Diversity of Pollinator Bees in Ecological Engineering Organic Field

Total Page:16

File Type:pdf, Size:1020Kb

Diversity of Pollinator Bees in Ecological Engineering Organic Field Available online at www.ijpab.com Sree Latha et al Int. J. Pure App. Biosci. 6 (2): 868-871 (2018) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.6311 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 6 (2): 868-871 (2018) Research Article Diversity of Pollinator Bees in Ecological Engineering Organic Field Sree Latha E.*, Jesu Rajan, S., Sathish R, Swathi Yadav K, Rama Devi A. and Vijayalakshmi K. National Institute of Plant Health Management, Rajendra Nagar, Hyderabad – 500 030 *Corresponding Author E-mail: [email protected] Received: 6.03.2018 | Revised: 11.04.2018 | Accepted: 18.04.2018 ABSTRACT Study on diversity of bee pollinators was carried at NIPHM, Hyderabad during 2016-17 on sunflower, sun hemp, maize, sweet corn, brinjal, okra, cherry, bottle gourd, ridge gourd and cucurbits. NIPHM maintains ecological engineering (EE) organic field for the purpose of research, training and popularization of the concept of EE. The crops were maintained along with flowering plants like mustard, sunflower, marigold, cosmos etc., to attract beneficial insects. In present study total fourteen bee species from nine genera were identified as pollinators, out of 14 species of bees 5 species were honey bees from family Apidae and Genus Apis and Tetragonula and remaining 9 species were solitary bees. Ecological engineering concept is beneficial to the farmers and environment in many aspects and the most important being conservation of precious bee pollinators. Key words: Ecological Engineering, Bee Pollinators, NIPHM, Organic field. INTRODUCTION 67% of species of flowering plants and a Pollinators play key role in the survival of relatively high diversity of insect taxa3. On the integrity of terrestrial ecosystem through their other hand, 35% of crop production worldwide major role in plant reproduction, thereby and 70% of major global crop species rely on providing services and goods to the society8. animal pollination4. Lautenbach et al.6, Pollination has two important consequences, it estimated values of bee pollination at €265 maintains biodiversity of flowering plants and billion in global food supply. maintains ecosystem functioning. Many Kumar and Naidu5 estimate about empirical studies have found positive 1200 species of vertebrate pollinators and correlations between pollinator diversity and 80,000 species of insect pollinators are present plant functioning7. worldwide. Amongst 80,000 species of insect Pollination by insects and other pollinators, 17,533 species are of bee animals is significant in most terrestrial pollinators worldwide, out of these 633 species habitats. Fruit, vegetable or seed production from 60 genera belongs to 6 families were from 87 of the 115 leading global food crops reported from India. depends upon animal pollination. It involves Cite this article: Sree Latha, E., Rajan, J.S., Sathish, R., Yadav, S.K. Rama Devi A. and Vijayalakshmi, K., Diversity of Pollinator Bees in Ecological Engineering Organic Field, Int. J. Pure App. Biosci. 6(2): 868- 871 (2018). doi: http://dx.doi.org/10.18782/2320-7051.6311 Copyright © March-April, 2018; IJPAB 868 Sree Latha et al Int. J. Pure App. Biosci. 6 (2): 868-871 (2018) ISSN: 2320 – 7051 Among the insect pollinators, honey bees are period on different crops. Field was kept free the most important pollinators of angiosperms from any insecticidal spray during the entire because of their vegetarian diet, flower visiting study period. Bees collected by aerial netting habits, floral fidelity, presence of thousands of method were killed with the help of killing work force, large number of hairs on body that bottle. The dead insect was immediately readily pick up pollen grains and the fact that transformed into absolute alcohol. Time and they exclusively visit many flowers of the date of collection were documented for each same species during a single trip and also their specimen. In the lab, specimens were pinned, availability throughout the year makes honey mounted and oven–dried for 24 hours at 40 °C. bees the most efficient and reliable All specimens were kept in insect boxes pollinator10. supplied for pinning and naphthalene balls Honeybees pollinate 16% of the total were kept to enable long storage without pest of 0.25 million of flowering plant species in damage. Specimens of bees were used for the world and nearly 40000 species of identification. agricultural plants2. Worldwide, 90 per cent Identification of specimens Initial identification to the genus level was food supply is contributed by 82 commodities conducted in the laboratory of Plant health assigned to plant species and bees are management (PHM) division, NIPHM, pollinators of 63 (i.e. 70%) of these plant Hyderabad. Later the images were shared to species and are the most important known Dr. Venkata Rami Reddy P., Principal pollinators of 39 (48%) of these plant species. Scientist, Division of Entomology and One-third of human diet is derived directly or Nematology, Pollinator Ecology, Indian indirectly from bee pollination in developed Institute of Horticulture Research, Bengaluru, countries. Of the hundred or so animal- India for confirmation. pollinated crops which make up most of the world’s food supply, at least 80 % are 9 RESULTS AND DISCUSSION pollinated by honey bees and wild bees . Over In present study total fourteen bee species the past two decades many investigators from nine genera were identified as recorded the decline in population of bee pollinators, found on different crops at species and the colony numbers (colony NIPHM. Out of fourteen species of bees five collapse disorder) due to the environmental bee species were honeybees from family problems like climate change, drought, fire, Apidae and Genus Apis and Tetragonula, and deforestation, pesticides, cell phones and many remaining nine species were solitary bees. other reasons. Honey bees are so important to The most rich genus was Apis, having four both agriculture and economics so efforts are species viz., Apis florea (Fabricius, 1787), important to reduce this declination. Apis cerana indica (Fabricius, 1793), Apis mellifera (Linnaeus, 1758) and Apis dorsata MATERIAL AND METHODS (Fabricius, 1793). Genus Nomada includes Studies on diversity of bee pollinators were two species viz., Nomada luteoloides carried out at NIPHM on different crops (Robertson, 1895) and Nomia sp. Genus (sunflower, sun hemp, maize, sweet corn, Xylocopa includes two species viz., Xylocopa brinjal, okra, cucurbits, bottle gourd, ridge violacea (Linnaeus, 1758), Xylocopa gourd and cherry). Field data was collected fenestrate (Fabricius, 1798). Genus through regular frequent visits to the study Tetragonula, Pseudapis, Nomia, Halictus, sites, during January 2017 – May 2017 Megachile, Scolia and Amegilla included one between 08.00 – 10.00 am. Whenever bee species each viz.,Tetragonula iridipennis species was observed on flowers it was caught (Smith, 1854), Pseudapis oxybeloides (Smith, by sweep insect net. Insect visitors were 1875), Nomia sp., Halictus sp., Megachile sp., collected on a sunny day between 08:00 and Scolia sp., and Amegilla cingulate (Fabricius, 10:00 am throughout the entire flowering 1775). Copyright © March-April, 2018; IJPAB 869 Sree Latha et al Int. J. Pure App. Biosci. 6 (2): 868-871 (2018) ISSN: 2320 – 7051 Among all the crops observed, brinjal recorded found in cucumber is blue banded bee highest diversity with 14 species of bees (Amegilla cingulata). (Table 1). Sunflower (Helianthus annuus): Three Brinjal (Solanum melongena): The species of honey bees i.e., Indian honey bee, movement of bees was extensive in this crop European honey bee and Stingless bee (Apis throughout the flowering period when mellifera, Apis cerana indica and Tetragonula compared to the other crops. The pollinators iridipennis) along with two species of observed in the brinjal field are honey bees carpenter bees (Xylocopa violacea, Xylocopa (Apis dorsata, Apis florea, Apis cerana indica, fenestrata) were found. The present study Apis mellifera, Tetragonula iridipennis), corroborated with the findings of Amit et al. carpenter bees (Xylocopa violacea, Xylocopa (2010) who noticed more abundance of Apis fenestrata) and other solitary bee pollinators sp. in sunflower ecosystem. like Pseudapis oxybeloides, Nomia sp., Sweet corn (Zea mays): Four species of honey Nomada luteoloides, Halictus sp. (sweat bee), bees i.e., Indian honey bee, European honey Megachile spp. (leaf cutting bees), Amegilla bee, Rock bee and Stingless bee (Apis cerana cingulata (blue banded bee). Among the indica, Apis dorsata, Apis mellifera, and insects observed in the brinjal field, carpenter Tetragonula iridipennis) were seen in Sweet bees (Xylocopa) and honey bees (Apis dorsata) corn field. Apart from honey bees no other were found abundant throughout the period. pollinators were found in the field. Sun hemp Okra (Abelmoschus esculentus (L.): Single (Crotalaria juncea): Two species of carpenter bee pollinator was observed in okra i.e., sting bees i.e., (Xylocopa violacea, Xylocopa less honey bee (Tetragonula iridipennis). fenestrata) and two other pollinators Cucurbits: Two species of honey bees, Pseudapis oxybeloides and Scolia spp. European honey bee (Apis mellifera) and were observed. stingless bee (Tetragonula iridipennis) were Cherry: The abundant pollinator in cherry is found in cucumber (Cucumis sativus), ridge little bee (Apis florea) and sting less bee gourd (Luffa acutangula) and bottle gourd (Tetragonula iridipennis) were seen on Cherry (Lagenaria siceraria). Another pollinator
Recommended publications
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • In Dir Lower, Khyber Pakhtunkhwa, Pakistan
    IAJPS 2019, 06 (10), 13512-13520 Abdul Baset et al ISSN 2349-7750 CODEN [USA]: IAJPBB ISSN: 2349-7750 INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES Available online at: http://www.iajps.com Research Article DIVERSITY OF CARPENTER BEE FAUNA (XYLOCOPA SPP.) IN DIR LOWER, KHYBER PAKHTUNKHWA, PAKISTAN Akbar Hussain1, Mohammad Attaullah2, Muhammad Ather Rafi3, Hamad Khan1, Abdul Waris4, Anwar Zeb5, Abdul Baset 6 1Department of Zoology, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan 2Department of Zoology, Faculty of Biological Science, University of Malakand, Pakistan 3Department of Zoology, Women University Swabi, Pakistan, Director National Insect Museum, Islamabad, Pakistan 4Department of Biotechnology, Quaid-e-Azam University Islamabad, Pakistan 5Department of Zoology, Faculty of Science, Hazara University, Mansehra, Pakistan 6 Department of Zoology, Bacha Khan University, Charsadda, Pakistan *Corresponding author: [email protected] Abstract: This study was conducted at District Dir Lower, in north western Pakistan for the evaluation of diversity of Xylocopa spp. during March to September 2015. The study area was divided in 7 different localities namely Chakdara, Talash, Timergara, Jandol, Khal, Darmal and Lal Qilla. Higher Simpson’s index (1_D) values were calculated for Talash (0.7464) followed by Khal (0.7392), Chakdara and Jandol (same value 0.7366), Darmal (0.7268), Lal Qila (0.7244) and lowest value was calculated for Timergara (0.716). Divider and Scale method was used for the morphometric measurement of carpenter bees. Out of the total 321 specimens collected, four species namely, Xylocopa collaris, Xylocopa acutipennis, Xylocopa dissimilis and Xylocopa pubescens were identified. X. dissimilis was the abundant species recorded which represented 29.60 % of the total collection, while X.
    [Show full text]
  • Behavioral Phylogeny of Corbiculate Apidae (Hymenoptera; Apinae), with Special Reference to Social Behavior
    Cladistics 18, 137±153 (2002) doi:10.1006/clad.2001.0191, available online at http://www.idealibrary.com on Behavioral Phylogeny of Corbiculate Apidae (Hymenoptera; Apinae), with Special Reference to Social Behavior Fernando B. Noll1 Museum of Biological Diversity, Department of Entomology, The Ohio State University, 1315 Kinnear Road, Columbus, Ohio 43212 Accepted September 25, 2000 The phylogenetic relationships among the four tribes of Euglossini (orchid bees, about 175 species), Bombini corbiculate bees (Euglossini, Bombini, Meliponini, and (bumblebees, about 250 species), Meliponini (stingless Apini) are controversial. There is substantial incongru- bees, several hundred species), and Apini (honey bees, ence between morphological and molecular data, and the about 11 species) (Michener, 2000), that belong to the single origin of eusociality is questionable. The use of Apinae, a subfamily of long-tongued bees. They all behavioral characters by previous workers has been possess apical combs (the corbiculae) on the females' restricted to some typological definitions, such as soli- tibiae as well as several other morphological synapo- tary and eusocial. Here, I expand the term ªsocialº to 42 morphies (with the exception of the parasitic forms, characters and present a tree based only on behavioral and the queens of highly eusocial species). In addition, characters. The reconstructed relationships were similar with the exception of the Euglossini and the social to those observed in morphological and ªtotal evidenceº parasite Psithyrus in Bombini, all corbiculate bees are ؉ ؉ ؉ analyses, i.e., Euglossini (Bombini (Meliponini social. Apini)), all of which support a single origin of euso- Despite many studies that have focused on the classi- ciality. ᭧ 2002 The Willi Hennig Society ®cation and phylogeny of bees, many authors do not agree on one classi®cation and one phylogeny.
    [Show full text]
  • A New Species of Amegilla from Northeastern Egypt (Hymenoptera: Apidae)
    ©Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Linzer biol. Beitr. 39/2 821-828 18.12.2007 A new species of Amegilla from northeastern Egypt (Hymenoptera: Apidae) M.S. ENGEL A b s t r a c t : A new bee species of the genus Amegilla (Apinae: Anthophorini) is described and figured from northeastern Egypt. Amegilla argophenax nov.sp., belongs to the A. fasciata group and is most similar to A. deceptrix (PRIESNER) nov.comb. which occurs in the same region. Characters are provided to distinguish the species from its congeners. Podalirius pyramidalis KIRBY, from Socotra (Republic of Yemen), is resurrected from synonymy under Amegilla albigena (LEPELETIER DE SAINT FARGEAU) (as A. pyramidalis nov.comb.) where it is, like A. argophenax and A. deceptrix, a member of the A. fasciata group. K e y w o r d s : Anthophila, Apoidea, Africa, Anthophorini, Arabia, Socotra, taxonomy. 1. Introduction The genus Amegilla is a diverse group of approximately 255 anthophorine bee species distributed in southern Europe and the Mediterranean basin, southward throughout Africa and Madagascar, east into Arabia and in Asia as far as northeast China, Korea, and Japan, and south into Sri Lanka, Indonesia, New Guinea, as well as Australia, Tas- mania, and the Solomon Islands (MICHENER 2000). While the genus has received the attention of various authors (e.g., RAYMENT 1942, 1947, 1951; LIEFTINCK 1956, 1975; PRIESNER 1957; EARDLEY 1994), exceedingly similar or even cryptic coloration nonetheless continues to plague the taxonomy and identification of species, a situation further exacerbated by low sample sizes in most collections. The purpose of the present contribution is to provide the description of a new species of Amegilla from northeastern Egypt (Figs 1-2) and correct the status of two from the gene- ral region of northeastern Africa and Arabia, particularly one that is closely allied to the species described herein.
    [Show full text]
  • Quantifying the Biodiversity Value of Tropical Primary, Secondary, and Plantation Forests
    Quantifying the biodiversity value of tropical primary, secondary, and plantation forests J. Barlow*†‡, T. A. Gardner*, I. S. Araujo†,T.C.A´ vila-Pires†, A. B. Bonaldo†, J. E. Costa†, M. C. Esposito†, L. V. Ferreira†, J. Hawes*, M. I. M. Hernandez§, M. S. Hoogmoed†, R. N. Leite¶, N. F. Lo-Man-Hung†, J. R. Malcolmʈ, M. B. Martins†, L. A. M. Mestre**, R. Miranda-Santos†, A. L. Nunes-Gutjahr†, W. L. Overal†, L. Parry*, S. L. Peters††, M. A. Ribeiro-Junior†, M. N. F. da Silva§, C. da Silva Motta§, and C. A. Peres* *Centre for Ecology, Evolution and Conservation, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; †Museu Paraense Emı´lioGoeldi (MPEG), Avenida Perimetral 1901, Bairro Terra Firme, 66077-530 Bele´m, Para´, Brazil; §Universidade Federal da Paraiba, Cidade Universita´ria-Campus I, CEP 58059-900 Joa˜o Pessoa, Paraiba, Brazil; ¶Insituto Nacional de Pesquisas da Amazonia, Avenida Andre´Arau´jo 2936, Petro´polis, CEP 69083-000 Manaus, Amazonas, Brazil; ʈFaculty of Forestry, University of Toronto, Toronto, ON, Canada M5S 3B3; **Laborato´rio de Ornitologia, CEM Universidade Federal do Parana´, Avenida Beira-mar, s/n., CEP 83.255-000 Pontal do Sul, Parana´, Brazil; and ††University of Western Ontario, London, ON, Canada N6A 4B8 Edited by Rodolfo Dirzo, Stanford University, Stanford, CA, and approved October 5, 2007 (received for review April 11, 2007) Biodiversity loss from deforestation may be partly offset by the Unfortunately, the conservation value of these habitats cannot expansion of secondary forests and plantation forestry in the be easily predicted because of three widespread problems in tropics.
    [Show full text]
  • Build a Bee Home in Your Backyard Australia Has Over 2,000 Solitary Bee Species Needing Homes
    Support the Pollinator Link® project Build a Bee Home in your backyard Australia has over 2,000 solitary bee species needing homes. DIY Projects Hives of small black Stingless Native Bees Tetragonula sp. have become popular in urban backyards and are increasingly important for pollination M. Fox of agricultural crops like Queensland Nuts Macadamia integrifolia. Less well known are the 2,000 species of native solitary bees: species diversity provides pollination security by reducing risks from species specific disease. Some species: Blue Banded Bees, Teddy Bear Bees and Carpenter Bees also provide a special type of pollination service called Buzz Pollination – shaking pollen out by vibrating flowers with strong wing muscles or head banging the flowers. Buzz Pollination is particularly valuable for the tomatoes, kiwi fruit, eggplants, blueberries, cranberries and chilli peppers, in your backyard vegetable garden. The European Honey Bee Apis mellifera cannot perform Buzz Pollination. Stingless native bee hive Solitary native bees come in a wide range of colours: bright orange furry Teddy A. Moore Bear Bees and shiny green Metallic Carpenter Bees; and sizes, from 12mm Blue Banded Bees to the huge loud 24mm Great Carpenter Bees. Adult solitary native bee generally only fly during the warm months and die before winter. Immature bees remain sealed in their cells inside the nests during the winter. They develop into adults and emerge in spring when the warm weather returns and your plants need pollinators. Solitary bee nests: Many solitary bees nest in burrows in the ground while others Teddy Bear Bee nest in pre-existing crevices or holes in timber.
    [Show full text]
  • Cambodian Journal of Natural History
    Cambodian Journal of Natural History Giant ibis census Patterns of salt lick use Protected area revisions Economic contribution of NTFPs New plants, bees and range extensions June 2016 Vol. 2016 No. 1 Cambodian Journal of Natural History ISSN 2226–969X Editors Email: [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Stephen J. Browne, Fauna & Flora International, • Dr Sovanmoly Hul, Muséum National d’Histoire Singapore. Naturelle, Paris, France. • Dr Martin Fisher, Editor of Oryx – The International • Dr Andy L. Maxwell, World Wide Fund for Nature, Journal of Conservation, Cambridge, U.K. Cambodia. • Dr L. Lee Grismer, La Sierra University, California, • Dr Brad Pett itt , Murdoch University, Australia. USA. • Dr Campbell O. Webb, Harvard University Herbaria, • Dr Knud E. Heller, Nykøbing Falster Zoo, Denmark. USA. Other peer reviewers for this volume • Prof. Leonid Averyanov, Komarov Botanical Institute, • Neang Thy, Minstry of Environment, Cambodia. Russia. • Dr Nguyen Quang Truong, Institute of Ecology and • Prof. John Blake, University of Florida, USA. Biological Resources, Vietnam. • Dr Stephan Gale, Kadoorie Farm & Botanic Garden, • Dr Alain Pauly, Royal Belgian Institute of Natural Hong Kong. Sciences, Belgium. • Fredéric Goes, Cambodia Bird News, France. • Dr Colin Pendry, Royal Botanical Garden, Edinburgh, • Dr Hubert Kurzweil, Singapore Botanical Gardens, UK. Singapore. • Dr Stephan Risch, Leverkusen, Germany. • Simon Mahood, Wildlife Conservation Society, • Dr Nophea Sasaki, University of Hyogo, Japan.
    [Show full text]
  • Sown Wildflowers Enhance Habitats of Pollinators and Beneficial
    plants Article Sown Wildflowers Enhance Habitats of Pollinators and Beneficial Arthropods in a Tomato Field Margin Vaya Kati 1,* , Filitsa Karamaouna 1,* , Leonidas Economou 1, Photini V. Mylona 2 , Maria Samara 1 , Mircea-Dan Mitroiu 3 , Myrto Barda 1 , Mike Edwards 4 and Sofia Liberopoulou 1 1 Scientific Directorate of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 Stefanou Delta Str., 14561 Kifissia, Greece; [email protected] (L.E.); [email protected] (M.S.); [email protected] (M.B.); [email protected] (S.L.) 2 HAO-DEMETER, Institute of Plant Breeding & Genetic Resources, 570 01 Thessaloniki, Greece; [email protected] 3 Faculty of Biology, Alexandru Ioan Cuza University, Bd. Carol I 20A, 700505 Ias, i, Romania; [email protected] 4 Mike Edwards Ecological and Data Services Ltd., Midhurst GU29 9NQ, UK; [email protected] * Correspondence: [email protected] (V.K.); [email protected] (F.K.); Tel.: +30-210-8180-246 (V.K.); +30-210-8180-332 (F.K.) Abstract: We evaluated the capacity of selected plants, sown along a processing tomato field margin in central Greece and natural vegetation, to attract beneficial and Hymenoptera pollinating insects and questioned whether they can distract pollinators from crop flowers. Measurements of flower cover and attracted pollinators and beneficial arthropods were recorded from early-May to mid-July, Citation: Kati, V.; Karamaouna, F.; during the cultivation period of the crop. Flower cover was higher in the sown mixtures compared Economou, L.; Mylona, P.V.; Samara, to natural vegetation and was positively correlated with the number of attracted pollinators.
    [Show full text]
  • Downloadfile/616075 Toft, J
    REVIEW published: 30 April 2021 doi: 10.3389/fevo.2021.582041 Designing (for) Urban Food Webs Alexander J. Felson 1,2,3 and Aaron M. Ellison 4* 1 Melbourne School of Design, Faculty of Architecture, Building and Planning, University of Melbourne, Melbourne, VIC, Australia, 2 Connecticut Institute for Resilience and Climate Adaptation, University of Connecticut, Groton, CT, United States, 3 Urban Ecology and Design Lab and Ecopolitan Design, New Haven, CT, United States, 4 Harvard Forest, Harvard University, Petersham, MA, United States Interest is growing in designing resilient and ecologically rich urban environments that provide social and ecological benefits. Regenerative and biocentric designs fostering urban ecological habitats including food webs that provide ecosystem services for people and wildlife increasingly are being sought. However, the intentional design of urban landscapes for food webs remains in an early stage with few precedents and many challenges. In this paper, we explore the potential to design (for) urban food webs through collaborations between designers and ecologists. We start by examining the ecology and management of Jamaica Bay in New York City as a case study of an anthropogenic landscape where ecosystems are degraded and the integrity of extant food webs are intertwined with human agency. A subsequent design competition focusing on ecological design and management of this large-scale landscape for animal habitat and ecosystem Edited by: services for people illustrates how designers approach this anthropogenic landscape. Mary L. Cadenasso, This case study reveals that both designing urban landscapes for food webs and directly University of California, Davis, United States designing and manipulating urban food webs are complicated and challenging to achieve Reviewed by: and maintain, but they have the potential to increase ecological health of, and enhance Frederick R.
    [Show full text]
  • Planting and Creating Habitat Toattract Bees
    Bee Walls Bee Gardens Bee Habitat Bee Trees Planting and Creating Habitat toAttract Bees BLUE-BANDED SOLITARY DIANNE BY CLARKE Conserving all bees : for the health of our environment and on-going food supply Gardeners can choose a wide variety of plants to attract and support bees. Floral embrace! Some plants provide valuable supplies of nectar and pollen for the bees whilst PHOTO BOB LUttRELL others assist the bees with their nest building. Native plants are usually best for native bees, and can be used in both wild areas and gardens. There are also many garden plants - particularly heirloom varieties of perennials and herbs - that are good sources of nectar or pollen. Together with native plants, these will make a garden attractive to both pollinators and people. The need... The need for this document arose from our Valley Bees meetings. Members enquired about habitat that could be of benefit to all bees, what trees and plants to conserve and plant on their properties, how to attract pollinators to our gardens, and (for those who What is pollen? had bees as an activity) when did these plants produce nectar and pollen to provide food for bees. Pollen is the male component of the reproductive cycle of flowering A call was put out for a survey, and the knowledge of people experienced in the field was collected and collated to provide this survey of the trees in the local Mary River Catchment area. plants. It is produced in the anthers of the flowers. For fruit and seeds to We thank Ernie Rider, Kayle Findlay, Roy Barnes, Norm Salt and Pauline Alexander for their valuable form, the pollen must be transferred to the stigma to enter the ovaries.
    [Show full text]
  • (Hymenoptera, Apoidea, Anthophila) in Serbia
    ZooKeys 1053: 43–105 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1053.67288 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Contribution to the knowledge of the bee fauna (Hymenoptera, Apoidea, Anthophila) in Serbia Sonja Mudri-Stojnić1, Andrijana Andrić2, Zlata Markov-Ristić1, Aleksandar Đukić3, Ante Vujić1 1 University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia 2 University of Novi Sad, BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia 3 Scientific Research Society of Biology and Ecology Students “Josif Pančić”, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia Corresponding author: Sonja Mudri-Stojnić ([email protected]) Academic editor: Thorleif Dörfel | Received 13 April 2021 | Accepted 1 June 2021 | Published 2 August 2021 http://zoobank.org/88717A86-19ED-4E8A-8F1E-9BF0EE60959B Citation: Mudri-Stojnić S, Andrić A, Markov-Ristić Z, Đukić A, Vujić A (2021) Contribution to the knowledge of the bee fauna (Hymenoptera, Apoidea, Anthophila) in Serbia. ZooKeys 1053: 43–105. https://doi.org/10.3897/zookeys.1053.67288 Abstract The current work represents summarised data on the bee fauna in Serbia from previous publications, collections, and field data in the period from 1890 to 2020. A total of 706 species from all six of the globally widespread bee families is recorded; of the total number of recorded species, 314 have been con- firmed by determination, while 392 species are from published data. Fourteen species, collected in the last three years, are the first published records of these taxa from Serbia:Andrena barbareae (Panzer, 1805), A.
    [Show full text]
  • Hymenoptera, Apoidea) from Central Asia Collected by the Kyushu and Shimane Universities Expeditions
    Biodiversity Data Journal 5: e15050 doi: 10.3897/BDJ.5.e15050 Taxonomic Paper The bee family Halictidae (Hymenoptera, Apoidea) from Central Asia collected by the Kyushu and Shimane Universities Expeditions Ryuki Murao‡, Osamu Tadauchi§, Ryoichi Miyanaga| ‡ Regional Environmental Planning Co., Ltd., Fukuoka, Japan § Kyushu University, Fukuoka, Japan | Faculty of Life and Environmental Science, Shimane University, Matsue, Japan Corresponding author: Ryuki Murao ([email protected]) Academic editor: Matthew Yoder Received: 13 Jul 2017 | Accepted: 09 Oct 2017 | Published: 20 Oct 2017 Citation: Murao R, Tadauchi O, Miyanaga R (2017) The bee family Halictidae (Hymenoptera, Apoidea) from Central Asia collected by the Kyushu and Shimane Universities Expeditions. Biodiversity Data Journal 5: e15050. https://doi.org/10.3897/BDJ.5.e15050 Abstract Background Central Asia is one of the important centers of bee diversity in the Palearctic Region. However, there is insufficient information for many taxa in the central Asian bee fauna. The Kyushu and Shimane Universities (Japan) Expeditions to Kazakhstan, Kyrgyzstan, Uzbekistan, and Xinjiang Uyghur of China were conducted in the years 2000 to 2004 and 2012 to 2014. New information Eighty-eight species of the bee family Halictidae Thomson, 1869 are enumerated including new localities in central Asia. Halictus tibialis Walker, 1871, H. persephone Ebmer, 1976, Lasioglossum denislucum (Strand, 1909), L. griseolum (Morawitz, 1872), L. melanopus (Dalla Torre, 1896), L. nitidiusculum (Kirby, 1802), L. sexnotatulum (Nylander, 1852), L. © Murao R et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]