Silver Ratio and Pell Numbers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prime Divisors in the Rationality Condition for Odd Perfect Numbers
Aid#59330/Preprints/2019-09-10/www.mathjobs.org RFSC 04-01 Revised The Prime Divisors in the Rationality Condition for Odd Perfect Numbers Simon Davis Research Foundation of Southern California 8861 Villa La Jolla Drive #13595 La Jolla, CA 92037 Abstract. It is sufficient to prove that there is an excess of prime factors in the product of repunits with odd prime bases defined by the sum of divisors of the integer N = (4k + 4m+1 ℓ 2αi 1) i=1 qi to establish that there do not exist any odd integers with equality (4k+1)4m+2−1 between σ(N) and 2N. The existence of distinct prime divisors in the repunits 4k , 2α +1 Q q i −1 i , i = 1,...,ℓ, in σ(N) follows from a theorem on the primitive divisors of the Lucas qi−1 sequences and the square root of the product of 2(4k + 1), and the sequence of repunits will not be rational unless the primes are matched. Minimization of the number of prime divisors in σ(N) yields an infinite set of repunits of increasing magnitude or prime equations with no integer solutions. MSC: 11D61, 11K65 Keywords: prime divisors, rationality condition 1. Introduction While even perfect numbers were known to be given by 2p−1(2p − 1), for 2p − 1 prime, the universality of this result led to the the problem of characterizing any other possible types of perfect numbers. It was suggested initially by Descartes that it was not likely that odd integers could be perfect numbers [13]. After the work of de Bessy [3], Euler proved σ(N) that the condition = 2, where σ(N) = d|N d is the sum-of-divisors function, N d integer 4m+1 2α1 2αℓ restricted odd integers to have the form (4kP+ 1) q1 ...qℓ , with 4k + 1, q1,...,qℓ prime [18], and further, that there might exist no set of prime bases such that the perfect number condition was satisfied. -
Black Hills State University
Black Hills State University MATH 341 Concepts addressed: Mathematics Number sense and numeration: meaning and use of numbers; the standard algorithms of the four basic operations; appropriate computation strategies and reasonableness of results; methods of mathematical investigation; number patterns; place value; equivalence; factors and multiples; ratio, proportion, percent; representations; calculator strategies; and number lines Students will be able to demonstrate proficiency in utilizing the traditional algorithms for the four basic operations and to analyze non-traditional student-generated algorithms to perform these calculations. Students will be able to use non-decimal bases and a variety of numeration systems, such as Mayan, Roman, etc, to perform routine calculations. Students will be able to identify prime and composite numbers, compute the prime factorization of a composite number, determine whether a given number is prime or composite, and classify the counting numbers from 1 to 200 into prime or composite using the Sieve of Eratosthenes. A prime number is a number with exactly two factors. For example, 13 is a prime number because its only factors are 1 and itself. A composite number has more than two factors. For example, the number 6 is composite because its factors are 1,2,3, and 6. To determine if a larger number is prime, try all prime numbers less than the square root of the number. If any of those primes divide the original number, then the number is prime; otherwise, the number is composite. The number 1 is neither prime nor composite. It is not prime because it does not have two factors. It is not composite because, otherwise, it would nullify the Fundamental Theorem of Arithmetic, which states that every composite number has a unique prime factorization. -
ON SOME GAUSSIAN PELL and PELL-LUCAS NUMBERS Abstract
Ordu Üniv. Bil. Tek. Derg., Cilt:6, Sayı:1, 2016,8-18/Ordu Univ. J. Sci. Tech., Vol:6, No:1,2016,8-18 ON SOME GAUSSIAN PELL AND PELL-LUCAS NUMBERS Serpil Halıcı*1 Sinan Öz2 1Pamukkale Uni., Science and Arts Faculty,Dept. of Math., KınıklıCampus, Denizli, Turkey 2Pamukkale Uni., Science and Arts Faculty,Dept. of Math., Denizli, Turkey Abstract In this study, we consider firstly the generalized Gaussian Fibonacci and Lucas sequences. Then we define the Gaussian Pell and Gaussian Pell-Lucas sequences. We give the generating functions and Binet formulas of Gaussian Pell and Gaussian Pell- Lucas sequences. Moreover, we obtain some important identities involving the Gaussian Pell and Pell-Lucas numbers. Keywords. Recurrence Relation, Fibonacci numbers, Gaussian Pell and Pell-Lucas numbers. Özet Bu çalışmada, önce genelleştirilmiş Gaussian Fibonacci ve Lucas dizilerini dikkate aldık. Sonra, Gaussian Pell ve Gaussian Pell-Lucas dizilerini tanımladık. Gaussian Pell ve Gaussian Pell-Lucas dizilerinin Binet formüllerini ve üreteç fonksiyonlarını verdik. Üstelik, Gaussian Pell ve Gaussian Pell-Lucas sayılarını içeren bazı önemli özdeşlikler elde ettik. AMS Classification. 11B37, 11B39.1 * [email protected], 8 S. Halıcı, S. Öz 1. INTRODUCTION From (Horadam 1961; Horadam 1963) it is well known Generalized Fibonacci sequence {푈푛}, 푈푛+1 = 푝푈푛 + 푞푈푛−1 , 푈0 = 0 푎푛푑 푈1 = 1, and generalized Lucas sequence {푉푛} are defined by 푉푛+1 = 푝푉푛 + 푞푉푛−1 , 푉0 = 2 푎푛푑 푉1 = 푝, where 푝 and 푞 are nonzero real numbers and 푛 ≥ 1. For 푝 = 푞 = 1, we have classical Fibonacci and Lucas sequences. For 푝 = 2, 푞 = 1, we have Pell and Pell- Lucas sequences. -
Saxon Course 1 Reteachings Lessons 21-30
Name Reteaching 21 Math Course 1, Lesson 21 • Divisibility Last-Digit Tests Inspect the last digit of the number. A number is divisible by . 2 if the last digit is even. 5 if the last digit is 0 or 5. 10 if the last digit is 0. Sum-of-Digits Tests Add the digits of the number and inspect the total. A number is divisible by . 3 if the sum of the digits is divisible by 3. 9 if the sum of the digits is divisible by 9. Practice: 1. Which of these numbers is divisible by 2? A. 2612 B. 1541 C. 4263 2. Which of these numbers is divisible by 5? A. 1399 B. 1395 C. 1392 3. Which of these numbers is divisible by 3? A. 3456 B. 5678 C. 9124 4. Which of these numbers is divisible by 9? A. 6754 B. 8124 C. 7938 Saxon Math Course 1 © Harcourt Achieve Inc. and Stephen Hake. All rights reserved. 23 Name Reteaching 22 Math Course 1, Lesson 22 • “Equal Groups” Word Problems with Fractions What number is __3 of 12? 4 Example: 1. Divide the total by the denominator (bottom number). 12 ÷ 4 = 3 __1 of 12 is 3. 4 2. Multiply your answer by the numerator (top number). 3 × 3 = 9 So, __3 of 12 is 9. 4 Practice: 1. If __1 of the 18 eggs were cracked, how many were not cracked? 3 2. What number is __2 of 15? 3 3. What number is __3 of 72? 8 4. How much is __5 of two dozen? 6 5. -
And Its Properties on the Sequence Related to Lucas Numbers
Mathematica Aeterna, Vol. 2, 2012, no. 1, 63 - 75 On the sequence related to Lucas numbers and its properties Cennet Bolat Department of Mathematics, Art and Science Faculty, Mustafa Kemal University, 31034, Hatay,Turkey Ahmet I˙pek Department of Mathematics, Art and Science Faculty, Mustafa Kemal University, 31034, Hatay,Turkey Hasan Köse Department of Mathematics, Science Faculty, Selcuk University 42031, Konya,Turkey Abstract The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recur- rence relation. In this article, we study a new generalization {Lk,n}, with initial conditions Lk,0 = 2 and Lk,1 = 1, which is generated by the recurrence relation Lk,n = kLk,n−1 + Lk,n−2 for n ≥ 2, where k is integer number. Some well-known sequence are special case of this generalization. The Lucas sequence is a special case of {Lk,n} with k = 1. Modified Pell-Lucas sequence is {Lk,n} with k = 2. We produce an extended Binet’s formula for {Lk,n} and, thereby, identities such as Cassini’s, Catalan’s, d’Ocagne’s, etc. using matrix algebra. Moreover, we present sum formulas concerning this new generalization. Mathematics Subject Classi…cation: 11B39, 15A23. Keywords: Classic Fibonacci numbers; Classic Lucas numbers; k-Fibonacci numbers; k-Lucas numbers, Matrix algebra. 64 C. Bolat, A. Ipek and H. Kose 1 Introduction In recent years, many interesting properties of classic Fibonacci numbers, clas- sic Lucas numbers and their generalizations have been shown by researchers and applied to almost every …eld of science and art. -
The Observability of the Fibonacci and the Lucas Cubes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 255 (2002) 55–63 www.elsevier.com/locate/disc The observability of the Fibonacci and the Lucas cubes Ernesto DedÃo∗;1, Damiano Torri1, Norma Zagaglia Salvi1 Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy Received 5 April 1999; received inrevised form 31 July 2000; accepted 8 January2001 Abstract The Fibonacci cube n is the graph whose vertices are binary strings of length n without two consecutive 1’s and two vertices are adjacent when their Hamming distance is exactly 1. If the binary strings do not contain two consecutive 1’s nora1intheÿrst and in the last position, we obtainthe Lucas cube Ln. We prove that the observability of n and Ln is n, where the observability of a graph G is the minimum number of colors to be assigned to the edges of G so that the coloring is proper and the vertices are distinguished by their color sets. c 2002 Elsevier Science B.V. All rights reserved. MSC: 05C15; 05A15 Keywords: Fibonacci cube; Fibonacci number; Lucas number; Observability 1. Introduction A Fibonacci string of order n is a binary string of length n without two con- secutive ones. Let and ÿ be binary strings; then ÿ denotes the string obtained by concatenating and ÿ. More generally, if S is a set of strings, then Sÿ = {ÿ: ∈ S}. If Cn denotes the set of the Fibonacci strings of order n, then Cn+2 =0Cn+1 +10Cn and |Cn| = Fn, where Fn is the nth Fibonacci number. -
RATIO and PERCENT Grade Level: Fifth Grade Written By: Susan Pope, Bean Elementary, Lubbock, TX Length of Unit: Two/Three Weeks
RATIO AND PERCENT Grade Level: Fifth Grade Written by: Susan Pope, Bean Elementary, Lubbock, TX Length of Unit: Two/Three Weeks I. ABSTRACT A. This unit introduces the relationships in ratios and percentages as found in the Fifth Grade section of the Core Knowledge Sequence. This study will include the relationship between percentages to fractions and decimals. Finally, this study will include finding averages and compiling data into various graphs. II. OVERVIEW A. Concept Objectives for this unit: 1. Students will understand and apply basic and advanced properties of the concept of ratios and percents. 2. Students will understand the general nature and uses of mathematics. B. Content from the Core Knowledge Sequence: 1. Ratio and Percent a. Ratio (p. 123) • determine and express simple ratios, • use ratio to create a simple scale drawing. • Ratio and rate: solve problems on speed as a ratio, using formula S = D/T (or D = R x T). b. Percent (p. 123) • recognize the percent sign (%) and understand percent as “per hundred” • express equivalences between fractions, decimals, and percents, and know common equivalences: 1/10 = 10% ¼ = 25% ½ = 50% ¾ = 75% find the given percent of a number. C. Skill Objectives 1. Mathematics a. Compare two fractional quantities in problem-solving situations using a variety of methods, including common denominators b. Use models to relate decimals to fractions that name tenths, hundredths, and thousandths c. Use fractions to describe the results of an experiment d. Use experimental results to make predictions e. Use table of related number pairs to make predictions f. Graph a given set of data using an appropriate graphical representation such as a picture or line g. -
Adopting Number Sequences for Shielding Information
Manish Bansal et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.11, November- 2014, pg. 660-667 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IJCSMC, Vol. 3, Issue. 11, November 2014, pg.660 – 667 RESEARCH ARTICLE Adopting Number Sequences for Shielding Information Mrs. Sandhya Maitra, Mr. Manish Bansal, Ms. Preety Gupta Associate Professor - Department of Computer Applications and Institute of Information Technology and Management, India Student - Department of Computer Applications and Institute of Information Technology and Management, India Student - Department of Computer Applications and Institute of Information Technology and Management, India [email protected] , [email protected] , [email protected] Abstract:-The advancement of technology and global communication networks puts up the question of safety of conveyed data and saved data over these media. Cryptography is the most efficient and feasible mode to transfer security services and also Cryptography is becoming effective tool in numerous applications for information security. This paper studies the shielding of information with the help of cryptographic function and number sequences. The efficiency of the given method is examined, which assures upgraded cryptographic services in physical signal and it is also agile and clear for realization. 1. Introduction Cryptography is the branch of information security. The basic goal of cryptography is to make communication secure in the presence of third party (intruder). Encryption is the mechanism of transforming information into unreadable (cipher) form. This is accomplished for data integrity, forward secrecy, authentication and mainly for data confidentiality. -
How to Make Mathematical Candy
how to make mathematical candy Jean-Luc Thiffeault Department of Mathematics University of Wisconsin { Madison Summer Program on Dynamics of Complex Systems International Centre for Theoretical Sciences Bangalore, 3 June 2016 Supported by NSF grant CMMI-1233935 1 / 45 We can assign a growth: length multiplier per period. the taffy puller Taffy is a type of candy. Needs to be pulled: this aerates it and makes it lighter and chewier. [movie by M. D. Finn] play movie 2 / 45 the taffy puller Taffy is a type of candy. Needs to be pulled: this aerates it and makes it lighter and chewier. We can assign a growth: length multiplier per period. [movie by M. D. Finn] play movie 2 / 45 making candy cane play movie [Wired: This Is How You Craft 16,000 Candy Canes in a Day] 3 / 45 four-pronged taffy puller play movie http://www.youtube.com/watch?v=Y7tlHDsquVM [MacKay (2001); Halbert & Yorke (2014)] 4 / 45 a simple taffy puller initial -1 �1 �1�2 �1 -1 -1 -1 1�2 �1�2 �1 �2 [Remark for later: each rod moves in a ‘figure-eight’ shape.] 5 / 45 the famous mural This is the same action as in the famous mural painted at Berkeley by Thurston and Sullivan in the Fall of 1971: 6 / 45 The sequence is #folds = 1; 1; 2; 3; 5; 8; 13; 21; 34;::: What is the rule? #foldsn = #foldsn−1 + #foldsn−2 This is the famous Fibonacci sequence, Fn. number of folds [Matlab: demo1] Let's count alternating left/right folds. 7 / 45 #foldsn = #foldsn−1 + #foldsn−2 This is the famous Fibonacci sequence, Fn. -
On the Connections Between Pell Numbers and Fibonacci P-Numbers
Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 27, 2021, No. 1, 148–160 DOI: 10.7546/nntdm.2021.27.1.148-160 On the connections between Pell numbers and Fibonacci p-numbers Anthony G. Shannon1, Ozg¨ ur¨ Erdag˘2 and Om¨ ur¨ Deveci3 1 Warrane College, University of New South Wales Kensington, Australia e-mail: [email protected] 2 Department of Mathematics, Faculty of Science and Letters Kafkas University 36100, Turkey e-mail: [email protected] 3 Department of Mathematics, Faculty of Science and Letters Kafkas University 36100, Turkey e-mail: [email protected] Received: 24 April 2020 Revised: 4 January 2021 Accepted: 7 January 2021 Abstract: In this paper, we define the Fibonacci–Pell p-sequence and then we discuss the connection of the Fibonacci–Pell p-sequence with the Pell and Fibonacci p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Fibonacci–Pell p-numbers by the aid of the n-th power of the generating matrix of the Fibonacci–Pell p-sequence. Furthermore, we derive relationships between the Fibonacci–Pell p-numbers and their permanent, determinant and sums of certain matrices. Keywords: Pell sequence, Fibonacci p-sequence, Matrix, Representation. 2010 Mathematics Subject Classification: 11K31, 11C20, 15A15. 1 Introduction The well-known Pell sequence fPng is defined by the following recurrence relation: Pn+2 = 2Pn+1 + Pn for n ≥ 0 in which P0 = 0 and P1 = 1. 148 There are many important generalizations of the Fibonacci sequence. The Fibonacci p-sequence [22, 23] is one of them: Fp (n) = Fp (n − 1) + Fp (n − p − 1) for p = 1; 2; 3;::: and n > p in which Fp (0) = 0, Fp (1) = ··· = Fp (p) = 1. -
On Hardy's Apology Numbers
ON HARDY’S APOLOGY NUMBERS HENK KOPPELAAR AND PEYMAN NASEHPOUR Abstract. Twelve well known ‘Recreational’ numbers are generalized and classified in three generalized types Hardy, Dudeney, and Wells. A novel proof method to limit the search for the numbers is exemplified for each of the types. Combinatorial operators are defined to ease programming the search. 0. Introduction “Recreational Mathematics” is a broad term that covers many different areas including games, puzzles, magic, art, and more [31]. Some may have the impres- sion that topics discussed in recreational mathematics in general and recreational number theory, in particular, are only for entertainment and may not have an ap- plication in mathematics, engineering, or science. As for the mathematics, even the simplest operation in this paper, i.e. the sum of digits function, has application outside number theory in the domain of combinatorics [13, 26, 27, 28, 34] and in a seemingly unrelated mathematical knowledge domain: topology [21, 23, 15]. Pa- pers about generalizations of the sum of digits function are discussed by Stolarsky [38]. It also is a surprise to see that another topic of this paper, i.e. Armstrong numbers, has applications in “data security” [16]. In number theory, functions are usually non-continuous. This inhibits solving equations, for instance, by application of the contraction mapping principle because the latter is normally for continuous functions. Based on this argument, questions about solving number-theoretic equations ramify to the following: (1) Are there any solutions to an equation? (2) If there are any solutions to an equation, then are finitely many solutions? (3) Can all solutions be found in theory? (4) Can one in practice compute a full list of solutions? arXiv:2008.08187v1 [math.NT] 18 Aug 2020 The main purpose of this paper is to investigate these constructive (or algorith- mic) problems by the fixed points of some special functions of the form f : N N. -
Figurate Numbers
Figurate Numbers by George Jelliss June 2008 with additions November 2008 Visualisation of Numbers The visual representation of the number of elements in a set by an array of small counters or other standard tally marks is still seen in the symbols on dominoes or playing cards, and in Roman numerals. The word "calculus" originally meant a small pebble used to calculate. Bear with me while we begin with a few elementary observations. Any number, n greater than 1, can be represented by a linear arrangement of n counters. The cases of 1 or 0 counters can be regarded as trivial or degenerate linear arrangements. The counters that make up a number m can alternatively be grouped in pairs instead of ones, and we find there are two cases, m = 2.n or 2.n + 1 (where the dot denotes multiplication). Numbers of these two forms are of course known as even and odd respectively. An even number is the sum of two equal numbers, n+n = 2.n. An odd number is the sum of two successive numbers 2.n + 1 = n + (n+1). The even and odd numbers alternate. Figure 1. Representation of numbers by rows of counters, and of even and odd numbers by various, mainly symmetric, formations. The right-angled (L-shaped) formation of the odd numbers is known as a gnomon. These do not of course exhaust the possibilities. 1 2 3 4 5 6 7 8 9 n 2 4 6 8 10 12 14 2.n 1 3 5 7 9 11 13 15 2.n + 1 Triples, Quadruples and Other Forms Generalising the divison into even and odd numbers, the counters making up a number can of course also be grouped in threes or fours or indeed any nonzero number k.