542 Journal of Paleontology, V. 66, No. 4, 1992 Figure 4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphology of Two Deep-Sea Olivella from the Southwestern Atlantic, with a Record of a Radula-Less Olivellinae Species (Neogastropoda: Olivoidea: Olividae)
Archiv für Molluskenkunde 150 (1) 31–43 Frankfurt am Main, 30 June 2021 Morphology of two deep-sea Olivella from the southwestern Atlantic, with a record of a radula-less Olivellinae species (Neogastropoda: Olivoidea: Olividae) Alexandre Dias Pimenta1 & Luiz Ricardo Lopes Simone2 1 Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, 20940-040, Rio de Janeiro, Brazil ([email protected]). https://orcid.org/0000-0001-7001-5820 2 Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré, 481, Ipiranga, 04263-000, São Paulo, Brazil ([email protected]). https://orcid.org/0000-0002-1397-9823 • Corresponding author: A.D. Pimenta. Abstract. Two deep-sea species from southeast Brazil, originally assigned to different subgenera ofOli - vella, are anatomically described. Olivella (Olivina) klappenbachi and Olivella (Anasser) careorugula, both described by Absalão & Pimenta (2003), present typical Olivellinae anatomy, with internal absorp tion of the shell wall and a non-spiralized visceral mass, the absence of a valve of Leiblein and gland of Leiblein, and a large cuticularized and muscular stomach. Olivella klappenbachi presents the typical radular morphology of Olivellinae, while Olivella careorugula lacks a radula and odontophore, which is unique among known olivids. A well-founded phylogenetic classification of Olivella at the generic/ subgeneric level is still lacking, and the numerous proposed subgenera are mostly based on the structure of the pillar. A broader taxonomic -
Alegria, Santa Barbara County, California May 26, 2001 Species List
PISCO Coastal Biodiversity Survey University of California Santa Cruz http://cbsurveys.ucsc.edu Please note: The information listed below is provided for your convenience. We ask that you please contact the SWAT Team ([email protected]) prior to using this information for any purpose. We make this request to: 1. Reduce redundancy; we may be currently working on projects that involve this information. 2. We would like to be informed of and involved in projects developed using this information. We have been careful to voucher any organisms that were difficult to identify in the field so that more detailed evaluation could be done in the lab. We are therefore confident that the identification of organisms listed below is reliable with the caveat that some sponges and tunicates are very difficult to identify to species without detailed histological evaluation, which we have not done. The number of cases where this could have been a problem is very small. For more information please visit our website above or link directly to our protocols at: http://cbsurveys.ucsc.edu/sampling/images/dataprotocols.pdf Alegria, Santa Barbara County, California May 26, 2001 Species list: Acanthinucella spp Lepidochitona dentiens Acrosorium ciliolatum Lepidochitona hartwegii Alia spp Littorina keenae Anthopleura elegantissima Littorina plena/scutulata Anthopleura sola Lottia austrodigitalis/digitalis Balanus glandula Lottia limatula Blue green algae Lottia paradigitalis/strigatella Bossiella spp Lottia pelta Brachidontes/Septifer spp Lottia scabra/conus Calliarthron -
ECOLOGÍA DE “Oliva Bewleyi” (Marrat, 1870 )
ECOLOGÍA DE “Oliva bewleyi” (Marrat, 1870) (MOLLUSCA: GASTROPODA:OLIVIDAE) EN BAHÍA CONCHA, PARQUE NACIONAL NATURAL TAYRONA (PNNT), CARIBE COLOMBIANO DIANA CAROLINA TORRES PALACIO UNIVERSIDAD DE BOGOTÁ JORGE TADEO LOZANO FACULTAD DE CIENCIAS NATURALES PROGRAMA DE BIOLOGÍA MARINA BOGOTÁ D. C. 2008 ECOLOGÍA DE “Oliva bewleyi” (Marrat, 1870) (MOLLUSCA: GASTROPODA:OLIVIDAE) EN BAHÍA CONCHA, PARQUE NACIONAL NATURAL TAYRONA (PNNT), CARIBE COLOMBIANO DIANA CAROLINA TORRES PALACIO Director Juan Manuel Díaz Merlano Dr. rer. Nat Codirector Oscar Delgadillo Garzón Biólogo Marino, UJTL Coasesor Adolfo Sanjuán Muñoz Biólogo Marino, M.Sc. UNIVERSIDAD DE BOGOTÁ JORGE TADEO LOZANO FACULTAD DE CIENCIAS NATURALES PROGRAMA DE BIOLOGÍA MARINA BOGOTÁ D. C. 2008 ii Nota de Aceptación ____________________________ ____________________________ ____________________________ ____________________________ ____________________________ ____________________________ ____________________________ Firma del presidente del jurado ____________________________ Firma del jurado ____________________________ Firma del jurado iii Este trabajo está dedicado a mi familia por su amor, apoyo y paciencia. Y en este momento de mi vida, a Juan y a mi bebe Solé, por darle luz a mi vida. La perseverancia por alcanzar mi sueño de mar. iv AGRADECIMIENTOS Agradezco al creador del universo por darme vida y la oportunidad de poder disfrutar con toda la energía y amor, este trabajo de grado y en especial, de poder bucear mucho, del mar, la playa y el grupo de moluscos A mi familia, agradezco su apoyo incondicional, su paciencia, sabiduría, oportunidades y sobre todo su amor. Por que gracias a ellos he podido darme cuenta de mis errores, recuperar la confianza y así continuar con valor… Juan Manuel Díaz, más que un director ha sido como un papá, por su apoyo profesional y su amistad, por su gran paciencia y sobre todo por creer en mi y darme siempre la oportunidad. -
Foregut Anatomy of the Cochlespirinae (Gastropoda, Conoidea, Turridae)
Foregut anatomy of the Cochlespirinae (Gastropoda, Conoidea, Turridae) Alexandra I. MEDINSKAYA A. N. Severtzov Institute of Problems of Evolution, Leninsky Prospect 33, Moscow 117071 (Russia) Medinskaya A. I. 1999. — Foregut anatomy of the Cochlespirinae (Gastropoda. Conoidea. Turridae). Zoosystema2\ (2): 171-198. ABSTRACT The foregut anatomy of 20 species, belonging to eight genera, of the sub family Cochlespirinae is described. A cladistic analysis based on several most important characters (morphology of proboscis, position of buccal sphinc ters, histology of venom gland, position of the venom gland opening, struc ture of muscular bulb, and morphology of radular teeth) revealed three more or less well-defined groups within the subfamily. The main feature characte rizing the subfamily as a whole and separating groups within it, appeared to be the structure of venom gland and its muscular bulb. The subgenus KEYWORDS Cochlespirinae, Sibogasyrinx of the genus Leucosyrinx was shown to deserve a genus status. Conoidea, Some genera appeared to be intermediate between Cochlespirinae and anatomy, foregut, Crassispirinae in some anatomical characters, and their taxonomic position histology. remains not completely clear. RESUME L'anatomie du système digestif des Cochlespirinae (Gastropoda, Conoidea, Turridae). L'anatomie du système digestif de 20 espèces, appartenant à huit genres de la sous-famille Cochlespirinae, est étudiée. Une analyse cladistique, fondée sur les plus importants caractères de ce groupe (la morphologie de la trompe, la disposition des sphincters, l'histologie de la glande à venin, la disposition de l'ouverture de la glande à venin, la structure de la poire musculaire et la mor phologie des dents de la radula) a permis de distinguet trois groupes plus ou moins homogènes. -
Section 3.5 Marine Biology
3.5 MARINE BIOLOGY 3.5.1 Introduction 3.5.1.1 Definition of Resource For purposes of this EIS/OEIS, marine biological resources are defined as marine flora and fauna and habitats that they occupy, occurring within the Point Mugu Sea Range, Mugu Lagoon, and the intertidal and nearshore environment of San Nicolas Island and Point Mugu. This section specifically addresses marine invertebrates and flora. Fish and sea turtles are addressed in Section 3.6, marine mammals are addressed in Section 3.7, and seabirds are addressed in Section 3.8. Threatened and endangered species, as defined by the U.S. Fish and Wildlife Service (USFWS), are also addressed. Species that are federally listed are afforded a degree of regulatory protection, which entails a permitting process including specific mitigation measures for any allowable (incidental) impacts on the species. Species that are proposed to be listed by the USFWS are treated similarly to listed species by that agency; recommendations of the USFWS, however, are advisory rather than mandatory in the case of proposed species. A federally listed endangered species is defined as any species, including subspecies, that is “in danger of extinction throughout all or a significant portion of its range.” A federally listed threatened species is defined as any species “likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range.” “Proposed” endangered or threatened species are those species for which a proposed regulation has been published in the Federal Register, but a final rule has not yet been issued. 3.5.1.2 Regional Setting The Sea Range straddles the ocean off Point Conception which is considered a major geographic feature that affects marine biological diversity. -
Appendix C - Invertebrate Population Attributes
APPENDIX C - INVERTEBRATE POPULATION ATTRIBUTES C1. Taxonomic list of megabenthic invertebrate species collected C2. Percent area of megabenthic invertebrate species by subpopulation C3. Abundance of megabenthic invertebrate species by subpopulation C4. Biomass of megabenthic invertebrate species by subpopulation C- 1 C1. Taxonomic list of megabenthic invertebrate species collected on the southern California shelf and upper slope at depths of 2-476m, July-October 2003. Taxon/Species Author Common Name PORIFERA CALCEREA --SCYCETTIDA Amphoriscidae Leucilla nuttingi (Urban 1902) urn sponge HEXACTINELLIDA --HEXACTINOSA Aphrocallistidae Aphrocallistes vastus Schulze 1887 cloud sponge DEMOSPONGIAE Porifera sp SD2 "sponge" Porifera sp SD4 "sponge" Porifera sp SD5 "sponge" Porifera sp SD15 "sponge" Porifera sp SD16 "sponge" --SPIROPHORIDA Tetillidae Tetilla arb de Laubenfels 1930 gray puffball sponge --HADROMERIDA Suberitidae Suberites suberea (Johnson 1842) hermitcrab sponge Tethyidae Tethya californiana (= aurantium ) de Laubenfels 1932 orange ball sponge CNIDARIA HYDROZOA --ATHECATAE Tubulariidae Tubularia crocea (L. Agassiz 1862) pink-mouth hydroid --THECATAE Aglaopheniidae Aglaophenia sp "hydroid" Plumulariidae Plumularia sp "seabristle" Sertulariidae Abietinaria sp "hydroid" --SIPHONOPHORA Rhodaliidae Dromalia alexandri Bigelow 1911 sea dandelion ANTHOZOA --ALCYONACEA Clavulariidae Telesto californica Kükenthal 1913 "soft coral" Telesto nuttingi Kükenthal 1913 "anemone" Gorgoniidae Adelogorgia phyllosclera Bayer 1958 orange gorgonian Eugorgia -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. -
Benthic Data Sheet
DEMERSAL OTTER/BEAM TRAWL DATA SHEET RESEARCH VESSEL_____________________(1/20/13 Version*) CLASS__________________;DATE_____________;NAME:___________________________; DEVICE DETAILS_________ LOCATION (OVERBOARD): LAT_______________________; LONG______________________________ LOCATION (AT DEPTH): LAT_______________________; LONG_____________________________; DEPTH___________ LOCATION (START UP): LAT_______________________; LONG______________________________;.DEPTH__________ LOCATION (ONBOARD): LAT_______________________; LONG______________________________ TIME: IN______AT DEPTH_______START UP_______SURFACE_______.DURATION OF TRAWL________; SHIP SPEED__________; WEATHER__________________; SEA STATE__________________; AIR TEMP______________ SURFACE TEMP__________; PHYS. OCE. NOTES______________________; NOTES_______________________________ INVERTEBRATES Phylum Porifera Order Pennatulacea (sea pens) Class Calcarea __________________________________ Family Stachyptilidae Class Demospongiae (Vase sponge) _________________ Stachyptilum superbum_____________________ Class Hexactinellida (Hyalospongia- glass sponge) Suborder Subsessiliflorae Subclass Hexasterophora Family Pennatulidae Order Hexactinosida Ptilosarcus gurneyi________________________ Family Aphrocallistidae Family Virgulariidae Aphrocallistes vastus ______________________ Acanthoptilum sp. ________________________ Other__________________________________________ Stylatula elongata_________________________ Phylum Cnidaria (Coelenterata) Virgularia sp.____________________________ Other_______________________________________ -
The Sandy Beach Environment
THE SANDY BEACH ENVIRONMENT The sandy beach is a region of shifting sands and crashing waves. Each time a wave pummels the shore, sediment is suspended and scattered in every direction. Together the wind and waves constantly rework and reshape the face of the beach. Throughout the year, the beach slope is continually changing. During the spring and summer, gentle constructive waves deposit sediment on the beach platform, building up the slope. The large destructive waves of fall and winter strip the sand from the beach, often leaving only cobblestones and the rocky beach platform. This unstable environment makes it difficult for plants and animals to settle. In addition to waves, the organisms must contend with the problems imposed by tidal fluctuations. The daily ebb and flow of the sea exposes the shore to all the elements. The animals living within the range of the high and low tides (intertidal) are subjected to extreme temperature changes, drying out, and other problems resulting from exposure to the air. Very few animals can survive these rigorous conditions, and no large plants can anchor in the shifting sands. To the casual observer, the sandy beach appears desolate and barren. However, within the sand grains live large numbers of diverse animals. To survive in this environment, these animals have evolved some interesting adaptations. Successful species either ride the waves, live just above the tideline, or burrow beneath the sand to protect themselves from the hammering waves. The upper beach -is full of small scavengers and beachhoppers. These animals live just above the breaking waves. -
Sand Beach Monitoring at Channel Islands National Park, 2007-2012
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Sand Beach Monitoring at Channel Islands National Park 2007-2012 Natural Resource Report NPS/MEDN/NRR—2015/1049 ON THE COVER Clockwise from Upper left: wrack on China Camp Beach, Old Ranch House Canyon Lagoon, elephant seals on China Camp Beach, Jacob Elliott and Stephen Whitaker conducting core samples on upper beach transect at Water Canyon, Santa Rosa Island. Photograph by: Dan Richards Sand Beach Monitoring at Channel Islands National Park 2007-2012 Natural Resource Report NPS/MEDN/NRR—2015/1049 Daniel V. Richards and Stephen G. Whitaker National Park Service Channel Islands National Park 1901 Spinnaker Drive Ventura, CA 93001 October 2015 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
Emily Sue Stafford
Measuring and Interpreting Predation on Gastropod Shells by Emily Sue Stafford A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Earth and Atmospheric Sciences University of Alberta © Emily Sue Stafford, 2014 ABSTRACT This dissertation focuses on problems and progress in studying crushing predation on gastropods in the Modern and the fossil record. Although crushing predation tends to be destructive, it is possible to gather data on crushing predation from multiple angles. Chapter 2 applies an ichnotaxonomic name, Caedichnus, to the trace created by peeling crab predators. Chapter 3 the relationship between shell repair frequency and predation mortality in a modern gastropod community. In this case, repair frequency was likely a direct product of variation in predator abundance and strength. Chapter 4 focused on hermit crabs, an organism that inhabits gastropod shells and exposes those shells to predation even after the original gastropod inhabitant has died. The predatory crabs showed no preference for snail or hermit crab prey, which may mean that hermit crab habitation does not significantly alter the crab-on-snail predation patterns present in a shell assemblage. Chapter 5 expanded on previous work by the author, using a method by G.J. Vermeij to estimate crushing predation in a gastropod assemblage even when individual instances of predatory damage cannot be identified. Vermeij Crushing Analysis (VCA) uses drilled shells to establish a baseline of taphonomic damage in a shell assemblage; the chapter refines and examines this method more deeply, in addition to applying the method to compare predation on modern and fossil gastropod shell assemblages.