The Norned Hvdc Cable Link a Power Transmission Highway Between Norway and the Netherlands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nordic Grid Development Plan 2012 Foreword
Nordic Grid Development Plan 2012 Foreword The Nordic transmission system operators (TSOs) have a long history of successful cooperation within grid development. Three common Nordic grid master plans have been developed in the last ten years in the context of Nordel, the previous cooperative organization for the Nordic TSOs. Joint Nordic grid development is essential to support further development of an integrated Nordic electricity market, as well as increased capacity to other countries and integration of renewable energy sources (RES). The Nordic co-operation on grid development is now taking place within the wider regional context provided by the regional groups North Sea and Baltic Sea of ENTSO-E, the European organization for TSOs, in addition to bilateral co-operation when required. The Nordic Grid Development Plan 2012 is prepared as a response to the request from the Nordic Council of Ministers of October 25, 2010. The plan is prepared by Statnett, Svenska Kraftnät, Energinet.dk and Fingrid, and the Icelandic TSO Landsnet has provided input regarding the Icelandic grid. The plan presents the Nordic grid investment plans for the next ten years. 28. September 2012 Oslo Stockholm Copenhagen Helsinki Statnett SF Svenska Kraftnät Energinet.dk Fingrid Auke Lont Mikael Odenberg Peder Østermark Andreasen Jukka Ruusunen CEO CEO CEO CEO LIST OF TABLES....................................................................................................................... 2 1 EXECUTIVE SUMMARY ............................................................................................ -
For Hydropower
REVIEW GRID EXTENSION Swapping wind power for hydropower Two cable routes between Norway calm, power can run into the opposite direction. Everybody is intended to benefit from the and Germany are expected to arrangements. The project partners involved believe enhance the two countries’ security that the renewable energy sources in the two countries complement each other perfectly. Electricity of supply. The NorGer and Nord.Link demand in Norway is met by using huge storage reservoirs that fill up with water from melting snow projects are awaiting their approval. starting in May and reach their highest level in autumn. During winter, when precipitation is again lthough the issue is already well known, it is mostly snow, the water is used up due to high power now becoming politically charged because of consumption. Wind power from Germany is especial Athe German government’s decision to press ly produced between October and March and thus on towards the “Energiewende” – the exclusive reli could ensure that water reservoirs in Norway are not ance on renewable energy. Phasing out nuclear ener emptied too fast, while the well filled reservoirs in Wind power from Germany gy and moving the energy industry towards renew summer compensate for weak wind months. is set to be coupled to water able sources will only be possible if new storage sys storage reservoirs in Norway. tems are being developed and used. One possibility One idea, two models Photo: Statnett SF would be using hydro reservoirs. As capacities of this kind are fairly restricted in Germany, some are think However, there are two different business models be ing of looking for opportunities farther north: Norway hind this basic idea. -
'A+' Rating Affirmed with a Stable Outlook Statnett SF
Research Update: Statnett SF 'A+' Rating Affirmed With A Stable Outlook February 26, 2020 Rating Action Overview PRIMARY CREDIT ANALYST - The Norwegian Energy Regulatory Authority (NVE) has announced that Statnett SF receives a Daniel Annas 100% efficiency score; this leads us to expect the company will capture in full the revenue cap Stockholm of its cost base. +46 (8) 4405925 daniel.annas - We expect continued ample rating headroom as our base-case scenario stipulated FFO to debt @spglobal.com to be close to 9% on average in coming years, and debt to EBITDA on average at about 8.5x, both SECONDARY CONTACT which we consider well commensurate with the 'bbb' stand-alone credit profile (SACP). Per Karlsson - We continue to view the regulatory environment for Norwegian as supportive, despite declining Stockholm weighted average cost of capital (WACC), because we view the framework as stable and (46) 8-440-5927 predictable; the WACC estimate for 2020 is 5.47%. per.karlsson @spglobal.com - We are therefore affirming our 'A+' rating and stable outlook on Statnett. ADDITIONAL CONTACT - Statnett's positive momentum in credit ratios post-2020 are hinged on RAB increasing as Industrial Ratings Europe planned, and without cost overruns. Corporate_Admin_London @spglobal.com Rating Action Rationale The regulator has announced Statnett as 100% efficient, which supports its credit ratios. On Jan. 31, the NVE announced Statnett's revenue cap, including an updated WACC estimation, at 5.47% and confirmation of a maintained 100% efficiency score. The WACC estimate decreased 35 basis points from the actual 5.82% reported in 2019, pointing to declining free-rate risk, computed as the average five-year swap rate from the most recent calendar year. -
Joint Messages Roundtable of European Energy Industrialists Brussels, 7 February 2013
w JOINT MESSAGES Roundtable of European Energy Industrialists Brussels, 7 February 2013 Empowering Market and Consumers The Roundtable of European Energy Industrialists, meeting in Brussels on 7 February 2013, represents companies that will invest more than € 75 billion by 2020. Between now and 2050, the energy industry as a whole will create millions of jobs and make a considerable contribution to economic growth. Eu- rope is now preparing its next vital steps towards a green energy transformation so comprehensive, that it overshadows all previous attempts at climate change mitigation around the world. By taking global leadership in realizing a low-carbon future, Europe's investment in infrastructure may foster a recovery from the economic downturn. Above all, the Roundtable of European Energy Industrialists believes that the future is electric, and that efficient electricity markets must be crucial in implementing this transformation. We therefore support the commitment of the European Commission to complete the internal energy market without delay. In summary, better markets, stronger grids, and smarter technologies are keys to Europe's energy transformation. – 1 – w 1. Better Markets The internal market is fundamental to efficient use of resources. In the short-term electricity market integration leads to increased liquidity and transparency in wholesale markets, more competitive prices and more freedom for consumers. In the long term, well-functioning electricity markets, stable regu- latory regimes and a robust emission-trading scheme will provide the signals for efficient investments. The reality, however, is that progress to complete the internal electricity market is slow and many ener- gy companies are having to deal with significant and rapid moves back to re-regulation of the sector at national levels. -
Requirements for Interconnection of HVDC Links with DC-DC Converters
Requirements for interconnection of HVDC links with DC-DC converters Daniel Gomez A., Juan Paez, Marc Cheah-Mane, Jose Maneiro, Piotr Dworakowski, Oriol Gomis-Bellmunt, Florent Morel To cite this version: Daniel Gomez A., Juan Paez, Marc Cheah-Mane, Jose Maneiro, Piotr Dworakowski, et al.. Re- quirements for interconnection of HVDC links with DC-DC converters. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Oct 2019, Lisbon, Portugal. pp.4854-4860, 10.1109/IECON.2019.8927640. hal-02432353 HAL Id: hal-02432353 https://hal.archives-ouvertes.fr/hal-02432353 Submitted on 8 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Requirements for interconnection of HVDC links with DC-DC converters Daniel Gómez A. Juan D. Páez Marc Cheah-Mane Jose Maneiro SuperGrid Institute SuperGrid Institute CITCEA-UPC SuperGrid Institute Villeurbanne, France Villeurbanne, France Barcelona, Spain Villeurbanne, France https://orcid.org/0000-0002- https://orcid.org/0000-0002- https://orcid.org/0000-0002- https://orcid.org/0000-0002- 5647-0488 8712-3630 0942-661X 5717-6176 Piotr Dworakowski Oriol Gomis-Bellmunt Florent Morel SuperGrid Institute CITCEA-UPC SuperGrid Institute Villeurbanne, France Barcelona, Spain Villeurbanne, France https://orcid.org/0000-0002- https://orcid.org/0000-0002- https://orcid.org/0000-0003- 6893-0103 9507-8278 3098-7806 Abstract— The number of high voltage direct current (HVDC) links continue to increase over the years, most of them, for offshore applications or bulk power transmission over long distances. -
Future System Inertia 2
REPORT Future System Inertia 2 PARTICIPANTS Erik Ørum Energinet.dk Liisa Haarla Fingrid Mikko Kuivaniemi Fingrid Minna Laasonen Fingrid Anders Jerkø Statnett Inge Stenkløv Statnett Fredrik Wik Svenska kraftnät Katherine Elkington Svenska kraftnät Robert Eriksson Svenska kraftnät Niklas Modig Svenska kraftnät Pieter Schavemaker E-Bridge Consulting B.V. (PM) ENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 • [email protected] • www.entsoe.eu European Network of Transmission System Operators for Electricity Contents FUTURE SYSTEM INERTIA 2 ........................................................................................................1 1. EXECUTIVE SUMMARY ..........................................................................................................7 1.1 INTRODUCTION AND SCOPE ................................................................................................................................. 7 1.2 RESULTS AND CONCLUSIONS ................................................................................................................................ 7 1.3 NEXT STEPS ..................................................................................................................................................... 9 2. INTRODUCTION ................................................................................................................. 11 2.1 SCOPE FOR THE PROJECT .................................................................................................................................. -
Nordlink Benefits of the Nordlink Interconnector
NordLink Benefits of the NordLink interconnector The exchange of power enabled by NordLink will increase security of supply for the German and Norwegian grid and will allow exchange of renewable energies, especially hydroelectric power and wind power, between both countries. In addition it will give more stable electricity prices on both sides and, further on, also will facilitate Eur opean market integration. Driver of the energy transition / Integration of renewables NordLink is a cornerstone in the accomplishment of the energy transition. Since incorporation of the project in the federal national plan law (Bundesbedarfsplangesetz), the energy market necessity and urgent requirement for implementation of the project has been made statutory. The status “Project of Common Interest (PCI)” awarded by the European Union in accordance with the new guidelines for trans-European energy infrastructure underlines the high importance regarding socio-economic and energy market aspects of the project at a European level. NordLink – the “green cable” – will help to facilitate the integration of more renewable energy in Norway and in Germany. It will thus help to reduce CO2 emissions and reach climate goals. With its capacity of 1.400 megawatts, the interconnector can provide renewable energy for more than 3.6 million German households and will be able to export for example wind generated by approximately 466 wind turbines of 3 megawatts. This is comparable to the capacity of a large conventional power plant. European market integration NordLink is the first interconnector that directly connects Norwegian and German energy markets. This supports the integration of the Northwest European energy market, improves market efficiency and stabilises power prices. -
The Norned Hvdc Link – Cable Design and Performance
ReturnClose and to SessionReturn THE NORNED HVDC LINK – CABLE DESIGN AND PERFORMANCE Thomas WORZYK, ABB Power Systems, Sweden, [email protected] Mats SJÖBERG, ABB Power Systems, Sweden, [email protected] Jan-Erik SKOG, Statnett, Norway, [email protected] Kees KOREMAN, TenneT, The Netherlands, [email protected] ABSTRACT The NorNed link is the longest submarine power cable +450 kV system ever with a distance of 580 km. The bipolar HVDC DC-cable system with ± 450 kV dc represents the state-of-the-art of “classic” HVDC technology while modern production and installation technology helped to push forward the limit of Eemshaven -450 kV Feda HVDC power transmission. This paper describes some of the characteristics of the power cables in the NorNed link. Figure 1. NorNed main circuit configuration KEYWORDS NorNed, HVDC, mass-impregnated cable, submarine cable. CABLE ROUTE INTRODUCTION The challenging cable route includes the following components: The cables for NorNed were supplied by two manufacturers. o Trenched land cable in the Netherlands Technical data given in this paper relate to the cables o Submarine cable in the tidal flats off the Netherlands, supplied from one manufacturer for approx. 70% of the with strict environmental installation requirements, and cable route. risks of moving sands changing the thermal cable ambient o Long portions of flat sea bottom with boulder fields with NORNED HVDC CABLE LINK water depth <100 m The NorNed link connects the Dutch to the Norwegian o The Norwegian trench with up to 400 m of water national power grid. Since these grids belong to different o Steep tunnels in Norway power frequency control areas in Europe (UCPTE and Nordel, resp.) they are asynchronous. -
Brussels, XXX […](2013) XXX Draft
EUROPEAN COMMISSION Brussels, XXX […](2013) XXX draft COMMISSION OPINION of XXX pursuant to Article 3(1) of Regulation (EC) No 714/2009 and Article 10(6) of Directive 2009/72/EC – the Netherlands - Certification of TenneT TSO B.V. EN EN COMMISSION OPINION of XXX pursuant to Article 3(1) of Regulation (EC) No 714/2009 and Article 10(6) of Directive 2009/72/EC – the Netherlands - Certification of TenneT TSO B.V. I. PROCEDURE On 3 May 2013 the Commission received a preliminary decision from the Dutch regulatory authority (hereafter, "ACM") on the certification of TenneT TSO B.V. (hereafter "TenneT") as Transmission System Operator (TSO) for electricity, in accordance with Article 10(6) of Directive 2009/72/EC1 (hereafter, "Electricity Directive"). Pursuant to Article 3(1) Regulation (EC) No 714/20092 (hereafter, "Electricity Regulation"), the Commission is required to examine the notified draft decision and deliver an opinion to the relevant national regulatory authority as to its compatibility with Article 10(2) and Article 9 of the Electricity Directive. II. DESCRIPTION OF THE NOTIFIED DECISION TenneT is the owner and operator of the entire Dutch onshore electricity transmission grid. It also co-owns and co-operates with its Norwegian counterpart Statnett the subsea NorNed- cable, a 700 MW interconnector connecting the Netherlands to Norway. The request for certification hence also includes the southern half of the NorNed-cable. TenneT Holding, the mother company of TenneT, is also the owner of TenneT Germany, a German TSO following a separate certification procedure in Germany. TenneTs shares are ultimately wholly owned by the Dutch state. -
Minutes SDAC Joint Steering Committee Meeting 04/06/2020,13:30 – 17:00 CET, Conference Call
Minutes SDAC Joint Steering Committee Meeting 04/06/2020,13:30 – 17:00 CET, conference call Present parties 50Hertz Cropex EPEX Spot Litgrid PSE Terna Admie EirGrid (TSO) ESO MAVIR REE TGE Amprion Eirgrid (SEMO PX) EXAA Nasdaq REN Transelectrica APG ElecLink Fingrid Nemo Link RTE Transnet BW AST Elering GME NGIC SEPS TTG BritNed ELES HEnEx OKTE SONI (SEMO PX) TTN BSP Elia HOPS OMIE SONI (TSO) ČEPS EMCO Nord Pool HUPX OPCOM Statnett Creos Energinet IBEX OTE Svk Attending by phone Not present Present chairs, TF leaders, PMOs, observers BMTF leader/PMO Entso-e MRC OPSCOM leader MSD TSO co-leader OST Swissgrid EC JSC Secretary MRC OPSCOM PMO MSD PMO PCR chair & PMO TSO co-chair EMS MEPSO MSD NEMO co-leader NEMO co-chair Procedures TF leader Attending by phone Not present Meeting agenda # Topic For 1 Welcome, practicalities 1.1 Confirm quorum Inf 1.2 Adoption of the agenda Dec 1.3 Approval of minutes of past meetings/calls (incl. part for publication) Dec 1.4 Review open action points Inf 2 Strategy/governance – decisions required 2.1 Way forward Central Settlement Entity Inf 3 Important points to highlight and decisions requested by TFs 3.1 Status extension projects and communication towards EC Dec 3.2 MRC OPSCOM Dec 3.3 MSD Dec 3.4 Procedures TF Inf 3.5 BMTF Dec 3.6 JSC members questions to reports in back-up section Dis 4 Important points for SDAC from ENTSO-E/ NC/ NRAs/ ACER/ EC 4.1 Preparations for next TCG and MESC Inf 4.2 EC consultation on first light amendment of some relevant regulations incl. -
Minutes SDAC Joint Steering Committee Meeting 28/10/2020,11:00 – 17:00 CET, Conference Call
Minutes SDAC Joint Steering Committee Meeting 28/10/2020,11:00 – 17:00 CET, conference call Present parties 50Hertz Cropex EPEX Spot Litgrid PSE Terna Admie EirGrid (TSO) ESO MAVIR REE TGE Amprion Eirgrid (SEMO PX) EXAA Nasdaq REN Transelectrica APG ElecLink Fingrid Nemo Link RTE Transnet BW AST Elering GME NGIC/NGIFA2 SEPS TTG BritNed ELES HEnEx OKTE SONI (SEMO PX) TTN BSP Elia HOPS OMIE SONI (TSO) ČEPS EMCO Nord Pool HUPX OPCOM Statnett Creos Energinet IBEX OTE Svk Attending by phone Not present Present chairs, TF leaders, PMOs, observers BMTF leader/PMO Entso-e MRC OPSCOM leader MSD TSO co-leader OST Swissgrid EC JSC Secretary MRC OPSCOM PMO MSD PMO PCR chair & PMO TSO co-chair EMS MEPSO MSD NEMO co-leader NEMO co-chair Procedures TF leader Attending by phone Not present Meeting agenda # Topic For 1 Welcome, practicalities 1.1 Confirm quorum Inf 1.2 Adoption of the agenda Dec 1.3 Approval of minutes of past meetings/calls (incl. part for publication) Dec 1.4 Review open action points Inf 2 Strategy/governance 2.1 Exit plan for GB parties Dec 2.2 DAOA: clarification re. approval of updated operational procedures Dec 2.3 15 min MTU implementation project Dec 2.4 Assessment on synergies between regions and SDAC Inf 3 Important points to highlight and decisions requested by TFs 3.1 BMTF Dec 3.2 MRC OPSCOM – PART 1 Dec Lunch break 3.3 Confirm quorum Inf 3.4 MRC OPSCOM – PART 2 Inf 3.5 Interim Coupling Project Inf 3.6 MSD (20 min) Inf 3.7 Intraday auctions (IDA) Inf 3.8 CCP default – status reporting Inf 3.9 JSC members questions to reports in back-up section Dis 4 Important points for SDAC from ENTSO-E/ NC/ NRAs/ ACER/ EC 4.1 Joint SDAC & SIDC governance: “lean” implementation proposal Dis 4.2 Feedback from 22/09 TCG and 23/09 MESC Inf 5 Any other business 5.1 SDAC communication plan Inf 5.2 Qualified electronic signature – status investigation outcome Inf 5.3 Next meetings Inf 1 List of decisions # Topic Decision 1.2 Adoption of the The meeting agenda is approved. -
Afrr-Platform Accession Roadmap Version Description Date V1 Initial Version 24/4/2020
^Mhertz vdPC* ^mpr,on CepT EELES elia ENERGINET ^ESO hops pse FINGRID M AAMHE MAVIR " »^orriPAs* > REN Q '**5* - Statnett Så» swissgrid T5TenneT HTerna ^ tr"nsnetbw aFRR-Platform Accession roadmap Version Description Date V1 Initial version 24/4/2020 According to Implementation Framework for a European platform for the exchange of balancing energy from frequency restoration reserves with automatic activation (aFRRIF), Artide 5, Paragraph 4 (b) member TSOs shall develop accession roadmap withinthree months after approval of aFRRIF (date of approval 24/1/2020). The accession of member TSOs to aFRR-Platform (PICASSO) is planned in accordance with the following accession roadmap. PICASSO member TSOs and ENTSO-E Share this accession roadmap for informative purposes only and does not, in any case, representa firm, binding ordefinitive position of PICASSO on the content. The content is subject to change as the implementation progresses and new information becomes available. This accession roadmap will be updated at least twice a year to give stakeholders current information on the development. Explanatory notes Member TSOs below include an explanation for all aspects in the accession roadmap according to the aFRRIF: 5.4.(b)(i) the adaptation and implementation of terms and conditions for BSPs by each memberTSO Member TSOs deemed relevant to split the development of T&C and their entry into force to provide clarity to stakeholders. Entry into force of T&C in some TSOs does not have to be adherent to the connection and Go-live of such TSOs in aFRR-Platform. In practice, the updated T&C may be applied in advance.