20201021 Quantum Mechanics II Special Relativity Preparatory Course

Total Page:16

File Type:pdf, Size:1020Kb

20201021 Quantum Mechanics II Special Relativity Preparatory Course 20201021 Quantum Mechanics II Special Relativity Preparatory Course Teaching Assistant: Oz Davidi October 27-28, 2019 Disclaimer: These notes should not replace a course in special relativity, but should serve as a reminder. If some of the topics here are unfamiliar, it is recommended to read one of the references below or any other relevant literature. Notations and Conventions 1. We use τ as a short for 2π.1 References There exist lots of references about the subject. Many books about general relativity include good explanations in their first chapters. Other sources are advanced books on mechanics and electromagnetism. Here is a list of some examples which covers the subject from those different points of view. In each of them, look for the relevant chapters. 1. Classical Mechanics, H. Goldstein. 2. Classical Electrodynamics, J. D. Jackson. 3. A First Course in General Relativity, B. F. Schutz. 4. Gravitation and Cosmology, S. Weinberg. 1See https://tauday.com/tau-manifesto for further reading. 1 2 INDEX NOTATION 1 Motivation One of the main topics of the Quantum Mechanics II course is to develop a (special) relativistic treatment of quantum mechanics, which is done in the framework of quantum field theory. We will learn how to quantize (relativistic) scalar and fermionic fields, and about their interactions. For this end, a basic knowledge in special relativity is needed. 2 Index Notation We will find that index notation is the most convenient way to deal with vectors, matrices, and tensors in general. Let us focus on tensors of rank 2 and below. T • For a vector ~v = v1 v2 ··· vn , we denote the i's component by vi. 0 1 m11 m12 ··· B C • For a matrix M =Bm21 m22 ···C, we denote the [ij]'s entry by Mij. @ . A . .. T Notice: In general, Mij 6= Mji, but Mji = M ij. • When we multiply a vector by a matrix from the left, we get a new vector ~u = M~v. The P i's component of the new vector is given by ui = [M~v]i = j Mijvj. From now on, we will use Einstein's Summation Convention: 1. If an index appears twice, we sum over it X Mijvj ≡ Mijvj : (2.1) j 2. An index will NEVER appear more then twice! • What about multiplying by a matrix from the right, ~vT M? Again, we get a new vector T T T T T ~w = ~v M. In index notation ~w i = [~w]i = wi = ~v M i = ~v j Mji = vjMji. Here is an example why this is so useful: Example 2.1. Prove that ~u ×(~v × ~w) = ~v (~u · ~w) − (~u · ~v) ~w. 2 3 FAST INTRODUCTION TO SPECIAL RELATIVITY Proof. By using index notation [~u ×(~v × ~w)]i = ijkuj [~v × ~w]k = ijkklmujvlwm = ijklmkujvlwm = (δilδjm − δimδjl) ujvlwm = viujwj − ujvjwi = [~v (~u · ~w) − (~u · ~v) ~w]i : 3 Fast Introduction to Special Relativity 3.1 Defining Special Relativity (B. F. Schutz: 1.1, 1.2) At first, Einstein's theory of special relativity was understood algebraically, as a set of (Lorentz) transformations that move us from one inertial observer's system to another. Special relativity can be deduced from two fundamental postulates: 1. Principle of Relativity (Galileo): No experiment can measure the absolute velocity of an observer; the results of any experiment performed by an observer do not depend on his speed relative to other observers who are not involved in the experiment. 2. Universality of the Speed of Light (Einstein): The speed of light relative to any unacceler- 8 ated (inertial) observer is 3×10 m=s, regardless of the motion of the light's source relative to the observer. Let us be quite clear about this postulate's meaning: two different iner- tial observers measuring the speed of the same photon will each find it to be moving at 8 c = 3 × 10 m=s relative to themselves, regardless of their state of motion relative to each other. But what is an \inertial observer"? An inertial observer is simply a coordinate system for spacetime, which makes an observation by recording the location x y z and time t of any event. This coordinate system must satisfy the following three properties to be called inertial: 1. The distance between point P1 = x1 y1 z1 and point P2 = x2 y2 z2 is indepen- dent of time. 3 3.2 Transformation Rules 3 FAST INTRODUCTION TO SPECIAL RELATIVITY 2. The clocks that sit at every point, ticking off the time coordinate t, are synchronized and all run at the same rate. 3. The geometry of space at any constant time t is Euclidean. 3.2 Transformation Rules Let us derive the transformation rules of special relativity in 1 + 1 dimensions (1 space and 1 time dimensions). • Imagine two systems, O and O0, with respective velocity v between them. • We choose x = x0 = 0 at t = t0 = 0. • The position of a wave-front in system O is measured to be x = ct : (3.1) • We would like to see how this wave form is seen (parametrized) in system O0. We take the transformation to be linear x0 = ax + bt, where a (which is dimensionless) and b (which has dimensions of velocity) will be found below. The physical reason is that we want O −! O0 −! O00 to be identical to O −−−−−! O00 (you can compare it to rotations).2 T1 T2 T1\+"T2 • The origin of O0 in the O system is given by x = vt, hence 0 = (av + b) t =) b = −av =) x0 = a(x − vt) : (3.2) • The inverse transformation is given by changing the sign of the velocity, namely x = a(x0 + vt0) : (3.3) • Plugging x0 into x gives (1 − a2) x t0 = at + : (3.4) av • Now, we demand that a wave-front in O, i.e. x = ct, is also a wave-front in O0, i.e. x0 = ct0 (here, we demand that the speed of light is the same for all observers). By using 2We will make this statement more precise once we study group theory. 4 3.2 Transformation Rules 3 FAST INTRODUCTION TO SPECIAL RELATIVITY the expression for x0, Eq. (3.2), and the expression for t0, Eq. (3.4), and substituting x = ct, we get (1 − a2) c2 a(c − v) = ca + : (3.5) av Solving for a, one gets 1 a ≡ γ = : (3.6) q v2 1 − c2 To summarize, the transformation rules are x0 = γ(x − vt) ; (3.7) v t0 = γ t − x : (3.8) c2 As an important side note: Always check the dimensions of the quantities you look for. Indeed, a turned out to be dimensionless, and b has the dimensions of velocity. An immediate result is that the time coordinate is not universal! This is depicted in Fig.1. In classical mechanics, an event A = tA xA yA zA shares the same time with an infinite number of events B = tA xB yB zB . They all have the same time, meaning that events that happen simultaneously at one inertial system, also happen at the same time in another. On the other hand, the same event A, under special relativity, has a unique \now". Other events have their own \now", hence different observers may not agree on the relative time between events. A trajectory x(t) of a particle for example, is called a world line. A world line must cross a constant time slice once (and only once), but the crossing point can be at any point, depending on the observer. The slope of a world line is the velocity reciprocal, v−1 =x _ −1. Because the velocity is bounded from above by the same constant value c in all reference frames, at each point of the trajectory x(t), one can draw a light-cone, and all inertial observers will agree that the trajectory is within this light-cone. We will sometime use β = v=c, and from now on, we set the speed of light to 1 c = 1 : (3.9) Using the general 3 + 1 dimensional transformation rules, one can show that while different 5 4 THE METRIC Figure 1: Spacetime structure in classical mechanics (top) and special relativity (bottom). In classical me- chanics, a universal time slice exists, while in special relativity, each event defines a light-cone. (B. F. Schutz: 1.6) inertial observers determine different world-lines for the same particle, they agree that (∆t)2 − (∆x)2 = (∆t0)2 − (∆x0)2 : (3.10) We take the infinitesimal limit, and define the interval ds2 ds2 ≡ dt2 − dx2 = dt02 − dx02 : (3.11) The interval is a Lorentz scalar - it is invariant under Lorentz transformations (to be discussed in Sec.5). 4 The Metric Minkowski pointed out that space (~x) and time (t) should be treated all as coordinates of a four- dimensional space, which we now call spacetime. We thus define the spacetime four-vector xµ = t ~x . The index µ 2 f 0; 1; 2; 3 g is called the Lorentz index. The Minkowski spacetime is not Euclidean. In order to measure distances, we define the 6 4 THE METRIC metric as a symmetric function which maps two four-vectors to R g(v1; v2) = g(v2; v1) 2 R : (4.1) Note that we did not define g to be positive definite. In special relativity, we parametrize 3 the metric by the rank-2 tensor ηµν = diag(1; −1; −1; −1). The metric with upper indices is identical ηµν = diag(1; −1; −1; −1). Einstein's Summation Convention (Revisited): 1. If an index appears twice, once as a lower and once as an upper index, we sum over it.
Recommended publications
  • A Mathematical Derivation of the General Relativistic Schwarzschild
    A Mathematical Derivation of the General Relativistic Schwarzschild Metric An Honors thesis presented to the faculty of the Departments of Physics and Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors Scholar and Honors-in-Discipline Programs for a Bachelor of Science in Physics and Mathematics by David Simpson April 2007 Robert Gardner, Ph.D. Mark Giroux, Ph.D. Keywords: differential geometry, general relativity, Schwarzschild metric, black holes ABSTRACT The Mathematical Derivation of the General Relativistic Schwarzschild Metric by David Simpson We briefly discuss some underlying principles of special and general relativity with the focus on a more geometric interpretation. We outline Einstein’s Equations which describes the geometry of spacetime due to the influence of mass, and from there derive the Schwarzschild metric. The metric relies on the curvature of spacetime to provide a means of measuring invariant spacetime intervals around an isolated, static, and spherically symmetric mass M, which could represent a star or a black hole. In the derivation, we suggest a concise mathematical line of reasoning to evaluate the large number of cumbersome equations involved which was not found elsewhere in our survey of the literature. 2 CONTENTS ABSTRACT ................................. 2 1 Introduction to Relativity ...................... 4 1.1 Minkowski Space ....................... 6 1.2 What is a black hole? ..................... 11 1.3 Geodesics and Christoffel Symbols ............. 14 2 Einstein’s Field Equations and Requirements for a Solution .17 2.1 Einstein’s Field Equations .................. 20 3 Derivation of the Schwarzschild Metric .............. 21 3.1 Evaluation of the Christoffel Symbols .......... 25 3.2 Ricci Tensor Components .................
    [Show full text]
  • Oxford Physics Department Notes on General Relativity
    Oxford Physics Department Notes on General Relativity S. Balbus 1 Recommended Texts Weinberg, S. 1972, Gravitation and Cosmology. Principles and applications of the General Theory of Relativity, (New York: John Wiley) What is now the classic reference, but lacking any physical discussions on black holes, and almost nothing on the geometrical interpretation of the equations. The author is explicit in his aversion to anything geometrical in what he views as a field theory. Alas, there is no way to make sense of equations, in any profound sense, without geometry! I also find that calculations are often performed with far too much awkwardness and unnecessary effort. Sections on physical cosmology are its main strength. To my mind, a much better pedagogical text is ... Hobson, M. P., Efstathiou, G., and Lasenby, A. N. 2006, General Relativity: An Introduction for Physicists, (Cambridge: Cambridge University Press) A very clear, very well-blended book, admirably covering the mathematics, physics, and astrophysics. Excellent coverage on black holes and gravitational radiation. The explanation of the geodesic equation is much more clear than in Weinberg. My favourite. (The metric has a different overall sign in this book compared with Weinberg and this course, so be careful.) Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1972, Gravitation, (New York: Freeman) At 1280 pages, don't drop this on your toe. Even the paperback version. MTW, as it is known, is often criticised for its sheer bulk, its seemingly endless meanderings and its laboured strivings at building mathematical and physical intuition at every possible step. But I must say, in the end, there really is a lot of very good material in here, much that is difficult to find anywhere else.
    [Show full text]
  • Hypercomplex Algebras and Their Application to the Mathematical
    Hypercomplex Algebras and their application to the mathematical formulation of Quantum Theory Torsten Hertig I1, Philip H¨ohmann II2, Ralf Otte I3 I tecData AG Bahnhofsstrasse 114, CH-9240 Uzwil, Schweiz 1 [email protected] 3 [email protected] II info-key GmbH & Co. KG Heinz-Fangman-Straße 2, DE-42287 Wuppertal, Deutschland 2 [email protected] March 31, 2014 Abstract Quantum theory (QT) which is one of the basic theories of physics, namely in terms of ERWIN SCHRODINGER¨ ’s 1926 wave functions in general requires the field C of the complex numbers to be formulated. However, even the complex-valued description soon turned out to be insufficient. Incorporating EINSTEIN’s theory of Special Relativity (SR) (SCHRODINGER¨ , OSKAR KLEIN, WALTER GORDON, 1926, PAUL DIRAC 1928) leads to an equation which requires some coefficients which can neither be real nor complex but rather must be hypercomplex. It is conventional to write down the DIRAC equation using pairwise anti-commuting matrices. However, a unitary ring of square matrices is a hypercomplex algebra by definition, namely an associative one. However, it is the algebraic properties of the elements and their relations to one another, rather than their precise form as matrices which is important. This encourages us to replace the matrix formulation by a more symbolic one of the single elements as linear combinations of some basis elements. In the case of the DIRAC equation, these elements are called biquaternions, also known as quaternions over the complex numbers. As an algebra over R, the biquaternions are eight-dimensional; as subalgebras, this algebra contains the division ring H of the quaternions at one hand and the algebra C ⊗ C of the bicomplex numbers at the other, the latter being commutative in contrast to H.
    [Show full text]
  • Chapter 5 the Relativistic Point Particle
    Chapter 5 The Relativistic Point Particle To formulate the dynamics of a system we can write either the equations of motion, or alternatively, an action. In the case of the relativistic point par- ticle, it is rather easy to write the equations of motion. But the action is so physical and geometrical that it is worth pursuing in its own right. More importantly, while it is difficult to guess the equations of motion for the rela- tivistic string, the action is a natural generalization of the relativistic particle action that we will study in this chapter. We conclude with a discussion of the charged relativistic particle. 5.1 Action for a relativistic point particle How can we find the action S that governs the dynamics of a free relativis- tic particle? To get started we first think about units. The action is the Lagrangian integrated over time, so the units of action are just the units of the Lagrangian multiplied by the units of time. The Lagrangian has units of energy, so the units of action are L2 ML2 [S]=M T = . (5.1.1) T 2 T Recall that the action Snr for a free non-relativistic particle is given by the time integral of the kinetic energy: 1 dx S = mv2(t) dt , v2 ≡ v · v, v = . (5.1.2) nr 2 dt 105 106 CHAPTER 5. THE RELATIVISTIC POINT PARTICLE The equation of motion following by Hamilton’s principle is dv =0. (5.1.3) dt The free particle moves with constant velocity and that is the end of the story.
    [Show full text]
  • SPINORS and SPACE–TIME ANISOTROPY
    Sergiu Vacaru and Panayiotis Stavrinos SPINORS and SPACE{TIME ANISOTROPY University of Athens ————————————————— c Sergiu Vacaru and Panyiotis Stavrinos ii - i ABOUT THE BOOK This is the first monograph on the geometry of anisotropic spinor spaces and its applications in modern physics. The main subjects are the theory of grav- ity and matter fields in spaces provided with off–diagonal metrics and asso- ciated anholonomic frames and nonlinear connection structures, the algebra and geometry of distinguished anisotropic Clifford and spinor spaces, their extension to spaces of higher order anisotropy and the geometry of gravity and gauge theories with anisotropic spinor variables. The book summarizes the authors’ results and can be also considered as a pedagogical survey on the mentioned subjects. ii - iii ABOUT THE AUTHORS Sergiu Ion Vacaru was born in 1958 in the Republic of Moldova. He was educated at the Universities of the former URSS (in Tomsk, Moscow, Dubna and Kiev) and reveived his PhD in theoretical physics in 1994 at ”Al. I. Cuza” University, Ia¸si, Romania. He was employed as principal senior researcher, as- sociate and full professor and obtained a number of NATO/UNESCO grants and fellowships at various academic institutions in R. Moldova, Romania, Germany, United Kingdom, Italy, Portugal and USA. He has published in English two scientific monographs, a university text–book and more than hundred scientific works (in English, Russian and Romanian) on (super) gravity and string theories, extra–dimension and brane gravity, black hole physics and cosmolgy, exact solutions of Einstein equations, spinors and twistors, anistoropic stochastic and kinetic processes and thermodynamics in curved spaces, generalized Finsler (super) geometry and gauge gravity, quantum field and geometric methods in condensed matter physics.
    [Show full text]
  • JOHN EARMAN* and CLARK GL YMUURT the GRAVITATIONAL RED SHIFT AS a TEST of GENERAL RELATIVITY: HISTORY and ANALYSIS
    JOHN EARMAN* and CLARK GL YMUURT THE GRAVITATIONAL RED SHIFT AS A TEST OF GENERAL RELATIVITY: HISTORY AND ANALYSIS CHARLES St. John, who was in 1921 the most widely respected student of the Fraunhofer lines in the solar spectra, began his contribution to a symposium in Nncure on Einstein’s theories of relativity with the following statement: The agreement of the observed advance of Mercury’s perihelion and of the eclipse results of the British expeditions of 1919 with the deductions from the Einstein law of gravitation gives an increased importance to the observations on the displacements of the absorption lines in the solar spectrum relative to terrestrial sources, as the evidence on this deduction from the Einstein theory is at present contradictory. Particular interest, moreover, attaches to such observations, inasmuch as the mathematical physicists are not in agreement as to the validity of this deduction, and solar observations must eventually furnish the criterion.’ St. John’s statement touches on some of the reasons why the history of the red shift provides such a fascinating case study for those interested in the scientific reception of Einstein’s general theory of relativity. In contrast to the other two ‘classical tests’, the weight of the early observations was not in favor of Einstein’s red shift formula, and the reaction of the scientific community to the threat of disconfirmation reveals much more about the contemporary scientific views of Einstein’s theory. The last sentence of St. John’s statement points to another factor that both complicates and heightens the interest of the situation: in contrast to Einstein’s deductions of the advance of Mercury’s perihelion and of the bending of light, considerable doubt existed as to whether or not the general theory did entail a red shift for the solar spectrum.
    [Show full text]
  • The Theory of Relativity and Applications: a Simple Introduction
    The Downtown Review Volume 5 Issue 1 Article 3 December 2018 The Theory of Relativity and Applications: A Simple Introduction Ellen Rea Cleveland State University Follow this and additional works at: https://engagedscholarship.csuohio.edu/tdr Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons How does access to this work benefit ou?y Let us know! Recommended Citation Rea, Ellen. "The Theory of Relativity and Applications: A Simple Introduction." The Downtown Review. Vol. 5. Iss. 1 (2018) . Available at: https://engagedscholarship.csuohio.edu/tdr/vol5/iss1/3 This Article is brought to you for free and open access by the Student Scholarship at EngagedScholarship@CSU. It has been accepted for inclusion in The Downtown Review by an authorized editor of EngagedScholarship@CSU. For more information, please contact [email protected]. Rea: The Theory of Relativity and Applications What if I told you that time can speed up and slow down? What if I told you that everything you think you know about gravity is a lie? When Albert Einstein presented his theory of relativity to the world in the early 20th century, he was proposing just that. And what’s more? He’s been proven correct. Einstein’s theory has two parts: special relativity, which deals with inertial reference frames and general relativity, which deals with the curvature of space- time. A surface level study of the theory and its consequences followed by a look at some of its applications will provide an introduction to one of the most influential scientific discoveries of the last century.
    [Show full text]
  • Albert Einstein and Relativity
    The Himalayan Physics, Vol.1, No.1, May 2010 Albert Einstein and Relativity Kamal B Khatri Department of Physics, PN Campus, Pokhara, Email: [email protected] Albert Einstein was born in Germany in 1879.In his the follower of Mach and his nascent concept helped life, Einstein spent his most time in Germany, Italy, him to enter the world of relativity. Switzerland and USA.He is also a Nobel laureate and worked mostly in theoretical physics. Einstein In 1905, Einstein propounded the “Theory of is best known for his theories of special and general Special Relativity”. This theory shows the observed relativity. I will not be wrong if I say Einstein a independence of the speed of light on the observer’s deep thinker, a philosopher and a real physicist. The state of motion. Einstein deduced from his concept philosophies of Henri Poincare, Ernst Mach and of special relativity the twentieth century’s best David Hume infl uenced Einstein’s scientifi c and known equation, E = m c2.This equation suggests philosophical outlook. that tiny amounts of mass can be converted into huge amounts of energy which in deed, became the Einstein at the age of 4, his father showed him a boon for the development of nuclear power. pocket compass, and Einstein realized that there must be something causing the needle to move, despite Einstein realized that the principle of special relativity the apparent ‘empty space’. This shows Einstein’s could be extended to gravitational fi elds. Since curiosity to the space from his childhood. The space Einstein believed that the laws of physics were local, of our intuitive understanding is the 3-dimensional described by local fi elds, he concluded from this that Euclidean space.
    [Show full text]
  • Derivation of Generalized Einstein's Equations of Gravitation in Some
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 February 2021 doi:10.20944/preprints202102.0157.v1 Derivation of generalized Einstein's equations of gravitation in some non-inertial reference frames based on the theory of vacuum mechanics Xiao-Song Wang Institute of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454000, China (Dated: Dec. 15, 2020) When solving the Einstein's equations for an isolated system of masses, V. Fock introduces har- monic reference frame and obtains an unambiguous solution. Further, he concludes that there exists a harmonic reference frame which is determined uniquely apart from a Lorentz transformation if suitable supplementary conditions are imposed. It is known that wave equations keep the same form under Lorentz transformations. Thus, we speculate that Fock's special harmonic reference frames may have provided us a clue to derive the Einstein's equations in some special class of non-inertial reference frames. Following this clue, generalized Einstein's equations in some special non-inertial reference frames are derived based on the theory of vacuum mechanics. If the field is weak and the reference frame is quasi-inertial, these generalized Einstein's equations reduce to Einstein's equa- tions. Thus, this theory may also explain all the experiments which support the theory of general relativity. There exist some differences between this theory and the theory of general relativity. Keywords: Einstein's equations; gravitation; general relativity; principle of equivalence; gravitational aether; vacuum mechanics. I. INTRODUCTION p. 411). Theoretical interpretation of the small value of Λ is still open [6]. The Einstein's field equations of gravitation are valid 3.
    [Show full text]
  • Mathematical Theory and Physical Mechanics for Planetary Ionospheric Physics Jonah Lissner* Independent Researcher, USA
    emote Se R ns f i o n Lissner, J Remote Sensing & GIS 2015, 4:3 l g a & n r G u DOI: 10.4172/2469-4134.1000148 I S o J Journal of Remote Sensing & GIS ISSN: 2469-4134 Research Article Open Access Mathematical Theory and Physical Mechanics for Planetary Ionospheric Physics Jonah Lissner* Independent Researcher, USA Abstract In a dynamic system, e.g., Geometrodynamics geophysical isomorphisms from plasmasphere^i to ionosphere^ii, e.g., Upper-atmospheric lightning (UAL, sferics), Middle-atmospheric lightning and Lower-atmospheric lightning (MAL, LAL, sferics) and Terrestrial and Subterranean Perturbation Regimes (TSTPR, terics) real Physical space is represented as (M,g) R^ 5→(M,g) R^4 brane. F-theory propagates QED continuous polyphasic flux to (Mg) ^R 4 brane is postulated utilizing Universal constants (K), c.f. Newton's Laws of Motion; c; Phi; Boltzmann's Constant Sk= loge W; Gaussian distributions; Maxwell's Equations; Planck time and Planck Space constants; a; Psi. Constants are propagated from hypothesized compaction and perturbation of topological gauged-energy string landscape (Mg) R^4 d-brane applied to electromagnetic and gravitational Geophysical sweep-out phenomena, e.g. Birkeland currents, ring currents, sferics, terics and given tensorized fields of ionized plasma events^iii and energy phenomena of the near Astrophysical medium. These can be computed from Calabi-Yau manifolds as CP^4 in density matrices of Hilbert space, Hyper-Kahler or 4-Kahler manifolds across weighted projective space. e.g., in Gaussian Unitary Ensembles (GUE) where as a joint 3η η − λ 2 β 1 4 k ^ ^ probability for eigenvalues and-vectors ∏e Π−λλji(1) from dispersion k 2=w 2 p_0 from Boltzmann's constant k =1 ij< Zβη H [1] and Trubnikov's 0, 1, 2, 3 tensors [2,3].
    [Show full text]
  • Voigt Transformations in Retrospect: Missed Opportunities?
    Voigt transformations in retrospect: missed opportunities? Olga Chashchina Ecole´ Polytechnique, Palaiseau, France∗ Natalya Dudisheva Novosibirsk State University, 630 090, Novosibirsk, Russia† Zurab K. Silagadze Novosibirsk State University and Budker Institute of Nuclear Physics, 630 090, Novosibirsk, Russia.‡ The teaching of modern physics often uses the history of physics as a didactic tool. However, as in this process the history of physics is not something studied but used, there is a danger that the history itself will be distorted in, as Butterfield calls it, a “Whiggish” way, when the present becomes the measure of the past. It is not surprising that reading today a paper written more than a hundred years ago, we can extract much more of it than was actually thought or dreamed by the author himself. We demonstrate this Whiggish approach on the example of Woldemar Voigt’s 1887 paper. From the modern perspective, it may appear that this paper opens a way to both the special relativity and to its anisotropic Finslerian generalization which came into the focus only recently, in relation with the Cohen and Glashow’s very special relativity proposal. With a little imagination, one can connect Voigt’s paper to the notorious Einstein-Poincar´epri- ority dispute, which we believe is a Whiggish late time artifact. We use the related historical circumstances to give a broader view on special relativity, than it is usually anticipated. PACS numbers: 03.30.+p; 1.65.+g Keywords: Special relativity, Very special relativity, Voigt transformations, Einstein-Poincar´epriority dispute I. INTRODUCTION Sometimes Woldemar Voigt, a German physicist, is considered as “Relativity’s forgotten figure” [1].
    [Show full text]
  • + Gravity Probe B
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Gravity Probe B Experiment “Testing Einstein’s Universe” Press Kit April 2004 2- Media Contacts Donald Savage Policy/Program Management 202/358-1547 Headquarters [email protected] Washington, D.C. Steve Roy Program Management/Science 256/544-6535 Marshall Space Flight Center steve.roy @msfc.nasa.gov Huntsville, AL Bob Kahn Science/Technology & Mission 650/723-2540 Stanford University Operations [email protected] Stanford, CA Tom Langenstein Science/Technology & Mission 650/725-4108 Stanford University Operations [email protected] Stanford, CA Buddy Nelson Space Vehicle & Payload 510/797-0349 Lockheed Martin [email protected] Palo Alto, CA George Diller Launch Operations 321/867-2468 Kennedy Space Center [email protected] Cape Canaveral, FL Contents GENERAL RELEASE & MEDIA SERVICES INFORMATION .............................5 GRAVITY PROBE B IN A NUTSHELL ................................................................9 GENERAL RELATIVITY — A BRIEF INTRODUCTION ....................................17 THE GP-B EXPERIMENT ..................................................................................27 THE SPACE VEHICLE.......................................................................................31 THE MISSION.....................................................................................................39 THE AMAZING TECHNOLOGY OF GP-B.........................................................49 SEVEN NEAR ZEROES.....................................................................................58
    [Show full text]