General Relativity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Status of the Geodesic Principle in Newtonian and Relativistic Physics1
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilSci Archive On the Status of the Geodesic Principle in Newtonian and Relativistic Physics1 James Owen Weatherall2 Logic and Philosophy of Science University of California, Irvine Abstract A theorem due to Bob Geroch and Pong Soo Jang [\Motion of a Body in General Relativ- ity." Journal of Mathematical Physics 16(1), (1975)] provides a sense in which the geodesic principle has the status of a theorem in General Relativity (GR). I have recently shown that a similar theorem holds in the context of geometrized Newtonian gravitation (Newton- Cartan theory) [Weatherall, J. O. \The Motion of a Body in Newtonian Theories." Journal of Mathematical Physics 52(3), (2011)]. Here I compare the interpretations of these two the- orems. I argue that despite some apparent differences between the theorems, the status of the geodesic principle in geometrized Newtonian gravitation is, mutatis mutandis, strikingly similar to the relativistic case. 1 Introduction The geodesic principle is the central principle of General Relativity (GR) that describes the inertial motion of test particles. It states that free massive test point particles traverse timelike geodesics. There is a long-standing view, originally due to Einstein, that the geodesic principle has a special status in GR that arises because it can be understood as a theorem, rather than a postulate, of the theory. (It turns out that capturing the geodesic principle as a theorem in GR is non-trivial, but a result due to Bob Geroch and Pong Soo Jang (1975) 1Thank you to David Malament and Jeff Barrett for helpful comments on a previous version of this paper and for many stimulating conversations on this topic. -
Cen, Julia.Pdf
City Research Online City, University of London Institutional Repository Citation: Cen, J. (2019). Nonlinear classical and quantum integrable systems with PT -symmetries. (Unpublished Doctoral thesis, City, University of London) This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/23891/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Nonlinear Classical and Quantum Integrable Systems with PT -symmetries Julia Cen A Thesis Submitted for the Degree of Doctor of Philosophy School of Mathematics, Computer Science and Engineering Department of Mathematics Supervisor : Professor Andreas Fring September 2019 Thesis Commission Internal examiner Dr Olalla Castro-Alvaredo Department of Mathematics, City, University of London, UK External examiner Professor Andrew Hone School of Mathematics, Statistics and Actuarial Science University of Kent, UK Chair Professor Joseph Chuang Department of Mathematics, City, University of London, UK i To my parents. -
Oxford Physics Department Notes on General Relativity
Oxford Physics Department Notes on General Relativity S. Balbus 1 Recommended Texts Weinberg, S. 1972, Gravitation and Cosmology. Principles and applications of the General Theory of Relativity, (New York: John Wiley) What is now the classic reference, but lacking any physical discussions on black holes, and almost nothing on the geometrical interpretation of the equations. The author is explicit in his aversion to anything geometrical in what he views as a field theory. Alas, there is no way to make sense of equations, in any profound sense, without geometry! I also find that calculations are often performed with far too much awkwardness and unnecessary effort. Sections on physical cosmology are its main strength. To my mind, a much better pedagogical text is ... Hobson, M. P., Efstathiou, G., and Lasenby, A. N. 2006, General Relativity: An Introduction for Physicists, (Cambridge: Cambridge University Press) A very clear, very well-blended book, admirably covering the mathematics, physics, and astrophysics. Excellent coverage on black holes and gravitational radiation. The explanation of the geodesic equation is much more clear than in Weinberg. My favourite. (The metric has a different overall sign in this book compared with Weinberg and this course, so be careful.) Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1972, Gravitation, (New York: Freeman) At 1280 pages, don't drop this on your toe. Even the paperback version. MTW, as it is known, is often criticised for its sheer bulk, its seemingly endless meanderings and its laboured strivings at building mathematical and physical intuition at every possible step. But I must say, in the end, there really is a lot of very good material in here, much that is difficult to find anywhere else. -
Weak Galilean Invariance As a Selection Principle for Coarse
Weak Galilean invariance as a selection principle for coarse-grained diffusive models Andrea Cairolia,b, Rainer Klagesb, and Adrian Bauleb,1 aDepartment of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom; and bSchool of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved April 16, 2018 (received for review October 2, 2017) How does the mathematical description of a system change in dif- in the long-time limit, hX 2i ∼ t β with β = 1, for anomalous dif- ferent reference frames? Galilei first addressed this fundamental fusion it scales nonlinearly with β 6=1. Anomalous dynamics has question by formulating the famous principle of Galilean invari- been observed experimentally for a wide range of physical pro- ance. It prescribes that the equations of motion of closed systems cesses like particle transport in plasmas, molecular diffusion in remain the same in different inertial frames related by Galilean nanopores, and charge transport in amorphous semiconductors transformations, thus imposing strong constraints on the dynam- (5–7) that was first theoretically described in refs. 8 and 9 based ical rules. However, real world systems are often described by on the continuous-time random walk (CTRW) (10). Likewise, coarse-grained models integrating complex internal and exter- anomalous diffusion was later found for biological motion (11– nal interactions indistinguishably as friction and stochastic forces. 13) and even human movement (14). Recently, it was established Since Galilean invariance is then violated, there is seemingly no as a ubiquitous characteristic of cellular processes on a molec- alternative principle to assess a priori the physical consistency of a ular level (15). -
Newtonian Gravity and Special Relativity 12.1 Newtonian Gravity
Physics 411 Lecture 12 Newtonian Gravity and Special Relativity Lecture 12 Physics 411 Classical Mechanics II Monday, September 24th, 2007 It is interesting to note that under Lorentz transformation, while electric and magnetic fields get mixed together, the force on a particle is identical in magnitude and direction in the two frames related by the transformation. Indeed, that was the motivation for looking at the manifestly relativistic structure of Maxwell's equations. The idea was that Maxwell's equations and the Lorentz force law are automatically in accord with the notion that observations made in inertial frames are physically equivalent, even though observers may disagree on the names of these forces (electric or magnetic). Today, we will look at a force (Newtonian gravity) that does not have the property that different inertial frames agree on the physics. That will lead us to an obvious correction that is, qualitatively, a prediction of (linearized) general relativity. 12.1 Newtonian Gravity We start with the experimental observation that for a particle of mass M and another of mass m, the force of gravitational attraction between them, according to Newton, is (see Figure 12.1): G M m F = − RR^ ≡ r − r 0: (12.1) r 2 From the force, we can, by analogy with electrostatics, construct the New- tonian gravitational field and its associated point potential: GM GM G = − R^ = −∇ − : (12.2) r 2 r | {z } ≡φ 1 of 7 12.2. LINES OF MASS Lecture 12 zˆ m !r M !r ! yˆ xˆ Figure 12.1: Two particles interacting via the Newtonian gravitational force. -
“Geodesic Principle” in General Relativity∗
A Remark About the “Geodesic Principle” in General Relativity∗ Version 3.0 David B. Malament Department of Logic and Philosophy of Science 3151 Social Science Plaza University of California, Irvine Irvine, CA 92697-5100 [email protected] 1 Introduction General relativity incorporates a number of basic principles that correlate space- time structure with physical objects and processes. Among them is the Geodesic Principle: Free massive point particles traverse timelike geodesics. One can think of it as a relativistic version of Newton’s first law of motion. It is often claimed that the geodesic principle can be recovered as a theorem in general relativity. Indeed, it is claimed that it is a consequence of Einstein’s ∗I am grateful to Robert Geroch for giving me the basic idea for the counterexample (proposition 3.2) that is the principal point of interest in this note. Thanks also to Harvey Brown, Erik Curiel, John Earman, David Garfinkle, John Manchak, Wayne Myrvold, John Norton, and Jim Weatherall for comments on an earlier draft. 1 ab equation (or of the conservation principle ∇aT = 0 that is, itself, a conse- quence of that equation). These claims are certainly correct, but it may be worth drawing attention to one small qualification. Though the geodesic prin- ciple can be recovered as theorem in general relativity, it is not a consequence of Einstein’s equation (or the conservation principle) alone. Other assumptions are needed to drive the theorems in question. One needs to put more in if one is to get the geodesic principle out. My goal in this short note is to make this claim precise (i.e., that other assumptions are needed). -
Chapter 5 the Relativistic Point Particle
Chapter 5 The Relativistic Point Particle To formulate the dynamics of a system we can write either the equations of motion, or alternatively, an action. In the case of the relativistic point par- ticle, it is rather easy to write the equations of motion. But the action is so physical and geometrical that it is worth pursuing in its own right. More importantly, while it is difficult to guess the equations of motion for the rela- tivistic string, the action is a natural generalization of the relativistic particle action that we will study in this chapter. We conclude with a discussion of the charged relativistic particle. 5.1 Action for a relativistic point particle How can we find the action S that governs the dynamics of a free relativis- tic particle? To get started we first think about units. The action is the Lagrangian integrated over time, so the units of action are just the units of the Lagrangian multiplied by the units of time. The Lagrangian has units of energy, so the units of action are L2 ML2 [S]=M T = . (5.1.1) T 2 T Recall that the action Snr for a free non-relativistic particle is given by the time integral of the kinetic energy: 1 dx S = mv2(t) dt , v2 ≡ v · v, v = . (5.1.2) nr 2 dt 105 106 CHAPTER 5. THE RELATIVISTIC POINT PARTICLE The equation of motion following by Hamilton’s principle is dv =0. (5.1.3) dt The free particle moves with constant velocity and that is the end of the story. -
SPINORS and SPACE–TIME ANISOTROPY
Sergiu Vacaru and Panayiotis Stavrinos SPINORS and SPACE{TIME ANISOTROPY University of Athens ————————————————— c Sergiu Vacaru and Panyiotis Stavrinos ii - i ABOUT THE BOOK This is the first monograph on the geometry of anisotropic spinor spaces and its applications in modern physics. The main subjects are the theory of grav- ity and matter fields in spaces provided with off–diagonal metrics and asso- ciated anholonomic frames and nonlinear connection structures, the algebra and geometry of distinguished anisotropic Clifford and spinor spaces, their extension to spaces of higher order anisotropy and the geometry of gravity and gauge theories with anisotropic spinor variables. The book summarizes the authors’ results and can be also considered as a pedagogical survey on the mentioned subjects. ii - iii ABOUT THE AUTHORS Sergiu Ion Vacaru was born in 1958 in the Republic of Moldova. He was educated at the Universities of the former URSS (in Tomsk, Moscow, Dubna and Kiev) and reveived his PhD in theoretical physics in 1994 at ”Al. I. Cuza” University, Ia¸si, Romania. He was employed as principal senior researcher, as- sociate and full professor and obtained a number of NATO/UNESCO grants and fellowships at various academic institutions in R. Moldova, Romania, Germany, United Kingdom, Italy, Portugal and USA. He has published in English two scientific monographs, a university text–book and more than hundred scientific works (in English, Russian and Romanian) on (super) gravity and string theories, extra–dimension and brane gravity, black hole physics and cosmolgy, exact solutions of Einstein equations, spinors and twistors, anistoropic stochastic and kinetic processes and thermodynamics in curved spaces, generalized Finsler (super) geometry and gauge gravity, quantum field and geometric methods in condensed matter physics. -
ON the GALILEAN COVARIANCE of CLASSICAL MECHANICS Abstract
Report INP No 1556/PH ON THE GALILEAN COVARIANCE OF CLASSICAL MECHANICS Andrzej Horzela, Edward Kapuścik and Jarosław Kempczyński Department of Theoretical Physics, H. Niewodniczański Institute of Nuclear Physics, ul. Radzikowskiego 152, 31 342 Krakow. Poland and Laboratorj- of Theoretical Physics, Joint Institute for Nuclear Research, 101 000 Moscow, USSR, Head Post Office. P.O. Box 79 Abstract: A Galilean covariant approach to classical mechanics of a single interact¬ ing particle is described. In this scheme constitutive relations defining forces are rejected and acting forces are determined by some fundamental differential equa¬ tions. It is shown that the total energy of the interacting particle transforms under Galilean transformations differently from the kinetic energy. The statement is il¬ lustrated on the exactly solvable examples of the harmonic oscillator and the case of constant forces and also, in the suitable version of the perturbation theory, for the anharmonic oscillator. Kraków, August 1991 I. Introduction According to the principle of relativity the laws of physics do' not depend on the choice of the reference frame in which these laws are formulated. The change of the reference frame induces only a change in the language used for the formulation of the laws. In particular, changing the reference frame we change the space-time coordinates of events and functions describing physical quantities but all these changes have to follow strictly defined ways. When that is achieved we talk about a covariant formulation of a given theory and only in such formulation we may satisfy the requirements of the principle of relativity. The non-covariant formulations of physical theories are deprived from objectivity and it is difficult to judge about their real physical meaning. -
Tensor-Spinor Theory of Gravitation in General Even Space-Time Dimensions
Physics Letters B 817 (2021) 136288 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Tensor-spinor theory of gravitation in general even space-time dimensions ∗ Hitoshi Nishino a, ,1, Subhash Rajpoot b a Department of Physics, College of Natural Sciences and Mathematics, California State University, 2345 E. San Ramon Avenue, M/S ST90, Fresno, CA 93740, United States of America b Department of Physics & Astronomy, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States of America a r t i c l e i n f o a b s t r a c t Article history: We present a purely tensor-spinor theory of gravity in arbitrary even D = 2n space-time dimensions. Received 18 March 2021 This is a generalization of the purely vector-spinor theory of gravitation by Bars and MacDowell (BM) in Accepted 9 April 2021 4D to general even dimensions with the signature (2n − 1, 1). In the original BM-theory in D = (3, 1), Available online 21 April 2021 the conventional Einstein equation emerges from a theory based on the vector-spinor field ψμ from a Editor: N. Lambert m lagrangian free of both the fundamental metric gμν and the vierbein eμ . We first improve the original Keywords: BM-formulation by introducing a compensator χ, so that the resulting theory has manifest invariance = =− = Bars-MacDowell theory under the nilpotent local fermionic symmetry: δψ Dμ and δ χ . We next generalize it to D Vector-spinor (2n − 1, 1), following the same principle based on a lagrangian free of fundamental metric or vielbein Tensors-spinors rs − now with the field content (ψμ1···μn−1 , ωμ , χμ1···μn−2 ), where ψμ1···μn−1 (or χμ1···μn−2 ) is a (n 1) (or Metric-less formulation (n − 2)) rank tensor-spinor. -
Einstein, Nordström and the Early Demise of Scalar, Lorentz Covariant Theories of Gravitation
JOHN D. NORTON EINSTEIN, NORDSTRÖM AND THE EARLY DEMISE OF SCALAR, LORENTZ COVARIANT THEORIES OF GRAVITATION 1. INTRODUCTION The advent of the special theory of relativity in 1905 brought many problems for the physics community. One, it seemed, would not be a great source of trouble. It was the problem of reconciling Newtonian gravitation theory with the new theory of space and time. Indeed it seemed that Newtonian theory could be rendered compatible with special relativity by any number of small modifications, each of which would be unlikely to lead to any significant deviations from the empirically testable conse- quences of Newtonian theory.1 Einstein’s response to this problem is now legend. He decided almost immediately to abandon the search for a Lorentz covariant gravitation theory, for he had failed to construct such a theory that was compatible with the equality of inertial and gravitational mass. Positing what he later called the principle of equivalence, he decided that gravitation theory held the key to repairing what he perceived as the defect of the special theory of relativity—its relativity principle failed to apply to accelerated motion. He advanced a novel gravitation theory in which the gravitational potential was the now variable speed of light and in which special relativity held only as a limiting case. It is almost impossible for modern readers to view this story with their vision unclouded by the knowledge that Einstein’s fantastic 1907 speculations would lead to his greatest scientific success, the general theory of relativity. Yet, as we shall see, in 1 In the historical period under consideration, there was no single label for a gravitation theory compat- ible with special relativity. -
Equivalence Principle (WEP) of General Relativity Using a New Quantum Gravity Theory Proposed by the Authors Called Electro-Magnetic Quantum Gravity Or EMQG (Ref
WHAT ARE THE HIDDEN QUANTUM PROCESSES IN EINSTEIN’S WEAK PRINCIPLE OF EQUIVALENCE? Tom Ostoma and Mike Trushyk 48 O’HARA PLACE, Brampton, Ontario, L6Y 3R8 [email protected] Monday April 12, 2000 ACKNOWLEDGMENTS We wish to thank R. Mongrain (P.Eng) for our lengthy conversations on the nature of space, time, light, matter, and CA theory. ABSTRACT We provide a quantum derivation of Einstein’s Weak Equivalence Principle (WEP) of general relativity using a new quantum gravity theory proposed by the authors called Electro-Magnetic Quantum Gravity or EMQG (ref. 1). EMQG is manifestly compatible with Cellular Automata (CA) theory (ref. 2 and 4), and is also based on a new theory of inertia (ref. 5) proposed by R. Haisch, A. Rueda, and H. Puthoff (which we modified and called Quantum Inertia, QI). QI states that classical Newtonian Inertia is a property of matter due to the strictly local electrical force interactions contributed by each of the (electrically charged) elementary particles of the mass with the surrounding (electrically charged) virtual particles (virtual masseons) of the quantum vacuum. The sum of all the tiny electrical forces (photon exchanges with the vacuum particles) originating in each charged elementary particle of the accelerated mass is the source of the total inertial force of a mass which opposes accelerated motion in Newton’s law ‘F = MA’. The well known paradoxes that arise from considerations of accelerated motion (Mach’s principle) are resolved, and Newton’s laws of motion are now understood at the deeper quantum level. We found that gravity also involves the same ‘inertial’ electromagnetic force component that exists in inertial mass.