A Study of Transient Variations in the Earth's Electromagnetic Field At

Total Page:16

File Type:pdf, Size:1020Kb

A Study of Transient Variations in the Earth's Electromagnetic Field At Ann. Geophysicae 16, 677±697 (1998) Ó EGS ± Springer-Verlag 1998 A study of transient variations in the Earth's electromagnetic ®eld at equatorial electrojet latitudes in western Africa (Mali and the Ivory Coast) 1 2 3 1 4 4 5 J. Vassal Ã, M. Menvielle Ã, Y. Cohen , M. Dukhan , V. Doumouya , K. Boka , O. Fambitakoye 1 Laboratoire de Ge ophysique, ORSTOM, 72 route d'Aulnay, F-93140 Bondy, France 2 Equipe de Physique de la Terre et des PlaneÁ tes (URA 1369), BaÃt. 504, Universite Paris Sud, F-91405 Orsay cedex, France 3 Laboratoire de Ge omagne tisme, IPGP, B89, 4 Place Jussieu, F-75252 Paris cedex 05, France 4 Laboratoire de Physique de l'AtmospheÁ re, Universite d'Abidjan, Abidjan, Cote D'Ivoire 5 Laboratoire de Ge ophysique, ORSTOM, 72 route d'Aulnay, F-93140 Bondy, France, now retired Received: 20 February 1997 / Revised: 25 July 1997 / Accepted: 29 July 1997 Abstract. In the framework of the French-Ivorian possible to perform. In the case of irregular variations, participation to the IEEY, a network of 10 electromag- the source eect related to the equatorial electrojet is netic stations were installed at African longitudes. The also discussed. A Gaussian model of equatorial electro- aim of this experiment was twofold: ®rstly, to study jet was considered, and apparent resistivities were the magnetic signature of the equatorial electrojet on computed for two models of strati®ed Earth corre- the one hand, and secondly, to characterize the induced sponding to the average resistive structure of the two electric ®eld variations on the other hand. The ®rst tectonic provinces crossed by the pro®le: a sedimentary results of the magnetic ®eld investigations were present- basin and a cratonic shield. The apparent resistivity ed by Doumouya and coworkers. Those of the electric curves were found to depend signi®cantly on both the ®eld experiment will be discussed in this study. The model used and the distance to the center of the electromagnetic experiment will be described. The anal- electrojet. These numerical results con®rm the existence ysis of the electromagnetic transient variations was of a daytime source eect related to the equatorial conducted in accordance with the classical distinction electrojet. Furthermore, we show that the results between quiet and disturbed magnetic situations. A account for the observed dierences between daytime morphological analysis of the recordings is given, taking and night-time apparent resistivity curves. In particular, into consideration successively quiet and disturbed it was shown that electromagnetic probing of the Earth magnetic situations, with the results interpreted in terms using the classical Cagniard-Tikhonov magnetotelluric of the characterization of external and internal sources. method is impossible with daytime recordings made at Particular attention was paid to the eects of the source dip latitude stations. characteristics on the induced ®eld of internal origin, and to the bias they may consequently cause to the results of electromagnetic probing of the Earth; the Key words. Electromagnetics (Transient and time do- source eect in electromagnetic induction studies. Dur- main) Geomagnetism and paleomagnetism (geomagne- ing quiet magnetic situations, our results demonstrated tic induction) Ionosphere (equatorial ionosphere) the existence of two dierent sources. One of these, the E SR source, was responsible for most of the magnetic diurnal variation and corresponded to the well-known magnetic signature of the equatorial electrojet. The *E other source (the SR source) was responsible for most of the electric diurnal variation, and was also likely to be 1 Introduction an ionospheric source. Electric and magnetic diurnal variations are therefore related to dierent ionospheric With the onset of continual monotoring of the Earth's sources, and interpreting the electric diurnal variation as electromagnetic ®eld at dierent latitudes during the last induced by the magnetic ®eld diurnal variation is not century, it soon became apparent that some transient relevant. Furthermore, the magnetotelluric probing of variations appeared each day while others occurred the upper mantle at dip equator latitudes with the irregularly. In this way, it became possible to distinguish electromagnetic diurnal variation is consequently im- between quiet geomagnetic situations, when only the regular daily variations were present, and disturbed geomagnetic situations at other times. Such distinction Correspondence to: J. Vassal were linked to the discrimination between two dierent *Present address: CETP/CNRS, 4 Avenue de Neptune, F-94107 physical processes; with the regular variations being Saint Maur Des Fosses Cedex, France related primarily to the atmospheric dynamo processes 678 J. Vassal et al.: A study of transient variations in the Earth's electromagnetic ®eld (see e.g., Mazaudier and Blanc, 1982; Kamide, 1988), recorded during 171 quiet or almost-quiet days were and the irregular variations being mostly in response to digitized at the nine stations. An analysis of this unique energy inputs into the magnetosphere related to, for magnetic data set resulted in an important contribution instance, magnetospheric storms and substorms (see to the understanding of the temporal and spatial e.g., Akasofu, 1977; Fair®eld, 1990). This distinction is behavior of the equatorial electrojet (Fambitakoye, also relevant at dip equator latitudes, but both regular 1976; Fambitakoye and Mayaud, 1976a, b, c; Fambita- and irregular magnetic variations re¯ect the daytime koye et al., 1976). In particular, the experiment provided singularity in ionospheric sources at these latitudes quite clear experimental evidence that the internal part E (Richmond, 1973). Following the de®nition of Chapman of the observed diurnal variation in the SR of the (1951), this singularity, and its magnetic signature magnetic ®eld is very weak, and practically negligible in during quiet situations are referred to as the equatorial the equatorial electrojet region (Fambitakoye and Ma- electrojet. yaud, 1973; Fambitakoye et al., 1973). Regular magnetic variations are related to iono- These experimental results led Ducruix et al. (1977) E spheric currents whose position and shape are roughly to reconsider the question of induction by the SR in the constant in a reference system ®xed with respect to the equatorial electrojet region. These authors described the E Sun. The general name for this system is Sq, for solar induction by the SR in terms of Earth rotation below quiet conditions. The same term is often used for ionospheric currents of ®xed geometry and intensity. naming either observed `quiet' daily variations, or They showed that the induced electromagnetic ®eld was averages of them. Mayaud (1965a, b) proposed desig- nonexistant when the magnetic ®eld had a zonal nating individual solar regular variation curves as SR symmetry, and was therefore expected to be negligible, curves in order to facilitate their study and describe their if nonexistent, around LT noon. On the contrary, it was day-to-day variability. The Sq variation is deduced from likely to be signi®cant at dawn and dusk, when non- SR curves by averaging them over a given time interval, zonal ionospheric currents coupled to the equatorial the result of which represents the most likely SR electrojet were present (Langel et al., 1993). More variation. We have adopted these de®nitions in the generally, the theoretical results established by Ducruix study that follows. However because of the particular et al. (1977) clearly showed that an analysis of the daily behavior of the ionospheric sources of the regular electric ®eld variation would provide information on the E variation at dip equator latitudes, the term, SR, is here- ionospheric current system coupled to the equatorial inafter denoted as representing the individual solar electrojet. regular variation curves at these latitudes, in accordance During the IUGG General Assembly held in 1987 in with Fambitakoye (1976). Vancouver (British Columbia, Canada), the Interdivi- E The magnetic SR variation has been extensively sional Commission on Developing Countries proposed studied for decades, and its behavior is now relatively that IAGA run a program of coordinated intensive well understood (see e.g., Forbes, 1981 for a review, and studies of the equatorial electrojet. This proposal Doumouya et al., 1997). In contrast, the behavior of the resulted in the International equatorial electrojet Year E electric ®eld SR has been matter of debate for decades. (IEEY), during which intensive, coordinated, pluridis- To our knowledge, two direct observations of electric ciplinary investigations were carried out in the equato- ®eld variations at dip equator latitudes were reported rial electrojet region. A French committee for IEEY was prior to the end of the 1980s, by Gish and Rooney established within the framework of the `Comite Na- (1930) in Huancayo (Peru), and by Hutton and Wright tional FrancËais de Ge ophysique et de Ge ode sie', and (1961) and Hutton (1962) in Ghana. These authors planned the operating instrument networks in the demonstrated the existence of a diurnal variation in African longitude sector during the 1992±1994 period. electric ®elds at dip equator latitudes, and pointed out A network of 10 electromagnetic stations were correlation between the observed electric ®eld variations installed at African longitudes. The aim of this exper- and the magnetic signature of the equatorial electrojet. iment was twofold: ®rstly,
Recommended publications
  • Sun-Earth System Interaction Studies Over Vietnam: an International Cooperative Project
    Ann. Geophys., 24, 3313–3327, 2006 www.ann-geophys.net/24/3313/2006/ Annales © European Geosciences Union 2006 Geophysicae Sun-Earth System Interaction studies over Vietnam: an international cooperative project C. Amory-Mazaudier1, M. Le Huy2, Y. Cohen3, V. Doumbia4,*, A. Bourdillon5, R. Fleury6, B. Fontaine7, C. Ha Duyen2, A. Kobea4, P. Laroche8, P. Lassudrie-Duchesne6, H. Le Viet2, T. Le Truong2, H. Luu Viet2, M. Menvielle1, T. Nguyen Chien2, A. Nguyen Xuan2, F. Ouattara9, M. Petitdidier1, H. Pham Thi Thu2, T. Pham Xuan2, N. Philippon**, L. Tran Thi2, H. Vu Thien10, and P. Vila1 1CETP/CNRS, 4 Avenue de Neptune, 94107 Saint-Maur-des-Fosses,´ France 2Institute of Geophysics, Vietnamese Academy of Science and Technology , 18 Hoang Quoc Viet, Cau Giay, Hano¨ı, Vietnam 3IPGP, 4 Avenue de Neptune, 94107 Saint-Maur-des-Fosses,´ France 4Laboratoire de Physique de l’Atmosphere,` Universite´ d’Abidjan Cocody 22 B.P. 582, Abidjan 22, Coteˆ d’Ivoire 5Institut d’Electronique et de Tel´ ecommunications,´ Universite´ de Rennes Batˆ 11D, Campus Beaulieu, 35042 Rennes, cedex,´ France 6ENST, Universite´ de Bretagne Occidentale, CS 83818, 29288 Brest, cedex´ 3, France 7CRC , Faculte´ des Sciences, 6 Boulevard Gabriel, F 21004 Dijon cedex´ 04, France 8Unite´ de Recherche Environnement Atmospherique,´ ONERA, 92332 Chatillon, cedex,´ France 9University of Koudougou, Burkina Faso 10Laboratoire signaux et systemes,` CNAM, 292 Rue saint Martin, 75141 Paris cedex´ 03, France *V. Doumbia previously signed V. Doumouya **affiliation unknown Received: 15 June 2006 – Revised: 19 October 2006 – Accepted: 8 November 2006 – Published: 21 December 2006 Abstract. During many past decades, scientists from var- the E, F1 and F2 ionospheric layers follow the variation of ious countries have studied separately the atmospheric mo- the sunspot cycle.
    [Show full text]
  • Theory, Modeling, and Integrated Studies in the Arase (ERG) Project
    Seki et al. Earth, Planets and Space (2018) 70:17 https://doi.org/10.1186/s40623-018-0785-9 FULL PAPER Open Access Theory, modeling, and integrated studies in the Arase (ERG) project Kanako Seki1* , Yoshizumi Miyoshi2, Yusuke Ebihara3, Yuto Katoh4, Takanobu Amano1, Shinji Saito5, Masafumi Shoji2, Aoi Nakamizo6, Kunihiro Keika1, Tomoaki Hori2, Shin’ya Nakano7, Shigeto Watanabe8, Kei Kamiya5, Naoko Takahashi1, Yoshiharu Omura3, Masahito Nose9, Mei‑Ching Fok10, Takashi Tanaka11, Akimasa Ieda2 and Akimasa Yoshikawa11 Abstract Understanding of underlying mechanisms of drastic variations of the near-Earth space (geospace) is one of the current focuses of the magnetospheric physics. The science target of the geospace research project Exploration of energiza‑ tion and Radiation in Geospace (ERG) is to understand the geospace variations with a focus on the relativistic electron acceleration and loss processes. In order to achieve the goal, the ERG project consists of the three parts: the Arase (ERG) satellite, ground-based observations, and theory/modeling/integrated studies. The role of theory/modeling/integrated studies part is to promote relevant theoretical and simulation studies as well as integrated data analysis to combine diferent kinds of observations and modeling. Here we provide technical reports on simulation and empirical models related to the ERG project together with their roles in the integrated studies of dynamic geospace variations. The simu‑ lation and empirical models covered include the radial difusion model of the radiation belt electrons, GEMSIS-RB and RBW models, CIMI model with global MHD simulation REPPU, GEMSIS-RC model, plasmasphere thermosphere model, self-consistent wave–particle interaction simulations (electron hybrid code and ion hybrid code), the ionospheric electric potential (GEMSIS-POT) model, and SuperDARN electric feld models with data assimilation.
    [Show full text]
  • Locations of Chorus Emissions Observed by the Polar Plasma Wave Instrument K
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, A00F12, doi:10.1029/2009JA014579, 2010 Click Here for Full Article Locations of chorus emissions observed by the Polar Plasma Wave Instrument K. Sigsbee,1 J. D. Menietti,1 O. Santolík,2,3 and J. S. Pickett1 Received 18 June 2009; revised 20 November 2009; accepted 17 December 2009; published 8 June 2010. [1] We performed a statistical study of the locations of chorus emissions observed by the Polar spacecraft’s Plasma Wave Instrument (PWI) from March 1996 to September 1997, near the minimum of solar cycles 22/23. We examined how the occurrence of chorus emissions in the Polar PWI data set depends upon magnetic local time, magnetic latitude, L shell, and L*. The Polar PWI observed chorus most often over a range of magnetic local times extending from about 2100 MLT around to the dawn flank and into the dayside magnetosphere near 1500 MLT. Chorus was least likely to be observed near the dusk flank. On the dayside, near noon, the region in which Polar observed chorus extended to larger radial distances and higher latitudes than at other local times. Away from noon, the regions in which chorus occurred were more restricted in both radial and latitudinal extent. We found that for high‐latitude chorus near local noon, L* provides a more reasonable mapping to the equatorial plane than the standard L shell. Chorus was observed slightly more often when the magnitude of the solar wind magnetic field BSW was greater than 5 nT than it was for smaller interplanetary magnetic field strengths.
    [Show full text]
  • The Near-Earth Plasma Environment
    Space Sci Rev (2012) 168:23–112 DOI 10.1007/s11214-012-9872-6 The Near-Earth Plasma Environment Robert F. Pfaff Jr. Received: 1 March 2012 / Accepted: 3 March 2012 / Published online: 20 June 2012 © US Government 2012 Abstract An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth’s plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control iono- spheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electro- dynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances. Keywords Ionosphere · Upper atmosphere · Electric fields 1 Introduction In this article we discuss the near-earth plasma environment, for which the ionosphere is the natural focus. Because this ionized gas co-exists with the neutral atmospheric gas to which it is coupled, the ionized/neutral gas system is more properly considered a partially ionized gas rather than a medium consisting of two distinct, independent fluids.
    [Show full text]
  • LCSH Section E
    E (The Japanese word) E. J. Pugh (Fictitious character) E-waste [PL669.E] USE Pugh, E. J. (Fictitious character) USE Electronic waste BT Japanese language—Etymology E.J. Thomas Performing Arts Hall (Akron, Ohio) e World (Online service) e (The number) UF Edwin J. Thomas Performing Arts Hall (Akron, USE eWorld (Online service) UF Napier number Ohio) E. Y. Mullins Lectures on Preaching Number, Napier BT Centers for the performing arts—Ohio UF Mullins Lectures on Preaching BT Logarithmic functions E-journals BT Preaching Transcendental numbers USE Electronic journals E-zines (May Subd Geog) Ë (The Russian letter) E.L. Kirchner Haus (Frauenkirch, Switzerland) UF Ezines BT Russian language—Alphabet USE In den Lärchen (Frauenkirch, Switzerland) BT Electronic journals E & E Ranch (Tex.) E. L. Pender (Fictitious character) Zines UF E and E Ranch (Tex.) USE Pender, Ed (Fictitious character) E1 (Mountain) (China and Nepal) BT Ranches—Texas E-lists (Electronic discussion groups) USE Lhotse (China and Nepal) E-605 (Insecticide) USE Electronic discussion groups E2ENP (Computer network protocol) USE Parathion E. London Crossing (London, England) USE End-to-End Negotiation Protocol (Computer E.1027 (Roquebrune-Cap-Martin, France) USE East London River Crossing (London, England) network protocol) UF E1027 (Roquebrune-Cap-Martin, France) E. London River Crossing (London, England) E10 Motorway Maison en bord du mer E.1027 (Roquebrune- USE East London River Crossing (London, England) USE Autoroute E10 Cap-Martin, France) Ê-luan Pi (Taiwan) E22 Highway (Sweden) Villa E.1027 (Roquebrune-Cap-Martin, France) USE O-luan-pi, Cape (Taiwan) USE Väg E22 (Sweden) BT Dwellings—France E-mail art E190 (Jet transport) E.A.
    [Show full text]
  • The Atmospheric Global Electric Circuit: an Overview
    The atmospheric global electric circuit: An overview Devendraa Siingha,b*, V. Gopalakrishnana,, R. P. Singhc, A. K. Kamraa, Shubha Singhc, Vimlesh Panta, R. Singhd, and A. K. Singhe aIndian Institute of Tropical Meteorology, Pune-411 008, India bInstitute of Environmental Physics, University of Tartu, 18, Ulikooli Street, Tartu- 50090, Estonia cDepartment of Physics, Banaras Hindu University, Varanasi-221 005, India dIndian Institute of Geomagnetism, Mumbai-410 218, India ePhysics Department, Bundelkhand University, Jhansi, India Abstract: Research work in the area of the Global Electric Circuit (GEC) has rapidly expanded in recent years mainly through observations of lightning from satellites and ground-based networks and observations of optical emissions between cloud and ionosphere. After reviewing this progress, we critically examine the role of various generators of the currents flowing in the lower and upper atmosphere and supplying currents to the GEC. The role of aerosols and cosmic rays in controlling the GEC and linkage between climate, solar-terrestrial relationships and the GEC has been briefly discussed. Some unsolved problems in this area are reported for future investigations. ----------------------------------------------------------------------------------------------------------- - *Address for corrspondence Institute of Environmental Physics, University of Tartu, 18, Ulikooli Street Tartu-50090, Estonia e-mail; [email protected] [email protected] Fax +37 27 37 55 56 1 1. Introduction The global electric circuit (GEC) links the electric field and current flowing in the lower atmosphere, ionosphere and magnetosphere forming a giant spherical condenser (Lakhina, 1993; Bering III, 1995; Bering III et al., 1998; Rycroft et al., 2000; Siingh et al., 2005), which is charged by the thunderstorms to a potential of several hundred thousand volts (Roble and Tzur, 1986) and drives vertical current through the atmosphere’s columnar resistance.
    [Show full text]
  • International Civil Aviation Organization
    METWARN/I TF/2 – WP/6 Agenda Item 2 (a) 19/04/12 International Civil Aviation Organization THE SECOND MEETING OF ASIA/PACIFIC METEOROLOGICAL ADVISORIES AND WARNINGS IMPLEMENTATION TASK FORCE (METWARN/I TF/2) Bangkok, Thailand, 19 – 20 April 2012 Agenda Item 2: Review educational material a) Monitor the developments of IAVWOPSG and METWSG with reference to guidance on radioactive cloud and Tsunami GLOBAL PROGRESS ON GUIDANCE ON RADIOACTIVE CLOUD (Presented by the Secretariat) SUMMARY This paper presents an update on the global progress on guidance on radioactive cloud information. This paper relates to: Strategic Objectives: A. Safety Global Plan Initiatives: GPI-18 Aeronautical information GPI-19 Meteorological Systems 1. INTRODUCTION 1.1 The Twentieth Meeting of the Asia/Pacific Air Navigation Planning and Implementation Regional Group (APANPIRG/20) Conclusion 20/69 calls for further guidance on the issuance of SIGMET on radioactive cloud. The International Airways Volcano Watch Operations Group (IAVWOPSG) determined that additional Standards were not necessary (IAVWOPSG/5 Decision 5/23 refers) and that guidance be included in Part II of the Manual on Volcanic Ash, Radioactive Material and Toxic Chemical Clouds (Doc 9691) (IAVWOPSG/5 Conclusion 5/24 refers). METWARN/I TF/2 – WP/6 -2- Agenda Item 2a 19/04/12 2. DISCUSSION 2.1 The IAVWOPSG/6 meeting in Dakar, Senegal, 19 to 23 September 2011, concluded that ad-hoc groups continue with tasks identified to address key issues concerning the importance, complexity and lack of expertise on radioactive clouds. The meeting report and conclusions from IAVWOPSG/6 are provided in the Attachment for review by the METWARN/I TF/2 and can be accessed on the web at http://www2.icao.int/en/anb/met/iavwopsg/Lists/Meetings/DispForm.aspx?ID=6.
    [Show full text]
  • Magnetospheric Physics in China
    SPACE SCIENCE ACTIVITIES IN CHINA Magnetospheric Physics in China CAO Jinbin, YANG Junying (Space Science Institute, School of space and environment, Beihang University, Beijing 100091) National Report 2016 Abstract In the past two years, many progresses were made in magnetospheric physics by using the data of Double Star Program, Cluster, THEMIS, RBSP, Swarm, MMS, ARTEMIS, MESSENGER missions etc., or by computer simulations. This paper briefly reviews these works based on papers selected from the 227 publications from Janu- ary 2016 to December 2017. The subjects cover almost sub-branches of magnetospheric physics, including geo- magnetic storm, magnetospheric substorm, magnetic reconnection, Solar wind-magnetosphere-ionosphere interac- 2018 tion, radiation belt, plasmasphere, outer magnetosphere, magnetotail, geomagnetic field, auroras and currents. Key words Magnetospheric, Geomagnetic storms, Magnetic reconnection E-mail: [email protected] 1. Geomagnetic Storms planning, and design of low-latitude electric power networks. Geomagnetic Sudden Commencements (SCs), charac- He, F., et al., [2] present multi satellite observations terized by a rapid enhancement in the rate of change of of the evolution of Subauroral Polarization Streams the geomagnetic field perturbation (dB/dt), are consid- (SAPS) during Intense Storms (ISs) and Quiet time ered to be an important source of large Geomagnetically Substorms (QSs). SAPS occurred during 37 ISs and 30 Induced Currents (GICs) in middle- and low-latitude QSs were analyzed. Generally, SAPS occur after the power grids. In Zhang et al., [1], the extreme inter- southward turning of the Interplanetary Magnetic Field planetary shock of 23 July 2012 is simulated under the (IMF) with time lags of 0–1.5 h for ISs and 0–2.5 h for assumption that it had hit the Earth with the result indi- QSs.
    [Show full text]
  • A Comparison of Equatorial Electrojet in Peru and East Brazil R.G
    Send Orders of Reprints at [email protected] The Open Atmospheric Science Journal, 2013, 7, 29-36 29 Open Access A Comparison of Equatorial Electrojet in Peru and East Brazil R.G. Rastogi1, H. Chandra*,1, Rahul Shah1, N.B. Trivedi2 and S.L. Fontes3 1Physical Research Laboratory, Ahmedabad 380009, India 2National Institute of Space Research, Sao Jose dos Campos, Brazil 3Observatario Nacional – ON/MCT, Rio de Janeiro, Brazil Abstract: The paper describes the characteristics of the equatorial electrojet at Huancayo (HUA, 12.1oS, 75.3oW, inclination 1.5oN, declination 1.0oE) in western side of South America, where the geomagnetic field is aligned almost along the geographic meridian, and at Itinga (ITI, 4.3oS, 47.0oW, inclination 1.4oN, declination 19.3oW) in eastern part of South America, where the geomagnetic field is aligned about 19o west of the geographic meridian; although the mean intensity of the magnetic field in the two regions are almost of the same order. Further comparisons are made of the current at Itinga and at Tatuoca (TTB, 1.2oS, 48.5oW, inclination 7.8o N, declination 18.7oW), a low latitude station in the same longitude sector. The daily range of horizontal component of the geomagnetic field, H, is shown to be almost 16% higher at HUA compared to that at ITI. The daily variation of the eastward field, Y, showed a strong minimum of -40 nT around 13-14 hr LT at ITI whereas very low values were observed at HUA with a positive peak of about 4 nT around 11- 12 hr LT.
    [Show full text]
  • Recent Advances in Atmospheric, Solar-Terrestrial Physics and Space
    Recent advances in atmospheric, solar-terrestrial physics and space weather from a north-south network of scientist [2006-2016] Part B: results and capacity building Christine Amory-Mazaudier, Rolland Fleury, Monique Petitdidier, Serge Soula, Frédéric Masson, Jospeh Davila, Patricia Doherty, Ana Georgina Elias, Sharafat Gadimova, Jonathan Makela, et al. To cite this version: Christine Amory-Mazaudier, Rolland Fleury, Monique Petitdidier, Serge Soula, Frédéric Masson, et al.. Recent advances in atmospheric, solar-terrestrial physics and space weather from a north-south network of scientist [2006-2016] Part B: results and capacity building. Sun and Geosphere, BBC SWS Regional Network, 2017, 12 (Supplement), pp.21 - 69. hal-01796656 HAL Id: hal-01796656 https://hal.archives-ouvertes.fr/hal-01796656 Submitted on 6 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Recent Advances in Atmospheric, Solar-Terrestrial Physics and Space Weather From a North-South network of scientists [2006-2016]" PART B : Results and Capacity Building Amory-Mazaudier, C. 1,2 , Fleury, R. 3, Petitdidier, M. 4 , Soula, S. 5, Masson, F. 6, GIRGEA team 1*, Davila, J. 7, Doherty, P. 8, Elias, A.G. 9, Gadimova, S.10 ,Makela, J.
    [Show full text]
  • =C SUMMARY ‘R B
    NASA SP-7601 Supplement 1 I OGO w PROGRAM =C SUMMARY ‘r b I NATIONAL AERONAUTIC S AND SPA( E ADMINISTRATlON USA NASA SP-7601 Supplement 1 V OGO BY John E. Jackson Prepared by National Space Science Data Center NASA Goddard Space Flight Center Scientific arid Techriical Illformatior1 Braiich 1978 NATIONAL AERONAUTI( S AND SPA( E AIIMINISTRATION Washington, D.C. This document is available from the National Technical Information Service (NTIS). Springfield, Virginia 22161, at the price code A06 ($6.50 domestic; $1 3.00 foreign). ATMOSPHERE PLASMAPAUSE 0 COMPOSITION 0 DENSITY 0 SOLAR RADIATION iURORA PARTICLES EM lSSl0N 0 SOLAR WIND FIELDS 0 COSMIC RAYS MAGNETOSPHERE ULTRAVIOLET 0 FIELDS 0 SODIUM 0 WAVES 0 OXYGEN 0 PARTICLES NITROGEN ORBITING GEOPHYSICAL OBSERVATORIES 1964- 197 1 ... I11 CONTENTS SECTION PAGE I. FOREWORD ........... ................... ................................................ ....................................... 1-1 ....................................................... 11-1 ................................................... .................................... 5. OGO 5 Results ...................... ............................ ........................................ 111-1 ......................................................... 111-1 1 IV. SPACECRAFT AND EXPERIMENT LITERATURE REFERENCES .............. ......................... IV-1 ....................................................... IV- 1 c. OGO 3 ......... .......................................... ..................................... ...................
    [Show full text]
  • 太空|TAIKONG 国际空间科学研究所 - 北京 ISSI-BJ Magazine No
    太空|TAIKONG 国际空间科学研究所 - 北京 ISSI-BJ Magazine No. 19 May 2020 IMPRINT FOREWORD 太空 | TAIKONG There is little doubt that today's political they undoubtedly play in how this system ISSI-BJ Magazine and business leaders, as well as society works and how it can be monitored. License: CC BY-NC-ND 4.0 at large, must face seriously the reality of global climate change and, in a broader This is not to say that these interactions perspective, define appropriate actions have not received their due attention. to protect our fragile high-technology They have. The vigorous and robust Address: No.1 Nanertiao, society against the broad spectrum research in Space Weather, which is Zhongguancun, of natural and anthropogenic hazards centered on these interactions, is one of Haidian District, which threatens it. There is an equal the highlights of Earth System Science in Beijing, China need for the scientific community to our still-young century. It is the interplay Postcode: 100190 and interaction of the Space Weather Phone: +86-10-62582811 offer an adequate response to this Website: www.issibj.ac.cn major scientific challenge and strive System with the theatre of Global together at the international level to Change, namely the troposphere, offer the science-based information oceans, land, and different life forms needed for society to take meaningful occupying the surface of Earth, which Authors actions. The fact that our science we believe have attracted insufficient sometimes still fails to give consistent, attention: these interactions are likely See the
    [Show full text]