Tropical Herbivorous Phasmids, but Not Litter Snails, Alter Decomposition Rates by Modifying Litter Bacteria Chelse M

Total Page:16

File Type:pdf, Size:1020Kb

Tropical Herbivorous Phasmids, but Not Litter Snails, Alter Decomposition Rates by Modifying Litter Bacteria Chelse M University of Dayton eCommons Biology Faculty Publications Department of Biology 2018 Tropical Herbivorous Phasmids, but Not Litter Snails, Alter Decomposition Rates By Modifying Litter Bacteria Chelse M. Prather University of Dayton, [email protected] Gary E. Belovsky University of Notre Dame Sharon A. Cantrell Universidad del Turabo Gurabo Grizelle Gonzalez International Institute of Tropical Forestry, Jardın Botanico Sur Follow this and additional works at: https://ecommons.udayton.edu/bio_fac_pub Part of the Biology Commons, and the Cell Biology Commons eCommons Citation Prather, Chelse M.; Belovsky, Gary E.; Cantrell, Sharon A.; and Gonzalez, Grizelle, "Tropical Herbivorous Phasmids, but Not Litter Snails, Alter Decomposition Rates By Modifying Litter Bacteria" (2018). Biology Faculty Publications. 238. https://ecommons.udayton.edu/bio_fac_pub/238 This Article is brought to you for free and open access by the Department of Biology at eCommons. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Ecology, 99(4), 2018, pp. 782–791 © 2018 The Authors Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Tropical herbivorous phasmids, but not litter snails, alter decomposition rates by modifying litter bacteria 1,2,3,6,7 1,2 2,4 2,5 CHELSE M. PRATHER, GARY E. BELOVSKY, SHARON A. CANTRELL, AND GRIZELLE GONZALEZ 1Department of Biological Sciences, Galvin Life Sciences, University of Notre Dame, Notre Dame, Indiana 46656 USA 2Luquillo Long-Term Ecological Research Site, Rıo Grande PR 00745 Puerto Rico 3Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004 USA 4Department of Biology, Universidad del Turabo Gurabo, Gurabo PR 00778 Puerto Rico 5USDA Forest Service, International Institute of Tropical Forestry, Jardın Botanico Sur, 1201 Calle Ceiba, Rıo Piedras PR 00926 Puerto Rico Abstract. Consumers can alter decomposition rates through both feces and selective feeding in many ecosystems, but these combined effects have seldom been examined in tropical ecosystems. Members of the detrital food web (litter-feeders or microbivores) should presumably have greater effects on decomposition than herbivores, members of the green food web. Using litterbag experiments within a field enclosure experiment, we determined the relative effects of common litter snails (Megalomastoma croceum) and herbivorous walking sticks (Lamponius portoricensis) on litter compo- sition, decomposition rates, and microbes in a Puerto Rican rainforest, and whether consumer effects were altered by canopy cover presence. Although canopy presence did not alter consumers’ effects, focal organisms had unexpected influences on decomposition. Decomposition was not altered by litter snails, but herbivorous walking sticks reduced leaf decomposition by about 50% through reductions in high quality litter abundance and, consequently, lower bacterial richness and abundance. This relatively unexplored but potentially important link between tropical herbivores, detritus, and litter microbes in this forest demonstrates the need to consider autotrophic influences when examining rainforest ecosystem processes. Key words: ecosystem process; enclosure; herbivory; light gap; litter; litterbags. INTRODUCTION Macro-consumers may have differential effects on decom- position, depending on their trophic level, and these effects Decomposition is a crucial flux in recycling organic matter are largely context-dependent, thus making predictions about and nutrients, and ‘thus’ is inherently tied to understanding the effect of any one species in an ecosystem difficult. Litter- our changing global carbon cycle (van Groenigen et al. dwelling consumers may have positive or negative effects on 2014). Litter decomposition in tropical forests may be partic- decomposition depending on their dominant food. Generally, ularly important to the global carbon cycle because of the as members of the brown food web, litter-dwelling consumers rapid litter turnover and high rates of carbon sequestration can facilitate decomposition through their comminution of that occur there. Biotic control of decomposition may have litter that occurs from feeding directly on litter (detritivores) disproportionately large effects in tropical systems compared or on litter microbes (microbivores), and, thus, increasing sur- to their temperate counterparts because of optimal climatic face area available for microbes (Heneghan et al. 1998, conditions for decomposition to occur and some geologic fac- Gonzalez and Seastedt 2000, Gonzalez et al. 2001). Detriti- tors that usually have an important role in decomposition vores are largely assumed to have positive effects on the rates being negligible (e.g., high amounts of iron that render clays of decomposition by directly processing litter. Microbivores inactive for adsorption of nutrients) (Lavelle et al. 1993, may also affect decomposition through their selective feeding Fonte and Schowalter 2005). However, studies examining on functional groups within the litter layer (Moore et al. how the biota affects decomposition in these systems have 1988, Wardle et al. 2002). Additionally, highly labile inverte- largely focused on members of the detrital “brown” food web brate frass is often stimulating to decomposition, but can also (Milton and Kaspari 2007, Richardson et al. 2010). With so inhibit microbial activity thereby reducing decomposition much litterfall year-round and high litter turnover rates, this rates, particularly if the frass is tightly compacted and has a dynamic brown food web is thought to regulate many ecosys- low internal porosity (e.g., Hanlon and Anderson 1979). tem processes, including decomposition. This assumption has Litter-dwelling organisms may also alter microbial communi- left the potential effects of interactions within the autotrophic ties by acting as dispersal agents for fungal and bacterial “green” food web largely ignored. Moreover, the potential for propagules that colonize and, subsequently, decompose litter cascading, interactive effects between macro-consumers in (Behan and Hill 1978). green and brown food webs have not been examined, espe- Herbivore effects can also stimulate or inhibit decomposi- cially in tropical rainforests. tion due to context dependent mechanisms. Herbivores’ frass has been shown to increase nitrogen cycling (Sirotnak and Manuscript received 14 September 2017; revised 1 January 2018; Huntly 2000, Rinker et al. 2001), stimulate microbial activity accepted 4 January 2018. Corresponding Editor: Steven D. Allison. (Frost and Hunter 2004), and ultimately increase decomposi- 6 Present address: Department of Biology, University of Dayton, Dayton, Ohio 45469 USA tion rates (Fonte and Schowalter 2005), but these effects may 7 E-mail: [email protected] also be influenced by frass quality and internal porosity. 782 April 2018 TROPICAL HERBIVORES ALTER DECOMPOSITION 783 Their selective feeding can stimulate or reduce decomposi- 2000, Richardson et al. 2010, Gonzalez et al. 2014), the inter- tion, partially depending on the herbivores’ preferred foliage. active effects of herbivores and litter macro-consumers have For example, if herbivores prefer to consume faster decom- seldom been examined. In nature, litter-dwelling consumers posing plants, slower decomposing, poorer quality plants would constantly experience any potential effects of herbi- increase in abundance, resulting in poorer resources for vores on litter quality, and the possibility for interactions decomposers, and thereby decreasing decomposition rates between these trophic levels would be high. (Pastor et al. 1988, Brown and Gange 1992, de Mazancourt We hypothesized that: (1) macro-consumers from both and Loreau 2000, Schmitz et al. 2000, Feeley and Terborgh green and brown food webs will alter decomposition rates; 2005). The opposite pathway can also occur where herbivore (2) these consumers will have interactive effects; and (3) preference for slower decomposing plants can increase rates of canopy cover presence will alter consumer influences. We decomposition (McNaughton 1985, Holland 1995, Belovsky used a field enclosure experiment to test how common and Slade 2000, 2002). The effects of herbivores on decompo- brown macro-consumers (litter snails, Megalomastoma cro- sition may also be specific to the type of defensive strategy ceum Gmelin) and green macro-consumers (walking sticks, that the plant species involved use (inducible vs. constitutive Lamponius portoricensis Rehn) alter litter production, defenses), and this trait can be plastic depending upon decomposition rates, and microbial communities in a distur- microclimatic conditions under which the plant is growing bance-driven rainforest in Puerto Rico. We carried out this (Cardenas et al. 2014, Bixenmann et al. 2016). Because of the experiment in both light gaps and closed canopy sites to differential effects of these different trophic levels, the combi- determine how increased light inputs that accompany distur- nation of herbivores and detritivores could result in either bances may alter these influences. Specifically, we predicted synergistic or negative feedbacks on the process of decomposi- that
Recommended publications
  • Body Size and Biomass Distributions of Carrion Visiting Beetles: Do Cities Host Smaller Species?
    Ecol Res (2008) 23: 241–248 DOI 10.1007/s11284-007-0369-9 ORIGINAL ARTICLE Werner Ulrich Æ Karol Komosin´ski Æ Marcin Zalewski Body size and biomass distributions of carrion visiting beetles: do cities host smaller species? Received: 15 November 2006 / Accepted: 14 February 2007 / Published online: 28 March 2007 Ó The Ecological Society of Japan 2007 Abstract The question how animal body size changes Introduction along urban–rural gradients has received much attention from carabidologists, who noticed that cities harbour Animal and plant body size is correlated with many smaller species than natural sites. For Carabidae this aspects of life history traits and species interactions pattern is frequently connected with increasing distur- (dispersal, reproduction, energy intake, competition; bance regimes towards cities, which favour smaller Brown et al. 2004; Brose et al. 2006). Therefore, species winged species of higher dispersal ability. However, body size distributions (here understood as the fre- whether changes in body size distributions can be gen- quency distribution of log body size classes, SSDs) are eralised and whether common patterns exist are largely often used to infer patterns of species assembly and unknown. Here we report on body size distributions of energy use (Peters 1983; Calder 1984; Holling 1992; carcass-visiting beetles along an urban–rural gradient in Gotelli and Graves 1996; Etienne and Olff 2004; Ulrich northern Poland. Based on samplings of 58 necrophages 2005a, 2006). and 43 predatory beetle species, mainly of the families Many of the studies on local SSDs focused on the Catopidae, Silphidae, and Staphylinidae, we found number of modes and the shape.
    [Show full text]
  • Fisheries in Large Marine Ecosystems: Descriptions and Diagnoses
    Fisheries in Large Marine Ecosystems: Descriptions and Diagnoses D. Pauly, J. Alder, S. Booth, W.W.L. Cheung, V. Christensen, C. Close, U.R. Sumaila, W. Swartz, A. Tavakolie, R. Watson, L. Wood and D. Zeller Abstract We present a rationale for the description and diagnosis of fisheries at the level of Large Marine Ecosystems (LMEs), which is relatively new, and encompasses a series of concepts and indicators different from those typically used to describe fisheries at the stock level. We then document how catch data, which are usually available on a smaller scale, are mapped by the Sea Around Us Project (see www.seaaroundus.org) on a worldwide grid of half-degree lat.-long. cells. The time series of catches thus obtained for over 180,000 half-degree cells can be regrouped on any larger scale, here that of LMEs. This yields catch time series by species (groups) and LME, which began in 1950 when the FAO started collecting global fisheries statistics, and ends in 2004 with the last update of these datasets. The catch data by species, multiplied by ex-vessel price data and then summed, yield the value of the fishery for each LME, here presented as time series by higher (i.e., commercial) groups. Also, these catch data can be used to evaluate the primary production required (PPR) to sustain fisheries catches. PPR, when related to observed primary production, provides another index for assessing the impact of the countries fishing in LMEs. The mean trophic level of species caught by fisheries (or ‘Marine Trophic Index’) is also used, in conjunction with a related indicator, the Fishing-in-Balance Index (FiB), to assess changes in the species composition of the fisheries in LMEs.
    [Show full text]
  • Plants Are Producers! Draw the Different Producers Below
    Name: ______________________________ The Unique Producer Every food chain begins with a producer. Plants are producers. They make their own food, which creates energy for them to grow, reproduce and survive. Being able to make their own food makes them unique; they are the only living things on Earth that can make their own source of food energy. Of course, they require sun, water and air to thrive. Given these three essential ingredients, you will have a healthy plant to begin the food chain. All plants are producers! Draw the different producers below. Apple Tree Rose Bushes Watermelon Grasses Plant Blueberry Flower Fern Daisy Bush List the three essential needs that every producer must have in order to live. © 2009 by Heather Motley Name: ______________________________ Producers can make their own food and energy, but consumers are different. Living things that have to hunt, gather and eat their food are called consumers. Consumers have to eat to gain energy or they will die. There are four types of consumers: omnivores, carnivores, herbivores and decomposers. Herbivores are living things that only eat plants to get the food and energy they need. Animals like whales, elephants, cows, pigs, rabbits, and horses are herbivores. Carnivores are living things that only eat meat. Animals like owls, tigers, sharks and cougars are carnivores. You would not catch a plant in these animals’ mouths. Then, we have the omnivores. Omnivores will eat both plants and animals to get energy. Whichever food source is abundant or available is what they will eat. Animals like the brown bear, dogs, turtles, raccoons and even some people are omnivores.
    [Show full text]
  • Can More K-Selected Species Be Better Invaders?
    Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France.
    [Show full text]
  • Nocturnal Rodents
    Nocturnal Rodents Peter Holm Objectives (Chaetodipus spp. and Perognathus spp.) and The monitoring protocol handbook (Petryszyn kangaroo rats (Dipodomys spp.) belong to the 1995) states: “to document general trends in family Heteromyidae (heteromyids), while the nocturnal rodent population size on an annual white-throated woodrats (Neotoma albigula), basis across a representative sample of habitat Arizona cotton rat (Sigmodon arizonae), cactus types present in the monument”. mouse (Peromyscus eremicus), and grasshopper mouse (Onychomys torridus), belong to the family Introduction Muridae. Sigmodon arizonae, a native riparian Nocturnal rodents constitute the prey base for species relatively new to OPCNM, has been many snakes, owls, and carnivorous mammals. recorded at the Dos Lomitas and Salsola EMP All nocturnal rodents, except for the grasshopper sites, adjacent to Mexican agricultural fields. mouse, are primary consumers. Whereas Botta’s pocket gopher (Thomomys bottae) is the heteromyids constitute an important guild lone representative of the family Geomyidae. See of granivores, murids feed primarily on fruit Petryszyn and Russ (1996), Hoffmeister (1986), and foliage. Rodents are also responsible for Petterson (1999), Rosen (2000), and references considerable excavation and mixing of soil layers therein, for a thorough review. (bioturbation), “predation” on plants and seeds, as well as the dispersal and caching of plant seeds. As part of the Sensitive Ecosystems Project, Petryszyn and Russ (1996) conducted a baseline Rodents are common in all monument habitats, study originally titled, Special Status Mammals are easily captured and identified, have small of Organ Pipe Cactus National Monument. They home ranges, have high fecundity, and respond surveyed for nocturnal rodents and other quickly to changes in primary productivity and mammals in various habitats throughout the disturbance (Petryszyn 1995, Petryszyn and Russ monument and found that murids dominated 1996, Petterson 1999).
    [Show full text]
  • Primate Group Size and Interpreting Socioecological Models: Do Folivores Really Play by Different Rules?
    Evolutionary Anthropology 16:94–106 (2007) ARTICLES Primate Group Size and Interpreting Socioecological Models: Do Folivores Really Play by Different Rules? TAMAINI V. SNAITH AND COLIN A. CHAPMAN Because primates display such remarkable diversity, they are an ideal taxon tion and group size. We conclude by within which to examine the evolutionary significance of group living and the ec- suggesting future refinements of both ological factors responsible for variation in social organization. However, as with empirical inquiry and theoretical any social vertebrate, the ecological determinants of primate social variability models that we hope will improve are not easily identified. Interspecific variation in group size and social organiza- our ability to adequately characterize tion results from the compromises required to accommodate the associative and the competitive regime and social or- dissociative forces of many factors, including predation,1–3 conspecific harass- ganization of folivorous primates. ment and infanticide,4–6 foraging competition1,7 and cooperation,8 dominance interactions,9 reproductive strategies, and socialization.10–12 Causative explana- tions have emerged primarily through the construction of theoretical models that EXPLANATORY MODELS OF organize the observed variation in primate social organization and group size rel- PRIMATE SOCIAL ORGANIZATION ative to measurable ecological variation.1,2,13–16 Early assessments of primate soci- oecology relied primarily on correla- In the first portion of this paper, tional analyses to examine the rela- Tamaini Snaith is a Ph.D. candidate in we take a historical perspective, Biology and Anthropology at McGill Uni- tionships between ecological and versity in Montreal. Her research has reviewing the development of exist- social variation, and generally cate- dealt with the behavior, ecology, and con- ing models of primate socioecology.
    [Show full text]
  • Introduction to the Special Issue on Spatial Ecology
    International Journal of Geo-Information Editorial Space-Ruled Ecological Processes: Introduction to the Special Issue on Spatial Ecology Duccio Rocchini 1,2,3 1 University of Trento, Center Agriculture Food Environment, Via E. Mach 1, 38010 S. Michele all’Adige (TN), Italy; [email protected] 2 University of Trento, Centre for Integrative Biology, Via Sommarive, 14, 38123 Povo (TN), Italy 3 Fondazione Edmund Mach, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Via E. Mach 1, 38010 S. Michele all’Adige (TN), Italy Received: 12 December 2017; Accepted: 23 December 2017; Published: 2 January 2018 This special issue explores most of the scientific issues related to spatial ecology and its integration with geographical information at different spatial and temporal scales. Papers are mainly related to challenging aspects of species variability over space and landscape dynamics, providing a benchmark for future exploration on this theme. The need for a spatial view in Ecology is a fact. Dealing with ecological changes over space and time represents a long-lasting theme, now faced by means of innovative techniques and modelling approaches (e.g., Chaudhary et al. [1], Palmer [2], Rocchini [3]). This special issue explores some of them, with challenging ideas facing different components of spatial patterns related to ecological processes, such as: (i) species variability over space [4–11]; and (ii) landscape dynamics [12,13]. Concerning biodiversity variability over space, key spatial datasets are needed to fully investigate biodiversity change in space and time, as shown by Geri et al. [7], who carried out innovative procedures to recover and properly map historical floristic and vegetation data for biodiversity monitoring.
    [Show full text]
  • Models of the World's Large Marine Ecosystems: GEF/LME Global
    Intergovernmental Oceanographic Commission technical series 80 Models of the World’s Large Marine Ecosystems UNESCO Intergovernmental Oceanographic Commission technical series 80 Models of the World’s Large Marine Ecosystems* GEF/LME global project Promoting Ecosystem-based Approaches to Fisheries Conservation and Large Marine Ecosystems UNESCO 2008 * As submitted to IOC Technical Series, UNESCO, 22 October 2008 IOC Technical Series No. 80 Paris, 20 October 2008 English only The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariats of UNESCO and IOC concerning the legal status of any country or territory, or its authorities, or concerning the delimitation of the frontiers of any country or territory. For bibliographic purposes, this document should be cited as follows: Models of the World’s Large Marine Ecosystems GEF/LME global project Promoting Ecosystem-based Approaches to Fisheries Conservation and Large Marine Ecosystems IOC Technical Series No. 80. UNESCO, 2008 (English) Editors: Villy Christensen1, Carl J. Walters1, Robert Ahrens1, Jackie Alder2, Joe Buszowski1, Line Bang Christensen1, William W.L. Cheung1, John Dunne3, Rainer Froese4, Vasiliki Karpouzi1, Kristin Kastner5, Kelly Kearney6, Sherman Lai1, Vicki Lam1, Maria L.D. Palomares1,7, Aja Peters-Mason8, Chiara Piroddi1, Jorge L. Sarmiento6, Jeroen Steenbeek1, Rashid Sumaila1, Reg Watson1, Dirk Zeller1, and Daniel Pauly1. Technical Editor: Jair Torres 1 Fisheries Centre,
    [Show full text]
  • Diet Breadth Evolution and Diversification of a Generalist Insect Herbivore
    University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2018 Diet Breadth Evolution and Diversification of a Generalist Insect Herbivore Mayra Cadorin Vidal University of Denver Follow this and additional works at: https://digitalcommons.du.edu/etd Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Recommended Citation Cadorin Vidal, Mayra, "Diet Breadth Evolution and Diversification of a Generalist Insect Herbivore" (2018). Electronic Theses and Dissertations. 1463. https://digitalcommons.du.edu/etd/1463 This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ DU. For more information, please contact [email protected],[email protected]. DIET BREADTH EVOLUTION AND DIVERSIFICATION OF A GENERALIST INSECT HERBIVORE __________ A Dissertation Presented to the Faculty of Natural Sciences and Mathematics University of Denver __________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy __________ by Mayra Cadorin Vidal June 2018 Advisor: Shannon M. Murphy © by Mayra Cadorin Vidal 2018 All Rights Reserved Author: Mayra Cadorin Vidal Title: DIET BREADTH EVOLUTION AND DIVERSIFICATION OF A GENERALIST INSECT HERBIVORE Advisor: Shannon M. Murphy Degree Date: June 2018 Abstract Insect herbivores are one of the most diverse groups of multicellular organisms, and the vast majority are specialists, which feed on only a few plant species. The factors that cause some herbivores to be specialists and others to be generalists are still unclear. It is known that the selective forces from natural enemies (top-down) and the host plants (bottom-up) influence an herbivore's diet breadth.
    [Show full text]
  • A Consumer's Guide to Nestedness Analysis
    Oikos 118: 3Á17, 2009 doi: 10.1111/j.1600-0706.2008.17053.x, # 2008 The Authors. Journal compilation # 2008 Oikos Subject Editor: Jennifer Dunne. Accepted 25 July 2008 A consumer’s guide to nestedness analysis Werner Ulrich, Ma´rio Almeida-Neto and Nicholas J. Gotelli W. Ulrich ([email protected]), Dept of Animal Ecology, Nicolaus Copernicus Univ. in Torun´, Gagarina 9, PLÁ87-100 Torun´, Poland. Á M. Almeida-Neto, Univ. de Brasilia, IB-Dept Ecologia, CEP 70910-900, Asa Norte, Brazil. ÁN. J. Gotelli, Dept of Biology, Univ. of Vermont, Burlington, VT 05405, USA. Nestedness analysis has become increasingly popular in the study of biogeographic patterns of species occurrence. Nested patterns are those in which the species composition of small assemblages is a nested subset of larger assemblages. For species interaction networks such as plantÁpollinator webs, nestedness analysis has also proven a valuable tool for revealing ecological and evolutionary constraints. Despite this popularity, there has been substantial controversy in the literature over the best methods to define and quantify nestedness, and how to test for patterns of nestedness against an appropriate statistical null hypothesis. Here we review this rapidly developing literature and provide suggestions and guidelines for proper analyses. We focus on the logic and the performance of different metrics and the proper choice of null models for statistical inference. We observe that traditional ‘gap-counting’ metrics are biased towards species loss among columns (occupied sites) and that many metrics are not invariant to basic matrix properties. The study of nestedness should be combined with an appropriate gradient analysis to infer possible causes of the observed presenceÁ absence sequence.
    [Show full text]
  • Consumer Preferences and Willingness to Pay for Potting Mix with Biochar
    energies Article Consumer Preferences and Willingness to Pay for Potting Mix with Biochar McKenzie Thomas 1, Kimberly L. Jensen 1,*, Dayton M. Lambert 2, Burton C. English 1 , Christopher D. Clark 1 and Forbes R. Walker 3 1 Department of Agricultural and Resource Economics, The University of Tennessee, Knoxville, TN 37996, USA; [email protected] (M.T.); [email protected] (B.C.E.); [email protected] (C.D.C.) 2 Department of Agricultural Economics, Oklahoma State University, Stillwater, OK 74078, USA; [email protected] 3 Department of Biosystems Engineering and Soil Sciences, The University of Tennessee, Knoxville, TN 37996, USA; [email protected] * Correspondence: [email protected] Abstract: Biochar is a co-product of advanced biofuels production from feedstocks including food, agricultural, wood wastes, or dedicated energy crops. Markets for soil amendments using biochar are emerging, but little is known about consumer preferences and willingness to pay (WTP) for these products or the depth of the products’ market potential for this product. This research provides WTP estimates for potting mix amended with 25% biochar, conditioned on consumer demographics and attitudes about product information labeling. Data were collected with an online survey of 577 Ten- nessee home gardeners. WTP was elicited through a referendum contingent valuation. Consumer WTP for an 8.81 L bag of 25% biochar potting mix is $8.52; a premium of $3.53 over conventional pot- ting mix. Demographics and attitudes toward biofuels and the environment influence WTP. Biochar Citation: Thomas, M.; Jensen, K.L.; amounts demanded are projected for the study area’s potential market.
    [Show full text]
  • Consumption and the Consumer Society
    Consumption and the Consumer Society By Brian Roach, Neva Goodwin, and Julie Nelson A GDAE Teaching Module on Social and Environmental Issues in Economics Global Development And Environment Institute Tufts University Medford, MA 02155 http://ase.tufts.edu/gdae This reading is based on portions of Chapter 8 from: Microeconomics in Context, Fourth Edition. Copyright Routledge, 2019. Copyright © 2019 Global Development And Environment Institute, Tufts University. Reproduced by permission. Copyright release is hereby granted for instructors to copy this module for instructional purposes. Students may also download the reading directly from https://ase.tufts.edu/gdae Comments and feedback from course use are welcomed: Comments and feedback from course use are welcomed: Global Development And Environment Institute Tufts University Somerville, MA 02144 http://ase.tufts.edu/gdae E-mail: [email protected] NOTE – terms denoted in bold face are defined in the KEY TERMS AND CONCEPTS section at the end of the module. CONSUMPTION AND THE CONSUMER SOCIETY TABLE OF CONTENTS 1. INTRODUCTION ................................................................................................. 5 2. ECONOMIC THEORY AND CONSUMPTION ............................................... 5 2.1 Consumer Sovereignty .............................................................................................. 5 2.2 The Budget Line ....................................................................................................... 6 2.3 Consumer Utility ......................................................................................................
    [Show full text]