P27 Regulates the Autophagy-Lysosomal Pathway Via the Control of Ragulator and Mtor

Total Page:16

File Type:pdf, Size:1020Kb

P27 Regulates the Autophagy-Lysosomal Pathway Via the Control of Ragulator and Mtor bioRxiv preprint doi: https://doi.org/10.1101/2020.01.07.896860; this version posted January 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 1 p27 regulates the autophagy-lysosomal pathway via the control of Ragulator and mTOR 2 activity in amino acid deprived cells 3 4 Ada Nowosad1, Pauline Jeannot1, Caroline Callot1, Justine Creff1, Renaud T. Perchey1, Carine 5 Joffre2, Patrice Codogno3,4, Stephane Manenti2 and Arnaud Besson1,5 6 7 1LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 8 Toulouse Cedex, France. 9 2Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of 10 Toulouse, Toulouse, France. 11 3Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, F-75993 Paris, 12 France. 13 4Université Paris Descartes-Sorbonne Paris Cité, F-75005 Paris, France. 14 5Corresponding author 15 16 Correspondence to: 17 Arnaud Besson 18 LBCMCP UMR5088 CNRS - Université Paul Sabatier, 19 Batiment 4R3b1 20 118 route de Narbonne 21 31062 Toulouse cedex 9, France 22 Email: [email protected] 23 Tel: +33 (0)561558486 24 25 26 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.07.896860; this version posted January 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 27 Summary 28 Autophagy is a catabolic process whereby cytoplasmic components are degraded within 29 lysosomes, allowing cells to maintain energy homeostasis during nutrient depletion. Several 30 studies have shown that the CDK inhibitor p27Kip1 promotes starvation-induced autophagy. 31 However, the underlying mechanism remains unknown. Here, we report that in amino acid 32 deprived cells, p27 controls autophagy via an mTORC1-dependent mechanism. During 33 prolonged amino acid starvation, a fraction of p27 is recruited to lysosomes where it interacts 34 with LAMTOR1, a component of the Ragulator complex required for mTORC1 lysosomal 35 localization and activation. p27 binding to LAMTOR1 prevents Ragulator assembly and function 36 and subsequent mTORC1 activation, thereby promoting autophagy. Conversely, upon amino 37 acid withdrawal, p27-/- cells exhibit elevated mTORC1 signaling, impaired lysosomal activity 38 and autophagy, and resistance to apoptosis. This is associated with sequestration of TFEB in the 39 cytoplasm, preventing the induction of lysosomal genes required for lysosomal function. 40 Silencing of LAMTOR1 or mTOR inhibition restores autophagy and induces apoptosis in p27-/- 41 cells. Together, these results reveal a direct, coordinated regulation between the cell cycle and 42 cell growth machineries. 43 44 45 46 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.07.896860; this version posted January 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 3 47 INTRODUCTION 48 In all organisms, cell growth is coupled to cell division to allow normal development and 49 maintain homeostasis. How cells coordinate the machinery that regulates cell growth, at the heart 50 of which lies the mTOR kinase, with the machinery that controls cell division, driven by 51 cyclin/CDK complexes, has been the subject of considerable interest for several decades1. This 52 coordination has been mostly studied under normal metabolic conditions and except for notable 53 exceptions, such as early embryonic development, it appears that growth control drives the 54 activity of the cell cycle machinery. Here we investigated this question in conditions of 55 metabolic restriction to determine if the cell cycle machinery could in turn regulate the growth 56 control machinery. 57 p27Kip1 (p27) was initially identified as a cyclin/CDK inhibitor2, 3. Due to its ability to induce 58 cell cycle arrest, p27 acts as a tumor suppressor and p27-/- mice display multiple organ 59 hyperplasia and spontaneously develop pituitary tumors4. Nevertheless, in contrast to classic 60 tumor suppressors such as p53 or Rb, inactivating mutations of the p27 gene are extremely rare 61 and its inactivation in cancer is rather caused by enhanced degradation, attenuated transcription 62 or translation, or mislocalization in the cytoplasm2, 3, 5. The latter correlates with poor prognosis 63 in a variety of cancers, suggesting a direct contribution of cytoplasmic p27 to tumor progression2, 64 3. In fact, knock-in mice in which p27 is largely sequestered in the nucleus due to defective 65 export to the cytoplasm (p27S10A) are partially resistant to tumorigenesis6. Conversely, another 66 knock-in model in which p27 cannot bind to cyclin-CDKs (p27CK-) revealed that p27 can act as 67 an oncogene, as these mice display an increased susceptibility to both spontaneous and induced 68 tumorigenesis compared to p27-/- mice7, 8. How exactly p27 acts as an oncogene remains elusive, 69 but could be due to the regulation of several other cellular processes by p27. Indeed, p27 has 70 been involved in the control, sometimes in a CDK-independent manner, of cell migration and 71 invasion, differentiation, cytokinesis, transcriptional repression, apoptosis and autophagy2, 9-15. 72 Autophagy is a catabolic process by which intracellular components are degraded and 73 recycled by the lysosomal machinery16, 17. Depending on the pathway implicated in the delivery 74 of cargo for degradation, there are three major types of autophagy: macroautophagy (hereafter 75 referred to as autophagy), microautophagy and chaperone-mediated autophagy17. Autophagic 76 degradation begins with formation of double-membrane autophagosomes that engulf the 77 cytoplasmic material destined for elimination. Autophagosomes then fuse with the endocytic bioRxiv preprint doi: https://doi.org/10.1101/2020.01.07.896860; this version posted January 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 4 78 compartment and eventually deliver their cargo to lysosomes for degradation by lysosomal 79 enzymes17, 18. Following proteolysis, the resulting molecules are released back to the cytosol 80 through lysosomal permeases for reuse19. Although autophagy occurs constantly in cells and is 81 required to control the quality of cytoplasm, its levels dramatically increase in stress situations, 82 such as nutrient withdrawal, and particularly under amino acid (aa) deprivation20. In these 83 conditions, autophagy recycles cellular components and the products of proteolysis are delivered 84 back to the cytoplasm, where they are used as energy source or as building blocks for protein 85 synthesis17. 86 Autophagy is negatively modulated by mTORC1, a master regulator of cell growth21, 22. 87 mTORC1 is a multi-protein complex consisting of mTOR and its regulatory binding partners 88 Raptor, MLST8, PRAS40 and Deptor22. The main function of mTORC1 is to orchestrate the 89 balance between anabolic and catabolic metabolism. Via a complex network of nutrient sensors, 90 in presence of aa, mTORC1 is recruited to lysosomal membranes by Rag GTPases, themselves 91 anchored by the Ragulator complex, where the kinase activity of mTORC1 can be stimulated by 92 the GTPase Rheb that also resides on lysosomes23-26. When nutrients are abundant, mTORC1 93 promotes protein synthesis via phosphorylation of substrates implicated in the regulation of 94 translation, such as S6 kinases and 4E-binding proteins. At the same time, mTORC1 inhibits 95 autophagy at multiple levels by phosphorylating and inactivating proteins involved in 96 autophagosome formation (such as ULK1, AMBRA1, Atg13 and Atg14) and maturation 97 (UVRAG)21, 22, 27, 28. mTORC1 also phosphorylates TFEB, a transcription factor that drives the 98 expression of many pro-autophagic and lysosomal genes, on S142 and S211, resulting in TFEB 99 cytoplasmic retention, thereby inhibiting its activity29-31. Conversely, under nutrient shortage, 100 mTOR is inactivated, allowing the autophagic machinery to form autophagosomes. During 101 prolonged aa starvation, partial mTORC1 reactivation triggers the reformation of lysosomes 102 from autolysosomes via a process called autophagic lysosome reformation (ALR)32. Thus, the 103 role of mTORC1 in autophagy is complex and context dependent: while mTORC1 inhibition is 104 required for autophagy initiation, its cyclic reactivation by autophagy-generated nutrients allows 105 maintaining autophagy during prolonged starvation by restoring the lysosomal population. 106 Cytoplasmic p27 was recently described as a positive regulator of basal and starvation- 107 induced autophagy and to protect cells in conditions of metabolic stress from apoptosis by 108 promoting autophagy14, 33-37. Glucose or serum deprivation activates the energy/nutrient sensing bioRxiv preprint doi: https://doi.org/10.1101/2020.01.07.896860; this version posted January 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 5 109 kinases LKB1 and AMPK, in turn AMPK phosphorylates p27 on S83, T170 and T198, causing 110 its stabilization and cytoplasmic retention14, 36, 38. Loss of Tsc2, a subunit of Tuberous Sclerosis 111 Complex that acts as a GTPase activating protein (GAP) for Rheb, also
Recommended publications
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/48948 Please be advised that this information was generated on 2021-09-28 and may be subject to change. MOLECULAR AND CELLULAR BIOLOGY, Feb. 2005, p. 1402–1414 Vol. 25, No. 4 0270-7306/05/$08.00ϩ0 doi:10.1128/MCB.25.4.1402–1414.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Divergent Mitochondrial and Endoplasmic Reticulum Association of DMPK Splice Isoforms Depends on Unique Sequence Arrangements in Tail Anchors† Rene´ E. M. A. van Herpen,1 Ralph J. A. Oude Ophuis,1 Mietske Wijers,1 Miranda B. Bennink,2 Fons A. J. van de Loo,2 Jack Fransen,1 Be´ Wieringa,1* and Derick G. Wansink1 Department of Cell Biology1 and Rheumatology Research and Advanced Therapeutics,2 Nijmegen Center for Molecular Life Sciences, University Medical Center, Nijmegen, The Netherlands Received 3 September 2004/Returned for modification 23 September 2004/Accepted 10 November 2004 Myotonic dystrophy protein kinase (DMPK) is a Ser/Thr-type protein kinase with unknown function, originally identified as the product of the gene that is mutated by triplet repeat expansion in patients with myotonic dystrophy type 1 (DM1). Alternative splicing of DMPK transcripts results in multiple protein isoforms carrying distinct C termini. Here, we demonstrate by expressing individual DMPKs in various cell ؊/؊ types, including C2C12 and DMPK myoblast cells, that unique sequence arrangements in these tails control the specificity of anchoring into intracellular membranes.
    [Show full text]
  • Kinase Profiling Book
    Custom and Pre-Selected Kinase Prof iling to f it your Budget and Needs! As of July 1, 2021 19.8653 mm 128 196 12 Tyrosine Serine/Threonine Lipid Kinases Kinases Kinases Carna Biosciences, Inc. 2007 Carna Biosciences, Inc. Profiling Assays available from Carna Biosciences, Inc. As of July 1, 2021 Page Kinase Name Assay Platform Page Kinase Name Assay Platform 4 ABL(ABL1) MSA 21 EGFR[T790M/C797S/L858R] MSA 4 ABL(ABL1)[E255K] MSA 21 EGFR[T790M/L858R] MSA 4 ABL(ABL1)[T315I] MSA 21 EPHA1 MSA 4 ACK(TNK2) MSA 21 EPHA2 MSA 4 AKT1 MSA 21 EPHA3 MSA 5 AKT2 MSA 22 EPHA4 MSA 5 AKT3 MSA 22 EPHA5 MSA 5 ALK MSA 22 EPHA6 MSA 5 ALK[C1156Y] MSA 22 EPHA7 MSA 5 ALK[F1174L] MSA 22 EPHA8 MSA 6 ALK[G1202R] MSA 23 EPHB1 MSA 6 ALK[G1269A] MSA 23 EPHB2 MSA 6 ALK[L1196M] MSA 23 EPHB3 MSA 6 ALK[R1275Q] MSA 23 EPHB4 MSA 6 ALK[T1151_L1152insT] MSA 23 Erk1(MAPK3) MSA 7 EML4-ALK MSA 24 Erk2(MAPK1) MSA 7 NPM1-ALK MSA 24 Erk5(MAPK7) MSA 7 AMPKα1/β1/γ1(PRKAA1/B1/G1) MSA 24 FAK(PTK2) MSA 7 AMPKα2/β1/γ1(PRKAA2/B1/G1) MSA 24 FER MSA 7 ARG(ABL2) MSA 24 FES MSA 8 AurA(AURKA) MSA 25 FGFR1 MSA 8 AurA(AURKA)/TPX2 MSA 25 FGFR1[V561M] MSA 8 AurB(AURKB)/INCENP MSA 25 FGFR2 MSA 8 AurC(AURKC) MSA 25 FGFR2[V564I] MSA 8 AXL MSA 25 FGFR3 MSA 9 BLK MSA 26 FGFR3[K650E] MSA 9 BMX MSA 26 FGFR3[K650M] MSA 9 BRK(PTK6) MSA 26 FGFR3[V555L] MSA 9 BRSK1 MSA 26 FGFR3[V555M] MSA 9 BRSK2 MSA 26 FGFR4 MSA 10 BTK MSA 27 FGFR4[N535K] MSA 10 BTK[C481S] MSA 27 FGFR4[V550E] MSA 10 BUB1/BUB3 MSA 27 FGFR4[V550L] MSA 10 CaMK1α(CAMK1) MSA 27 FGR MSA 10 CaMK1δ(CAMK1D) MSA 27 FLT1 MSA 11 CaMK2α(CAMK2A) MSA 28
    [Show full text]
  • Lenalidomide Induces Cell Death in an MDS-Derived Cell Line with Deletion of Chromosome 5Q by Inhibition of Cytokinesis
    Leukemia (2010) 24, 748–755 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Lenalidomide induces cell death in an MDS-derived cell line with deletion of chromosome 5q by inhibition of cytokinesis A Matsuoka1, A Tochigi1, M Kishimoto1, T Nakahara1, T Kondo1, T Tsujioka1, T Tasaka1, Y Tohyama2 and K Tohyama1 1Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan; and 2Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan Myelodysplastic syndromes (MDS) are a group of hematopoietic higher-risk groups with del(5q) that are susceptible to leukemic stem cell disorders characterized by refractory cytopenias transformation.6 Several hematopoiesis-related genes and tumor and susceptibility to leukemic transformation. On a subset of suppressor genes are located at 5q locus, and SPARC,7 MDS patients with deletion of the long arm of chromosome5 8 9 10 11 (del(5q)), lenalidomide exerts hematological and cytogenetic CTNNA1, EGR1, RPS14 and CDC25C are reported as effects, but the underlying pharmacological mechanisms are the candidate genes of MDS with del(5q) or 5q- syndrome. not fully understood. In this study, we have investigated the Lenalidomide, a derivative of thalidomide, is shown to in vitro effects of lenalidomide on an MDS-derived cell line, exert plenty of biological actions including inhibition of MDS-L, which carries del(5q) and complex chromosome angiogenesis,12 suppression of proinflammatory cytokine abnormalities. We found that the growth of MDS-L cells was production such as TNF-a,13 enhancement of T- and NK-cell specifically suppressed mainly by apoptosis, and in addition, 14–16 multinucleated cells were frequently formed and finally died activation.
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/85871 Please be advised that this information was generated on 2021-09-29 and may be subject to change. ISOFORMS IN MUSCLE AND BRAIN CELLS localization and function • ralph j.a. oude ophuis • 2011 9 789088 912344 > ISBN 978-90-8891234,-4 DMPK ISOFORMS IN MUSCLE AND BRAIN CELLS LOCALIZATION AND FUNCTION Voor het bijwonen van de openbare verdediging van het proefschrift van RALPH J.A. OUDE OPHUIS DMPK ISOFORMS IN MUSCLE AND BRAIN CELLS LOCALIZATION AND FUNCTION op vrijdag 1 april 2011 om 13:00u precies in de Aula van de Radboud Universiteit Nijmegen aan de Comeniuslaan 2 te Nijmegen Na afloop van de verdediging is er een receptie ter plaatse PARANIMFEN Susan Mulders [email protected] Rinske van de Vorstenbosch r.vandevorstenbosch(§) ncmls.ru.nl DMPK ISOFORMS IN MUSCLE AND BRAIN CELLS LOCALIZATION AND FUNCTION ISBN-13 978-90-8891234-4 ISBN-10 90-8891-234-3 Printed by Proefsohriftmaken.nl || Printyourthesis.com Published by Uitgeverij BOXPress, Oisterwijk DMPK ISOFORMS IN MUSCLE AND BRAIN CELLS LOCALIZATION AND FUNCTION Een wetenschappelijke proeve op het gebied van de Medische Wetenschappen Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann, volgens besluit van het college van decanen in het openbaar te verdedigen op vrijdag 1 april 2011 om 13:00 uur precies door Raphaël Johannes Antonius Oude Ophuis geboren op 24 oktober 1978 te Sint-Oedenrode Promotor Prof.
    [Show full text]
  • Regulation of P27kip1 and P57kip2 Functions by Natural Polyphenols
    biomolecules Review Regulation of p27Kip1 and p57Kip2 Functions by Natural Polyphenols Gian Luigi Russo 1,* , Emanuela Stampone 2 , Carmen Cervellera 1 and Adriana Borriello 2,* 1 National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; [email protected] 2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Napoli, Italy; [email protected] * Correspondence: [email protected] (G.L.R.); [email protected] (A.B.); Tel.: +39-0825-299-331 (G.L.R.) Received: 31 July 2020; Accepted: 9 September 2020; Published: 13 September 2020 Abstract: In numerous instances, the fate of a single cell not only represents its peculiar outcome but also contributes to the overall status of an organism. In turn, the cell division cycle and its control strongly influence cell destiny, playing a critical role in targeting it towards a specific phenotype. Several factors participate in the control of growth, and among them, p27Kip1 and p57Kip2, two proteins modulating various transitions of the cell cycle, appear to play key functions. In this review, the major features of p27 and p57 will be described, focusing, in particular, on their recently identified roles not directly correlated with cell cycle modulation. Then, their possible roles as molecular effectors of polyphenols’ activities will be discussed. Polyphenols represent a large family of natural bioactive molecules that have been demonstrated to exhibit promising protective activities against several human diseases. Their use has also been proposed in association with classical therapies for improving their clinical effects and for diminishing their negative side activities. The importance of p27Kip1 and p57Kip2 in polyphenols’ cellular effects will be discussed with the aim of identifying novel therapeutic strategies for the treatment of important human diseases, such as cancers, characterized by an altered control of growth.
    [Show full text]
  • Epigenetic Regulation of Neurogenesis by Citron Kinase Matthew Irg Genti University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 12-10-2015 Epigenetic Regulation of Neurogenesis By Citron Kinase Matthew irG genti University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Girgenti, Matthew, "Epigenetic Regulation of Neurogenesis By Citron Kinase" (2015). Doctoral Dissertations. 933. https://opencommons.uconn.edu/dissertations/933 Epigenetic Regulation Of Neurogenesis By Citron Kinase Matthew J. Girgenti, Ph.D. University of Connecticut, 2015 Patterns of neural progenitor division are controlled by a combination of asymmetries in cell division, extracellular signals, and changes in gene expression programs. In a screen for proteins that complex with citron kinase (CitK), a protein essential to cell division in developing brain, I identified the histone methyltransferase- euchromatic histone-lysine N-methyltransferse 2 (G9a). CitK is present in the nucleus and binds to positions in the genome clustered around transcription start sites of genes involved in neuronal development and differentiation. CitK and G9a co-occupy these genomic positions in S/G2-phase of the cell cycle in rat neural progenitors, and CitK functions with G9a to repress gene expression in several developmentally important genes including CDKN1a, H2afz, and Pou3f2/Brn2. The study indicates a novel function for citron kinase in gene repression, and contributes additional evidence to the hypothesis that mechanisms that coordinate gene expression states are directly linked to mechanisms that regulate cell division in the developing nervous system. Epigenetic Regulation Of Neurogenesis By Citron Kinase Matthew J. Girgenti B.S., Fairfield University, 2002 M.S., Southern Connecticut State University, 2004 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Connecticut 2015 ii Copyright by Matthew J.
    [Show full text]
  • In Epha4 Signaling in <I>Xenopus Laevis</I>
    Eastern Michigan University DigitalCommons@EMU Senior Honors Theses Honors College 2008 The nI volvement of Rho-Associated Kinases (ROCKs) in EphA4 Signaling in Xenopus laevis Ashley Bate Follow this and additional works at: http://commons.emich.edu/honors Recommended Citation Bate, Ashley, "The nI volvement of Rho-Associated Kinases (ROCKs) in EphA4 Signaling in Xenopus laevis" (2008). Senior Honors Theses. 129. http://commons.emich.edu/honors/129 This Open Access Senior Honors Thesis is brought to you for free and open access by the Honors College at DigitalCommons@EMU. It has been accepted for inclusion in Senior Honors Theses by an authorized administrator of DigitalCommons@EMU. For more information, please contact lib- [email protected]. The nI volvement of Rho-Associated Kinases (ROCKs) in EphA4 Signaling in Xenopus laevis Abstract XEphA4 is a cellular receptor that functions to regulate cell and tissue interactions in amphibian embryos via a repulsive mechanism that involves actin cytoskeleton reorganization. Ectopic EphA4 signaling in Xenopus embryos results in a loss of cell-adhesion and rounded cell morphology, and this phenotype is consistent with EphA4 signaling in cultured A6 cells. How EphA4 achieves its effects on the actin cytoskeleton at the molecular level is largely unknown. One known step in the pathway is that EphA4 causes inhibition of the small GTPase RhoA. RhoA has many downstream effectors that cause cytoskeletal reorganization; the most recognized of these are the ROCK proteins (Rho-associated kinases). ROCK exists in two isoforms, ROCKI and ROCKII. We hypothesize that ROCK inhibition is one step in EphA4 signaling. To test our hypothesis we used ROCK inhibitors and mutants.
    [Show full text]
  • 16135012.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Radboud Repository PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/48948 Please be advised that this information was generated on 2017-12-06 and may be subject to change. MOLECULAR AND CELLULAR BIOLOGY, Feb. 2005, p. 1402–1414 Vol. 25, No. 4 0270-7306/05/$08.00ϩ0 doi:10.1128/MCB.25.4.1402–1414.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Divergent Mitochondrial and Endoplasmic Reticulum Association of DMPK Splice Isoforms Depends on Unique Sequence Arrangements in Tail Anchors† Rene´ E. M. A. van Herpen,1 Ralph J. A. Oude Ophuis,1 Mietske Wijers,1 Miranda B. Bennink,2 Fons A. J. van de Loo,2 Jack Fransen,1 Be´ Wieringa,1* and Derick G. Wansink1 Department of Cell Biology1 and Rheumatology Research and Advanced Therapeutics,2 Nijmegen Center for Molecular Life Sciences, University Medical Center, Nijmegen, The Netherlands Received 3 September 2004/Returned for modification 23 September 2004/Accepted 10 November 2004 Myotonic dystrophy protein kinase (DMPK) is a Ser/Thr-type protein kinase with unknown function, originally identified as the product of the gene that is mutated by triplet repeat expansion in patients with myotonic dystrophy type 1 (DM1). Alternative splicing of DMPK transcripts results in multiple protein isoforms carrying distinct C termini. Here, we demonstrate by expressing individual DMPKs in various cell ؊/؊ types, including C2C12 and DMPK myoblast cells, that unique sequence arrangements in these tails control the specificity of anchoring into intracellular membranes.
    [Show full text]
  • Isolation and Characterization of Stretchin-Myosin Light Chain Kinase Mutants in Drosophila Melanogaster
    ISOLATION AND CHARACTERIZATION OF STRETCHIN-MYOSIN LIGHT CHAIN KINASE MUTANTS IN DROSOPHILA MELANOGASTER DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Philosophy in the Graduate School of The Ohio State University By Deyra Marie Rodriguez, B.S. ***** The Ohio State University 2004 Dissertation Committee: Approved by Professor Amanda Simcox, Adviser Professor Arthur Burghes Adviser Professor Mark Seeger Department of Molecular Genetics Professor Harald Vaessin ABSTRACT Muscle function depends upon the molecular interaction of myosin and actin. This interaction and the function of each molecule are tightly regulated and have been extensively studied. In Drosophila, the indirect flight musculature (IFM) is a powerful model to study muscle structure and function as these muscles are dispensable for life under laboratory conditions. Furthermore, disruption of these muscles leads to a flightless behavior. Flies with mutations in the muscle regulatory light chain (MLC2) that cannot be phosphorylated at the conserved Myosin light chain kinase (Mlck) target sites are flightless, but the IFM is normal. Flight impairment is due to an altered stretch activation response, thus phosphorylation of MLC2 at the Mlck target sites is important for flight. In Drosophila, the Stretchin-Mlck (Strn-Mlck) gene encodes several Mlck-like isoforms with kinase activity as well as other isoforms lacking this domain. Analysis of the gene in this work has shown that it is expressed in both muscle and nonmuscle cell types and that some isoforms show tissue specific expression patterns. In order to understand what role Strn-Mlck plays in MLC2 regulation, mutants were isolated. Three new mutants were identified and the previously described curved mutant was shown to be an allele.
    [Show full text]
  • P27 As a Transcriptional Regulator: New Roles in Development and Cancer
    Author Manuscript Published OnlineFirst on April 27, 2020; DOI: 10.1158/0008-5472.CAN-19-3663 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. p27 as a transcriptional regulator: New roles in development and cancer Seyedeh Fatemeh Razavipour1,2,*, Kuzhuvelil B.Harikumar1,3,*, and Joyce M. Slingerland1,2,4,** 1Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; 2Department of Biochemistry& Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; 3Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India ; 4Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA *Co-first author **Correspondence: Dr. J Slingerland, Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, BRB708, 1501 NW 10th Avenue, Miami, FL 33136, USA. Email: [email protected] Running Title: 27 as transcriptional regulator Key Words: p27, cell cycle, cJun, EMT, metastasis, transcription The authors declare no potential conflicts of interest 1 Downloaded from cancerres.aacrjournals.org on September 29, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on April 27, 2020; DOI: 10.1158/0008-5472.CAN-19-3663 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract p27 binds and inhibits cyclin-CDK to arrest the cell cycle. p27 also regulates other processes including migration and development independent of its CDK inhibitory action. p27 is an atypical tumor suppressor: deletion or mutational inactivation of the gene encoding p27, CDKN1B, is rare in human cancers.
    [Show full text]
  • La Protéine Kinase Haspine Comme Nouvelle Cible Thérapeutique : Analyse De Ses Fonctions Et Caractérisation D’Inhibiteurs Spécifiques Omid Feizbakhsh
    La protéine Kinase Haspine comme nouvelle cible thérapeutique : analyse de ses fonctions et caractérisation d’inhibiteurs spécifiques Omid Feizbakhsh To cite this version: Omid Feizbakhsh. La protéine Kinase Haspine comme nouvelle cible thérapeutique : analyse de ses fonctions et caractérisation d’inhibiteurs spécifiques. Biologie cellulaire. Université Rennes 1, 2017. Français. NNT : 2017REN1B053. tel-02893496 HAL Id: tel-02893496 https://tel.archives-ouvertes.fr/tel-02893496 Submitted on 8 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNÉE 2017 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Bretagne Loire pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Biologie Ecole doctorale EGAAL présentée par Omid Feizbakhsh Préparée à l’Unité de Service et de Recherche USR3151 « Phosphorylation des Protéines et Pathologies Humaines » Station Biologique de Roscoff (CNRS/UPMC) Thèse soutenue à Roscoff le 19 La protéine kinase décembre 2017 Haspine comme Devant le jury composé de : Daniel Fisher nouvelle cible Directeur
    [Show full text]
  • P27 Controls Cytokinesis Via the Regulation of Citron Kinase Activation
    p27Kip1 controls cytokinesis via the regulation of citron kinase activation Murielle P. Serres, … , Nisar P. Malek, Arnaud Besson J Clin Invest. 2012;122(3):844-858. https://doi.org/10.1172/JCI60376. Research Article Oncology p27Kip1 (p27) acts as a tumor suppressor by inhibiting cyclin–cyclin-dependent kinase (cyclin-CDK) activity. However, mice expressing a form of p27 that is unable to bind or inhibit cyclin-CDK complexes (p27CK–) have increased incidence of tumor development as compared with wild-type and p27–/– mice, revealing an oncogenic role for p27. Here, we identified a phenotype of multinucleation and polyploidy in p27CK– mice not present in p27–/– animals, suggesting a role CK– for p27 in G2/M that is independent of cyclin-CDK regulation. Further analysis revealed that p27 expression caused a cytokinesis and abscission defect in mouse embryonic fibroblasts. We identified the Rho effector citron kinase (citron-K) as a p27-interacting protein in vitro and in vivo and found that p27 and citron-K colocalized at the contractile ring and mid- body during telophase and cytokinesis. Moreover, overexpression of the minimal p27-binding domain of citron-K was sufficient to rescue the phenotype caused by p27CK–. Conversely, expression of a mutant p27CK– unable to bind citron-K did not induce multinucleation. Finally, by binding to citron-K, p27 prevented the interaction of citron-K with its activator RhoA. Taken together, these data suggest a role for p27 during cytokinesis via the regulation of citron-K activity. Find the latest version: https://jci.me/60376/pdf Research article p27Kip1 controls cytokinesis via the regulation of citron kinase activation Murielle P.
    [Show full text]