→(M,g) R^4 brane. F-theory propagates QED continuous polyphasic flux to (Mg) ^R 4 brane is postulated utilizing Universal constants (K), c.f. Newton's Laws of Motion; c; Phi; Boltzmann's Constant Sk= loge W; Gaussian distributions; Maxwell's Equations; Planck time and Planck Space constants; a; Psi. Constants are propagated from hypothesized compaction and perturbation of topological gauged-energy string landscape (Mg) R^4 d-brane applied to electromagnetic and gravitational Geophysical sweep-out phenomena, e.g. Birkeland currents, ring currents, sferics, terics and given tensorized fields of ionized plasma events^iii and energy phenomena of the near Astrophysical medium. These can be computed from Calabi-Yau manifolds as CP^4 in density matrices of Hilbert space, Hyper-Kahler or 4-Kahler manifolds across weighted projective space. e.g., in Gaussian Unitary Ensembles (GUE) where as a joint 3η η − λ 2 β 1 4 k ^ ^ probability for eigenvalues and-vectors ∏e Π−λλji(1) from dispersion k 2=w 2 p_0 from Boltzmann's constant k =1 ij< Zβη H [1] and Trubnikov's 0, 1, 2, 3 tensors [2,3].
    [Show full text]
  • Instructions to Authors
    www.elsevier.com/locate/physletb Instructions to authors Aims and Scope Physics Letters B ensures the rapid publication of letter-type communications in the fields of Nuclear Physics, Particle Physics and Astrophysics. Articles should influence the physics community significantly. Submission Electronic submission is strongly encouraged. The electronic file, accompanied by a covering message, should be e-mailed to one of the Editors indicated below. If electronic submission is not feasible, submission in print is possible, but it will delay publication. In the latter case manuscripts (one original + two copies), accompanied by a covering letter, should be sent to one of the following Editors: L. Alvarez-Gaumé, Theory Division, CERN, CH-1211 Geneva 23, Switzerland, E-mail address: Luis.Alvarez-Gaume@CERN. CH Theoretical High Energy Physics (General Theory) J.-P. Blaizot, ECT*, Strada delle Tabarelle, 266, I-38050 Villazzano (Trento), Italy, E-mail address: [email protected]. FR Theoretical Nuclear Physics M. Cvetic,ˇ David Rittenhouse Laboratory, Department of Physics, University of Pennsylvania, 209 S, 33rd Street, Philadelphia, PA 19104-6396, USA, E-mail address: [email protected] Theoretical High Energy Physics M. Doser, EP Division, CERN, CH-1211 Geneva 23, Switzerland, E-mail address: [email protected] Experimental High Energy Physics D.F. Geesaman, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA, E-mail address: [email protected] Experimental Nuclear Physics H. Georgi, Department of Physics, Harvard University, Cambridge, MA 02138, USA, E-mail address: Georgi@PHYSICS. HARVARD.EDU Theoretical High Energy Physics G.F. Giudice, CERN, CH-1211 Geneva 23, Switzerland, E-mail address: [email protected] Theoretical High Energy Physics N.
    [Show full text]
  • Spontaneous Lorentz Violation, Nambu-Goldstone Modes, And
    SPONTANEOUS LORENTZ VIOLATION, NAMBU-GOLDSTONE MODES, AND MASSIVE MODES ROBERT BLUHM Department of Physics and Astronomy, Colby College Waterville, ME 04901, USA In any theory with spontaneous symmetry breaking, it is important to account for the massless Nambu-Goldstone and massive Higgs modes. In this short review, the fate of these modes is examined for the case of a bumblebee model, in which Lorentz symmetry is spontaneously broken. 1 Spontaneous Lorentz violation Spontaneous symmetry breaking has three well-known consequences. The first is Goldstone’s theorem, which states that massless Nambu-Goldstone (NG) modes should appear when a continuous symmetry is spontaneously broken. The second is that massive Higgs modes can appear, consisting of excitations out of the degenerate minimum. The third is the Higgs mechanism, which can occur when the broken symmetry is local. In conventional particle physics, these processes involve a scalar field with a nonzero vacuum expectation value that induces spontaneous breaking of gauge symmetry. However, in this paper, these processes are examined for the case where it is a vector field that has a nonzero vacuum value and where the symmetry that is spontaneously broken is Lorentz symmetry. The idea of spontaneous Lorentz violation is important in quantum-gravity theory. For example, in string field theory, mechanisms have been found that can lead to spontaneous Lorentz violation.1 It has also been shown that sponta- neous Lorentz breaking is compatible with geometrical consistency conditions 2 arXiv:1008.1805v1 [hep-th] 10 Aug 2010 in gravity, while explicit Lorentz breaking is not. The Standard-Model Extension (SME) describes Lorentz-violating inter- actions at the level of effective field theory.
    [Show full text]
  • Special Relativity and Classical Field Theory
    Special Relativity and Classical Field Theory Notes on Selected Topics for the Course \Klassische Feldtheorie" Matthias Blau Version of May 5, 2021 Contents 1 Introduction 4 1.1 Overview . 4 1.2 Notation and Conventions . 5 2 Minkowski Space(-Time) and Lorentz Tensor Algebra 7 2.1 Einstein Principle of Relativity as an Invariance Principle . 7 2.2 Warm-Up: Euclidean Geometry, Euclidean Group and the Laplace Operator . 8 2.3 From Invariance of to Minkowski Geometry and Lorentz Transformations . 14 2.4 Example: Lorentz Transformations in (1+1) Dimensions (Review) . 16 2.5 Minkowski Space, Light Cones, Wordlines, Proper Time (Review) . 20 2.6 Lorentz Vectors and Minkowski Geometry . 22 2.7 Lorentz Scalars and Lorentz Covectors . 24 2.8 Higher Rank Lorentz Tensors . 27 2.9 Lorentz Tensor Algebra . 28 2.10 Lorentz Tensor Fields and the Lorentz-invariance of Tensorial Equations . 32 2.11 Lorentz-invariant Integration . 33 2.12 Lorentz-invariant Differential Operators . 34 3 Lorentz-Covariant Formulation of Relativistic Mechanics 37 3.1 Covariant Formulation of Relativistic Kinematics and Dynamics . 37 3.2 Energy-Momentum 4-Vector . 39 3.3 Minkowski Force? (how not to introduce forces and interactions) . 41 3.4 Lorentz-invariant Action Principle for a Free Relativistic Particle . 42 3.5 Noether Theorem and Conservation Laws (Review) . 47 3.6 Noether Theorem for the Relativistic Particle . 50 4 Lorentz-Covariant Formulation of Maxwell Theory 54 4.1 Maxwell Equations (Review) . 54 4.2 Lorentz Invariance of the Maxwell Equations: Preliminary Remarks . 55 4.3 Electric 4-Current and Lorentz Invariance of the Continuity Equation .
    [Show full text]
  • Gravity with Explicit Diffeomorphism Breaking
    S S symmetry Article Gravity with Explicit Diffeomorphism Breaking Robert Bluhm * and Yumu Yang Department of Physics and Astronomy, Colby College, Waterville, ME 04901, USA; [email protected] * Correspondence: [email protected] Abstract: Modified theories of gravity that explicitly break diffeomorphism invariance have been used for over a decade to explore open issues related to quantum gravity, dark energy, and dark matter. At the same time, the Standard-Model Extension (SME) has been widely used as a phenomenological framework in investigations of spacetime symmetry breaking. Until recently, it was thought that the SME was suitable only for theories with spontaneous spacetime symmetry breaking due to consistency conditions stemming from the Bianchi identities. However, it has recently been shown that, particularly with matter couplings included, the consistency conditions can also be satisfied in theories with explicit breaking. An overview of how this is achieved is presented, and two examples are examined. The first is massive gravity, which includes a nondynamical background tensor. The second is a model based on a low-energy limit of Hoˇrava gravity, where spacetime has a physically preferred foliation. In both cases, bounds on matter–gravity interactions that explicitly break diffeomorphisms are obtained using the SME. Keywords: gravity; explicit diffeomorphism breaking; Standard-Model Extension 1. Introduction Citation: Bluhm, R.; Yang, Y. Gravity Diffeomorphism invariance is a fundamental symmetry in Einstein’s General Relativity with Explicit Diffeomorphism (GR). As a result of this symmetry and the Bianchi identities, when matter and gravity interact Breaking. Symmetry 2021, 13, 660. in GR, the energy-momentum of the matter fields is guaranteed to be covariantly conserved https://doi.org/10.3390/sym when the matter fields obey their equations of motion.
    [Show full text]
  • 4 Relativistic Kinematics
    4 Relativistic kinematics In astrophysics, we are often dealing with relativistic particles that are being accelerated by elec- tric or magnetic forces. This produces radiation, typically in the form of synchrotron or inverse- Compton radiation. Before examining this, we begin with a short review of Special Relativity and the concepts of spacetime and relativistic covariance. 4.1 Special Relativity and four-dimensional notation Most relativistic equations are greatly simplified by the use of four-dimensional notation. An event space-time can be represented by four coordinates ~x x0,x1,x2,x3 t, x, y, z t, r ,where “p q”p q“p q we have set c 1. “ The postulates of Special Relativity are that 1) The laws of physics are the same in all inertial reference frames (i.e. moving with constant velocity) and 2) the speed of light c is the same in all inertial frames. Now, imagine two frames, O and O1, moving with respect to each other with a constant velocity. Let the the origins of the two frames coincide at t t 0. Suppose that at “ 1 “ exactly this time, a flash of light is emitted at the origin. According to the postulates of Special Relativity, observers in both frames see a sphere of light expanding from the origin at speed c. Therefore, 2 2 2 2 t r t1 r1 0. (4.1) ´ “ ´ “ Any transformation x~ ⇤~x , relating the two frames, that satisfies (4.1) is a Lorentz transformation. 1 “ We shall have more to say about these shortly. Imagine two points a and b (called events) in space-time.
    [Show full text]
  • Hamiltonian Constraint Analysis of Vector Field Theories with Spontaneous Lorentz Symmetry Breaking
    Colby College Digital Commons @ Colby Honors Theses Student Research 2008 Hamiltonian constraint analysis of vector field theories with spontaneous Lorentz symmetry breaking Nolan L. Gagne Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Physics Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Gagne, Nolan L., "Hamiltonian constraint analysis of vector field theories with spontaneous Lorentz symmetry breaking" (2008). Honors Theses. Paper 92. https://digitalcommons.colby.edu/honorstheses/92 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. 1 Hamiltonian Constraint Analysis of Vector Field Theories with Spontaneous Lorentz Symmetry Breaking Nolan L. Gagne May 17, 2008 Department of Physics and Astronomy Colby College 2008 1 Abstract Recent investigations of various quantum-gravity theories have revealed a variety of possible mechanisms that lead to Lorentz violation. One of the more elegant of these mechanisms is known as Spontaneous Lorentz Symmetry Breaking (SLSB), where a vector or tensor field acquires a nonzero vacuum expectation value. As a consequence of this symmetry breaking, massless Nambu-Goldstone modes appear with properties similar to the photon in Electromagnetism. This thesis considers the most general class of vector field theo- ries that exhibit spontaneous Lorentz violation{known as bumblebee models{and examines their candidacy as potential alternative explanations of E&M, offering the possibility that Einstein-Maxwell theory could emerge as a result of SLSB rather than of local U(1) gauge invariance.
    [Show full text]
  • Covariant Quantum Gravitational Corrections to Scalar and Tensor Field Models
    Covariant Quantum Gravitational Corrections to Scalar and Tensor Field Models A thesis submitted in partial fulfilment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY by SANDEEP AASHISH 1610511 arXiv:2007.13150v1 [gr-qc] 26 Jul 2020 to the DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH BHOPAL Bhopal - 462 066 April, 2020 Covariant Quantum Gravitational Corrections to Scalar and Tensor Field Models A thesis submitted in partial fulfilment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY by SANDEEP AASHISH 1610511 to the DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH BHOPAL Bhopal - 462 066 April, 2020 ACADEMIC INTEGRITY AND COPYRIGHT DISCLAIMER I hereby declare that this thesis is my own work and, to the best of my knowledge, it contains no materials previously published or written by any other person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at IISER Bhopal or any other educational institution, except where due acknowledgement is made in the thesis. I certify that all copyrighted material incorporated into this thesis is in compliance with the Indian Copyright (Amendment) Act, 2012 and that I have received written permission from the copyright owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless IISER Bhopal from any and all claims that may be asserted or that may arise from any copyright violation. April, 2020 Sandeep Aashish IISER, Bhopal Dr. Sukanta Panda (Supervisor) ii ACKNOWLEDGEMENTS This thesis is the culmination of contributions from a number of people, who have know- ingly and unknowingly encouraged me to persist through this incredible journey spanning a plethora of experiences.
    [Show full text]
  • Κ-Minkowski Space, Scalar Field, and the Issue of Lorentz Invariance
    κ-Minkowski space, scalar field, and the issue of Lorentz invariance Laurent Freidel∗ and Jerzy Kowalski-Glikmany October 23, 2018 Abstract We describe κ-Minkowski space and its relation to group theory. The group theoretical picture makes it possible to analyze the sym- metries of this space. As an application of this analysis we analyze in detail free field theory on κ-Minkowski space and the Noether charges associated with deformed spacetime symmetries. 1 Introduction κ-Minkowski space [1], [2] is a particular example of non-commutative space, in which positionsx ^µ satisfy the algebra-like commutational relation between \time" and \space"1 [^x0; x^i] = ix^i (1) with all other commutators vanishing. Such space arouse first in the inves- tigations of κ-Poincare algebra [1], [2]. Later it has been related to Doubly Special Relativity (see [3] for review and references) and it has been claimed arXiv:0710.2886v1 [hep-th] 15 Oct 2007 that it has a quantum gravitational origin [4], [5]. If this claims are cor- rect, κ-Minkowski space is to replace the standard Minkowski spacetime in description of ultra high energy processes, in the limit when (quantum) grav- itational effects could be regarded as negligible. ∗Perimeter Institute, Waterloo, Canada, [email protected] yInstitute for Theoretical Physics, University of Wroclaw, Wroclaw, Poland, [email protected] 1We set the deformation scale κ = 1 in what follows. 1 Only recently however a theory of fields living on this space has started being analyzed in depth [6], [7], [8], [9]. Thanks to the results reported in these papers we are now not only understanding quite well the structure of κ-Minkowski space, and its relation to group theory, but also we understand free scalar field theory on this space, including the way how to construct conserved Noether charges associated with its symmetries.
    [Show full text]