Subunit Gene Defects in Central Hypothyroidism in the UK and Ireland

Total Page:16

File Type:pdf, Size:1020Kb

Subunit Gene Defects in Central Hypothyroidism in the UK and Ireland Clinical Endocrinology (2017) 86, 410–418 doi: 10.1111/cen.13149 ORIGINAL ARTICLE Molecular spectrum of TSHb subunit gene defects in central hypothyroidism in the UK and Ireland A.K. Nicholas*, S. Jaleel†, G. Lyons*, E. Schoenmakers*, M.T. Dattani‡, E. Crowne§, B. Bernhard–, J. Kirk**, E.F. Roche†,††, V.K. Chatterjee* and N. Schoenmakers* *University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK, †Department of Paediatric Endocrinology & Diabetes, National Children’s Hospital, AMNCH, Dublin, Ireland, ‡University College London Institute of Child Health, Developmental Endocrinology Research Group, Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, London, §Department of Paediatric Endocrinology & Diabetes, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, ¶Department of Clinical Genetics, North West Thames Regional Genetics Service, North West London Hospitals NHS Trust, Harrow, **Department of Endocrinology, Birmingham Children’s Hospital, Birmingham, UK and ††University of Dublin, Trinity College Dublin, Dublin, Ireland such cases result in neurodevelopmental retardation. Inclusion Summary of thyroxine (T4) plus thyroxine-binding globulin (TBG), or free thyroxine (FT4) in CH screening, together with genetic case Objective Homozygous mutations in the TSH beta subunit ascertainment enabling earlier therapeutic intervention, could gene (TSHB) result in severe, isolated, central congenital prevent such adverse sequelae. hypothyroidism (CCH). This entity evades diagnosis in TSH- based congenital hypothyroidism (CH) screening programmes in (Received 8 April 2016; returned for revision 24 June 2016; finally the UK and Ireland. Accordingly, genetic diagnosis, enabling revised 24 June 2016; accepted 28 June 2016) ascertainment of affected relatives in families, is critical for prompt diagnosis and treatment of the disorder. Design, Patients and Measurements Four cases of isolated TSH deficiency from three unrelated families in the UK and Ire- Introduction land were investigated for mutations or deletions in TSHB. Haplotype analysis, to investigate a founder effect, was under- Isolated congenital central hypothyroidism is rare (incidence 1 in 1 taken in cases with identical mutations (c.373delT). 65 000), with genetic causes comprising mutations in the TSH Results Two siblings in kindred 1 were homozygous for a pre- beta subunit (TSHB), the immunoglobulin superfamily member 1 2 viously described TSHB mutation (c.373delT). In kindreds 2 and (IGSF1) or, less frequently, the TRH receptor (TRHR) genes. 3, the affected individuals were compound heterozygous for Central hypothyroidism is associated with either subnormal or TSHB c.373delT and either a 5Á4-kB TSHB deletion (kindred 2, inappropriately normal TSH levels and therefore evades diagnosis c.1-4389_417*195delinsCTCA) or a novel TSHB missense muta- in the UK and Irish TSH-based newborn screening programmes tion (kindred 3, c.2T>C, p.Met1?). Neurodevelopmental retarda- for congenital hypothyroidism (CH). Unfortunately, patients may tion, following delayed diagnosis and treatment, was present in then present later in the neonatal period with overt clinical 3 cases. In contrast, the younger sibling in kindred 1 developed hypothyroidism; in TSHB mutation cases, thyroid hormone defi- 3 normally following genetic diagnosis and treatment from birth. ciency is profound, resulting in neurodevelopmental retardation. Conclusions This study, including the identification of a sec- Heterodimeric TSH, secreted by anterior pituitary thyrotroph b ond, novel, TSHB deletion, expands the molecular spectrum of cells, comprises a hormone-specific beta subunit (TSH ) and a a TSHB defects and suggests that allele loss may be a commoner common alpha subunit ( GSU) shared with other members of basis for TSH deficiency than previously suspected. Delayed the glycoprotein hormone family (luteinizing hormone, follicle- diagnosis and treatment of profound central hypothyroidism in stimulating hormone and chorionic gonadotrophin). The integ- rity and bioactivity of the heterodimer are maintained by a ‘seat belt’ structure formed by the b-subunit peptide that is stabilized Correspondence: Nadia Schoenmakers, University of Cambridge Meta- by disulphide bridges including the so-called buckle between bolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of amino acids 39 and 125.4 Metabolic Science, Box 289, Addenbrooke’s Hospital, Hills Road, The human TSHb subunit gene is organized into 3 exons: Cambridge CB2 0QQ, UK. Tel.: +44 1223 767188; Fax: +44 1223 330598; E-mail: [email protected] exon 1 is untranslated, and exons 2 and 3 encode a 138-amino 410 © 2016 The Authors. Clinical Endocrinology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. UK and Irish TSHB mutations 411 acid peptide. The twenty N-terminal amino acids encode a sig- Patients and methods nal peptide that is cleaved to yield a 118-amino acid mature protein detectable in serum.4,5 The most frequently described Clinical phenotype, auxological parameters and biochemistry for TSHB mutation is a single-nucleotide deletion (c373delT), each case are summarized in Table 1. resulting in a cysteine 125 to valine conversion (C125V) and dis- ruption of the Cys-Cys 39–125 disulphide bridge, with a subse- Patients 1a and 1b (P1a and P1b) quent shift in reading frame and premature stop codon at position 134.6 Eight additional mutations have been described, P1a is the second son of healthy, nonconsanguineous Cau- including missense (p.C108Y, p.C105R, p.G49R) and nonsense casian (UK) parents. Although his TSH on neonatal screening – or frameshift mutations (p.E32*, p.Q69*, p.F77Sfs*6).3,7 11 Two was reported normal, he presented aged 3 weeks with a lower splice site mutations (c162G>A, IVS2 + 5G>A),3,12 and more respiratory tract infection and was noted to have clinical fea- recently a homozygous TSHB deletion, have also been tures of hypothyroidism, including somnolence, constipation reported.13 All are inherited in an autosomal recessive manner and dry skin. Thyroid function tests were consistent with sev- and are associated with severe central hypothyroidism. (The ere central hypothyroidism (total T4 < 10 nmol/l, normal range nomenclature of mutations in this paper follows the most recent 50–160; TSH 0Á1 mU/l, NR 0Á1–5), with no TSH response to HGNC guidelines to include the 20-amino acid signal peptide of TRH stimulation. Subsequent dynamic testing, showing pre- TSHb, such that codon numbering may differ from that cited in served corticotroph, somatotroph and gonadotroph function, the previously published articles). excluded combined pituitary hormone deficiency (data not We report three kindreds from the UK or Ireland in which shown), and his basal prolactin level was 554 mU/l (NR <700). four cases exhibit isolated central hypothyroidism secondary to Levothyroxine treatment was commenced at the age of 5 weeks TSHB mutations. In kindred 1, two siblings (P1a and P1b) are and 2 days, despite good compliance development was delayed. homozygous for the previously described c.373delT mutation. In Formal assessment of age 2 years revealed significantly kindred 2, the affected child (P2) is compound heterozygous for impaired hearing and speech. At age 7 years, growth is normal, c.373delT together with a maternally derived 5Á4-kb deletion and he is in mainstream education, but requires additional involving TSHB alone (c.1-4389_417*195delinsCTCA). In kin- support. dred 3, the proband (P3) is compound heterozygous for P1b, the younger brother of P1a, underwent screening for c.373delT and a novel missense mutation (c.2T>C, p.Met1?), central hypothyroidism at birth following this diagnosis in his disrupting the methionine residue from which translation is ini- older sibling. Thyroid function was consistent with TSH defi- tiated. We describe these TSHB defects and associated clinical ciency (cord blood fT4 6Á5 pmol/l, NR 10–24; TSH <0Á05 mU/l, phenotypes in the context of the wider literature. NR 0Á3–4). Levothyroxine was commenced at age 1 week, and Table 1. Clinical phenotype, auxological and biochemical parameters for each case harbouring TSHB mutations P1a P1b P2 P3 Neonatal screening TSH (mU/l) ‘Normal’ ‘Normal’ <10 Gestational length (weeks) 42 42 40 39 Birth weight (kg) 3Á71 4Á14 3Á18 2Á8 At diagnosis Age (weeks) 5 Birth 8 14 Body length (cm) and centile 56Á2 (25th) NA 51 (<3rd) <3rd Body weight (kg) and centile 5Á60 (75th) 4Á14 (75th) 3Á52 (<3rd) NA(3rd) TSH (mU/l) 0Á1(0Á1–5Á0) <0Á05(0Á3–4Á0) 2Á78 (0Á4–4Á0) 0Á45 (0Á4–3Á5) fT4 (pmol/l) <10(50–160)* 6Á5(10–24) <3Á89(10–25) <5Á1 (13Á8–22Á5) Peak TSH response to TRH 0Á09 NA 3Á21 NA MRI pituitary Normal NA Normal Normal Extrathyroidal abnormalities Neurodevelopment Mild motor and sensory Normal Mild motor delay Horizontal pendular nystagmus, processing deficits, extra bilateral sensorineural hearing support at school loss developmental delay (motor, language), Autism/Asperger spectrum Attends special school Haematological Macrocytic anaemia Macrocytic anaemia *In P1a, the T4 value refers to total T4 (nmol/l). In three cases, the absolute T4 value could not be quantified because it was significantly below the lower limit of the normal
Recommended publications
  • Strategies to Increase ß-Cell Mass Expansion
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents .................................................................................................
    [Show full text]
  • Bone Marrow Cells Produce a Novel Tshβ Splice Variant That Is
    Genes and Immunity (2009) 10, 18–26 & 2009 Macmillan Publishers Limited All rights reserved 1466-4879/09 $32.00 www.nature.com/gene ORIGINAL ARTICLE Bone marrow cells produce a novel TSHb splice variant that is upregulated in the thyroid following systemic virus infection BH Vincent1, D Montufar-Solis1, B-B Teng2, BA Amendt3, J Schaefer1 and JR Klein1 1Department of Diagnostic Sciences, Dental Branch, The University of Texas Health Science Center, Houston, TX, USA; 2Center for Human Genetics, The Brown Foundation of Molecular Medicine for the Prevention of Human Disease, The University of Texas Health Science Center, Houston, TX, USA and 3Department of Environmental and Genetic Medicine, Texas A&M Health Science Center, Houston, TX, USA Although cells of the immune system can produce thyroid-stimulating hormone (TSH), the significance of that remains unclear. Using 50 rapid amplification of cDNA ends (RACE), we show that mouse bone marrow (BM) cells produce a novel in-frame TSHb splice variant generated from a portion of intron 4 with all of the coding region of exon 5, but none of exon 4. The TSHb splice variant gene was expressed at low levels in the pituitary, but at high levels in the BM and the thyroid, and the protein was secreted from transfected Chinese hamster ovary (CHO) cells. Immunoprecipitation identified an 8 kDa product in lysates of CHO cells transfected with the novel TSHb construct, and a 17 kDa product in lysates of CHO cells transfected with the native TSHb construct. The splice variant TSHb protein elicited a cAMP response from FRTL-5 thyroid follicular cells and a mouse alveolar macrophage (AM) cell line.
    [Show full text]
  • The Effects of Ethanol on Growth Hormone and Prolactin Gene Expression in Male Rats
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 1995 The Effects of Ethanol on Growth Hormone and Prolactin Gene Expression in Male Rats John James Tentler Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Molecular Biology Commons Recommended Citation Tentler, John James, "The Effects of Ethanol on Growth Hormone and Prolactin Gene Expression in Male Rats" (1995). Dissertations. 3384. https://ecommons.luc.edu/luc_diss/3384 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1995 John James Tentler LOYOLA UNIVERSITY CHICAGO THE EFFECTS OF ETHANOL ON GROWTH HORMONE AND PROLACTIN GENE EXPRESSION IN MALE RATS A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MOLECULAR AND CELLULAR BIOCHEMISTRY BY JOHN JAMES TENTLER CHICAGO, ILLINOIS JANUARY 1995 Copyright by John J. Tentler, 1994 All rights reserved ll ACKNOWLEDGEMENTS I would like to recognize numerous people who have contributed throughout my graduate career to help me realize my goal. First, I would especially like to thank my advisors, Drs. Mary Ann Emanuele, Mark R. Kelley, and Nick Emanuele, not only for their guidance and support, but for their close friendship and belief in me as well. Special thanks also go to Dr.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Adipose TSHB in Humans and Serum TSH in Hypothyroid Rats Inform About Cellular Senescence
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositori Obert UdL Cellular Physiology Cell Physiol Biochem 2018;51:142-153 DOI: 10.1159/000495170 © 2018 The Author(s).© 2018 Published The Author(s) by S. Karger AG, Basel and Biochemistry Published online:online: 15 15 November November 2018 2018 www.karger.com/cpbPublished by S. Karger AG, Basel 142 and Biochemistry www.karger.com/cpb Moreno-NavarreteAccepted: 7 November et al.:2018 TSH and Adipose Tissue Senescence This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Interna- tional License (CC BY-NC-ND) (http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Original Paper Adipose TSHB in Humans and Serum TSH in Hypothyroid Rats Inform About Cellular Senescence José María Moreno-Navarretea Laura Liñares-Poseb Mònica Sabatera Eva Rial-Pensadob Ferran Comasa Mariona Jovéc Jèssica Latorrea Francisco Ortegaa Wifredo Ricarta Manuel Portero-Otinc Miguel Lópezb José Manuel Fernández-Reala* aDepartment of Diabetes, Endocrinology and Nutrition Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, bNeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, cNutrició i Envelliment (NUTREN)-Nutrigenomics, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA)-UdL, Científic i Tecnològic Agroalimentari de Lleida (PCiTAL), Lleida, Spain Key Words Thyroid-stimulating hormone • Euthyroidism • Hypothyroidism • Adipose tissue • Cellular senescence Abstract Background/Aims: Thyroid hormones have been recently linked to senescence and longevity.
    [Show full text]
  • ATF4/ATG5 Signaling in Hypothalamic Proopiomelanocortin Neurons Regulates Fat Mass Via Affecting Energy Expenditure
    1146 Diabetes Volume 66, May 2017 ATF4/ATG5 Signaling in Hypothalamic Proopiomelanocortin Neurons Regulates Fat Mass via Affecting Energy Expenditure Yuzhong Xiao, Yalan Deng, Feixiang Yuan, Tingting Xia, Hao Liu, Zhigang Li, Zhixue Liu, Hao Ying, Yi Liu, Qiwei Zhai, Shanghai Chen, and Feifan Guo Diabetes 2017;66:1146–1158 | DOI: 10.2337/db16-1546 Although many biological functions of activating tran- between food intake and energy expenditure (2–4). It has scription factor 4 (ATF4) have been identified, a role of been shown that certain populations of neurons in the arcu- hypothalamic ATF4 in the regulation of energy homeo- ate nucleus (ARC) of the hypothalamus play key roles in the stasis is poorly understood. In this study, we showed regulation of energy homeostasis (5,6). These neurons include that hypothalamic proopiomelanocortin (POMC) neuron– those expressing orexigenic neuropeptides neuropeptide Y specific ATF4 knockout (PAKO) mice are lean and have and agouti-related protein, along with neurons expressing higher energy expenditure. Furthermore, PAKO mice were anorexigenic neuropeptides cocaine and amphetamine-related – resistant to high-fat diet induced obesity, glucose intoler- transcript and proopiomelanocortin (POMC) (5,6). ance, and leptin resistance. Moreover, the expression of The activating transcription factor 4 (ATF4) belongs to autophagy protein 5 (ATG5) was increased or decreased the family of basic zipper-containing proteins (bZIP) by ATF4 knockdown or overexpression, respectively, and (7,8), with broad expression in various tissues, including ATF4 inhibited the transcription of ATG5 by binding to the brain (9). Previous studies have shown that ATF4 global METABOLISM basic zipper-containing protein sites on its promoter.
    [Show full text]
  • Hormones Growth Factors and Receptors
    Estrogens and Progestins ANSC 630 Reproductive Biology I 1 Hormone Functions 2 Physiological Roles of Hormones • Neuromodulation • Reproductive Processes • Metabolism (anabolic/catabolic) • Cellular proliferation and growth • Excretion and readsorption • Behavior • Immune system • More being discovered every day ! 3 Classical Definition of a Hormone: Physiological organic substance produced by specialized cells and released into circulating blood or lymph for transport to target tissues in distant organs to exert specific actions. Classical hormones are cell signaling molecules that: are synthesized by endocrine cells, e.g., gonadotrophs are secreted into the circulation (blood or lymph) interact with proteins called receptors on target cells (e.g., theca cells of ovarian follicle) have specific effects on target cells (e.g., stimulate theca cells to produce androgens such as testosterone) 4 Modern Definition of Hormone • Hormone – Substance released by one cell to regulate another cell. Synonymous with chemical messenger. – Delivered through endocrine, neuroendocrine, neurocrine, paracrine, autocrine, lactocrine or pheromonal systems • Chemical Nature of Hormones: • Amino Acids (norepinephrine, epinephrine, dopamine from tyrosine; thyroid hormones Triiodothyronine (T3) and Thryoxin (T4) from two iodinated tyrosines • Peptides (e.g., oxytocin) and Proteins (e.g., Follicle Stimulating Hormone and Luteinizing Hormone) • Steroid Hormones – Intact steroid nucleus (cortisol, estrogen, progesterone) – Broken steroid nucleus (Vitamin D and metabolites)
    [Show full text]
  • AUF1 and Hur: Possible Implications of Mrna Stability in Thyroid Function and Disorders Bogusz Trojanowicz, Henning Dralle, Cuong Hoang-Vu*
    Trojanowicz et al. Thyroid Research 2011, 4(Suppl 1):S5 http://www.thyroidresearchjournal.com/content/4/S1/S5 REVIEW Open Access AUF1 and HuR: possible implications of mRNA stability in thyroid function and disorders Bogusz Trojanowicz, Henning Dralle, Cuong Hoang-Vu* Abstract RNA-binding proteins may regulate every aspect of RNA metabolism, including pre-mRNA splicing, mRNA trafficking, stability and translation of many genes. The dynamic association of these proteins with RNA defines the lifetime, cellular localization, processing and the rate at which a specific mRNA is translated. One of the pathways involved in regulating of mRNA stability is mediated by adenylate uridylate-rich element (ARE) binding proteins. These proteins are involved in processes of apoptosis, tumorigenesis and development. Out of many ARE-binding proteins, two of them AUF1 and HuR were studied most extensively and reported to regulate the mRNA stability in vivo. Our previously published data demonstrate that both proteins are involved in thyroid carcinogenesis. Several other reports postulate that mRNA binding proteins may participate in thyroid hormone actions. However, until now, exacts mechanisms and the possible role of post-transcriptional regulation and especially the role of AUF1 and HuR in those processes remain not fully understood. In this study we shortly review the possible function of both proteins in relation to development and various physiological and pathophysiological processes, including thyroid function and disorders. Introduction vivo.AUF1(A+UrichRNA-bindingfactor1,heteroge- Cytoplasmic stability of eukaryotic mRNA is a substan- neous nuclear ribonucleoprotein D) is expressed as a tially important check point in the control for gene family of four proteins designated by their molecular expression.
    [Show full text]
  • Stimulating Hormone-Beta Subunit Gene Mutation in Two Siblings
    CASE REPORT DO I: 10.4274/jcrpe.4595 J Clin Res Pediatr Endocrinol 2017;9(3):278-282 Congenital Central Hypothyroidism Caused by a Novel Thyroid- Stimulating Hormone-Beta Subunit Gene Mutation in Two Siblings Bayram Özhan1, Özlem Boz Anlaş2, Bilge Sarıkepe2, Burcu Albuz2, Nur Semerci Gündüz2 1Pamukkale University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Denizli, Turkey 2Pamukkale University Faculty of Medicine, Department of Medical Genetics, Denizli, Turkey What is already known on this topic? Congenital central hypothyroidism (CCH) is a very rare disease. Genes included in pituitary development, as well as mutations of the immunoglobulin superfamily member 1 and transducin β-like protein 1 can cause syndromic CCH. However, isolated CCH is caused by mutations of the thyrotropin-releasing hormone receptor or thyroid-stimulating hormone-beta subunit genes. What this study adds? This article presents a novel mutation of TSHB genes in 2 patients with CCH. Abstract Congenital central hypothyroidism (CCH) is a very rare disease. Alterations in pituitary development genes as well as mutations of immunoglobulin superfamily member 1 and transducin β-like protein 1 can result in CCH and multiple pituitary hormone deficiencies. However, mutations of the thyrotropin-releasing hormone receptor or thyroid-stimulating hormone-beta (TSHB) gene are responsible for isolated CCH. In this paper, we present the cases of two siblings with a novel mutation of TSHB. Direct sequencing of the coding regions and exon/intron boundaries of the TSHB gene revealed two homozygous nucleotides changes. One of them was c.40A>G (rs10776792) which is a very common variation that is also seen in healthy individuals, the other was c.94G>A at codon 32 of exon 2 which resulted in a change from glutamic acid to lysine (p.E32K).
    [Show full text]
  • Molecular Cloning and Sequence Analysis of Multiple Cdna Variants for Thyroid-Stimulating Hormone B Subunit (Tshb) in the Fathead Minnow (Pimephales Promelas)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by DigitalCommons@CalPoly Molecular cloning and sequence analysis of multiple cDNA variants for thyroid-stimulating hormone b subunit (TSHb) in the fathead minnow (Pimephales promelas) Sean C. Lema Jon T. Dickey Penny Swanson Abstract We cloned and sequenced full-length cDNAs encoding the b subunit of thyroid-stimulating hormone (TSHb) from the pituitary of fathead minnow (Pimephales promelas) using 50- and 30-rapid amplification of cDNA ends (RACE). Three cDNA variants for TSHb with lengths of 1184-, 1093-, and 818-bp were identified. The cDNA variant of 1184-bp included 453-bp of open-reading frame and 610-bp of 3 0 UTR followed by a poly(A)site. This cDNA encodes 150 amino acids including a 19 residue signal peptide and a mature TSHb protein of 131 residues with sequence identities of 97–53% to other fishes and 42–39% to mammals. The 1093-bp cDNA variant was identical to the 1184-bp variant in the open-reading frame, but contained a deletion of 40-bp in the 30 UTR. The 818-bp cDNA variant, however, contained 498-bp of open-reading frame followed by 227-bp of 3 0 UTR and a poly(A)site. The deduced amino acid sequence for this cDNA variant showed 99.2% homology with the 1184- and 1093-bp variants of TSHb, but a single deletion of 332­ bp nucleotides spanning the predicted stop codon and 30 UTR resulted in a deduced amino acid sequence with 15 additional residues on the C terminus.
    [Show full text]
  • Differential Effects of Leptin and Refeeding on the Fasting-Induced Decrease of Pituitary Type 2 Deiodinase and Thyroid Hormone Receptor B2 Mrna Expression in Mice
    537 Differential effects of leptin and refeeding on the fasting-induced decrease of pituitary type 2 deiodinase and thyroid hormone receptor b2 mRNA expression in mice A Boelen, J Kwakkel, X G Vos, W M Wiersinga and E Fliers Department of Endocrinology, Metabolism, F5-165, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (Requests for offprints should be addressed to A Boelen; Email: [email protected]) Abstract Profound changes in thyroid hormone metabolism occur in mRNA expression was unaffected. A single dose of leptin the central part of the hypothalamus–pituitary–thyroid (HPT) given after 24 h fasting did not affect decreased TSHb, D2, axis during fasting. Hypothalamic changes are partly reversed and TRb2 mRNA expression, while 4 h refeeding resulted in by leptin administration, which decreases during fasting. It is pituitary D2 and TRb2 mRNA expression as observed in unknown to what extent leptin affects the HPT axis at the control mice. Serum leptin, T3, and T4 after refeeding were level of the pituitary. We, therefore, studied fasting-induced similar compared with leptin administration. We conclude alterations in pituitary thyroid hormone metabolism, as well that fasting decreases pituitary TSHb, D2, and TRb2 mRNA as effects of leptin administration on these changes. Because expression, which (with the exception of TSHb) can be refeeding rapidly increased serum leptin, the same parameters prevented by leptin administration during fasting. Following were studied after fasting followed by refeeding. Fasting for 24 h fasting, 4 h refeeding completely restores pituitary D2 24 h decreased serum T3 and T4 and pituitary TSHb, type 2 and TRb2 mRNA expression, while a single leptin dose is deiodinase (D2), and thyroid hormone receptor b2 (TRb2) ineffective.
    [Show full text]
  • Role of the Hypothalamic–Pituitary–Thyroid Axis in Metabolic Regulation by JNK1
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Role of the hypothalamic–pituitary–thyroid axis in metabolic regulation by JNK1 Guadalupe Sabio,1,2,5 Julie Cavanagh-Kyros,1,2 Tamera Barrett,1,2 Dae Young Jung,2,3 Hwi Jin Ko,2,3 Helena Ong,2 Caroline Morel,1,2 Alfonso Mora,2 Judith Reilly,2 Jason K. Kim,2,3,4 and Roger J. Davis1,2,6 1Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; 2Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; 3Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA; 4Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA The cJun N-terminal kinase 1 (JNK1) is implicated in diet-induced obesity. Indeed, germline ablation of the murine Jnk1 gene prevents diet-induced obesity. Here we demonstrate that selective deficiency of JNK1 in the murine nervous system is sufficient to suppress diet-induced obesity. The failure to increase body mass is mediated, in part, by increased energy expenditure that is associated with activation of the hypothalamic– pituitary–thyroid axis. Disruption of thyroid hormone function prevents the effects of nervous system JNK1 deficiency on body mass. These data demonstrate that the hypothalamic–pituitary–thyroid axis represents an important target of metabolic signaling by JNK1. [Keywords: JNK1; obesity; insulin resistance; thyroid hormone] Supplemental material is available at http://www.genesdev.org. Received October 27, 2007; revised version accepted December 4, 2009.
    [Show full text]