Real Analysis (4Th Edition)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differential Calculus and by Era Integral Calculus, Which Are Related by in Early Cultures in Classical Antiquity the Fundamental Theorem of Calculus
History of calculus - Wikipedia, the free encyclopedia 1/1/10 5:02 PM History of calculus From Wikipedia, the free encyclopedia History of science This is a sub-article to Calculus and History of mathematics. History of Calculus is part of the history of mathematics focused on limits, functions, derivatives, integrals, and infinite series. The subject, known Background historically as infinitesimal calculus, Theories/sociology constitutes a major part of modern Historiography mathematics education. It has two major Pseudoscience branches, differential calculus and By era integral calculus, which are related by In early cultures in Classical Antiquity the fundamental theorem of calculus. In the Middle Ages Calculus is the study of change, in the In the Renaissance same way that geometry is the study of Scientific Revolution shape and algebra is the study of By topic operations and their application to Natural sciences solving equations. A course in calculus Astronomy is a gateway to other, more advanced Biology courses in mathematics devoted to the Botany study of functions and limits, broadly Chemistry Ecology called mathematical analysis. Calculus Geography has widespread applications in science, Geology economics, and engineering and can Paleontology solve many problems for which algebra Physics alone is insufficient. Mathematics Algebra Calculus Combinatorics Contents Geometry Logic Statistics 1 Development of calculus Trigonometry 1.1 Integral calculus Social sciences 1.2 Differential calculus Anthropology 1.3 Mathematical analysis -
Set Theory, Including the Axiom of Choice) Plus the Negation of CH
ANNALS OF ~,IATltEMATICAL LOGIC - Volume 2, No. 2 (1970) pp. 143--178 INTERNAL COHEN EXTENSIONS D.A.MARTIN and R.M.SOLOVAY ;Tte RockeJ~'ller University and University (.~t CatiJbrnia. Berkeley Received 2 l)ecemt)er 1969 Introduction Cohen [ !, 2] has shown that tile continuum hypothesis (CH) cannot be proved in Zermelo-Fraenkel set theory. Levy and Solovay [9] have subsequently shown that CH cannot be proved even if one assumes the existence of a measurable cardinal. Their argument in tact shows that no large cardinal axiom of the kind present;y being considered by set theorists can yield a proof of CH (or of its negation, of course). Indeed, many set theorists - including the authors - suspect that C1t is false. But if we reject CH we admit Gurselves to be in a state of ignorance about a great many questions which CH resolves. While CH is a power- full assertion, its negation is in many ways quite weak. Sierpinski [ 1 5 ] deduces propcsitions there called C l - C82 from CH. We know of none of these propositions which is decided by the negation of CH and only one of them (C78) which is decided if one assumes in addition that a measurable cardinal exists. Among the many simple questions easily decided by CH and which cannot be decided in ZF (Zerme!o-Fraenkel set theory, including the axiom of choice) plus the negation of CH are tile following: Is every set of real numbers of cardinality less than tha't of the continuum of Lebesgue measure zero'? Is 2 ~0 < 2 ~ 1 ? Is there a non-trivial measure defined on all sets of real numbers? CIhis third question could be decided in ZF + not CH only in the unlikely event t Tile second author received support from a Sloan Foundation fellowship and tile National Science Foundation Grant (GP-8746). -
Geometric Integration Theory Contents
Steven G. Krantz Harold R. Parks Geometric Integration Theory Contents Preface v 1 Basics 1 1.1 Smooth Functions . 1 1.2Measures.............................. 6 1.2.1 Lebesgue Measure . 11 1.3Integration............................. 14 1.3.1 Measurable Functions . 14 1.3.2 The Integral . 17 1.3.3 Lebesgue Spaces . 23 1.3.4 Product Measures and the Fubini–Tonelli Theorem . 25 1.4 The Exterior Algebra . 27 1.5 The Hausdorff Distance and Steiner Symmetrization . 30 1.6 Borel and Suslin Sets . 41 2 Carath´eodory’s Construction and Lower-Dimensional Mea- sures 53 2.1 The Basic Definition . 53 2.1.1 Hausdorff Measure and Spherical Measure . 55 2.1.2 A Measure Based on Parallelepipeds . 57 2.1.3 Projections and Convexity . 57 2.1.4 Other Geometric Measures . 59 2.1.5 Summary . 61 2.2 The Densities of a Measure . 64 2.3 A One-Dimensional Example . 66 2.4 Carath´eodory’s Construction and Mappings . 67 2.5 The Concept of Hausdorff Dimension . 70 2.6 Some Cantor Set Examples . 73 i ii CONTENTS 2.6.1 Basic Examples . 73 2.6.2 Some Generalized Cantor Sets . 76 2.6.3 Cantor Sets in Higher Dimensions . 78 3 Invariant Measures and the Construction of Haar Measure 81 3.1 The Fundamental Theorem . 82 3.2 Haar Measure for the Orthogonal Group and the Grassmanian 90 3.2.1 Remarks on the Manifold Structure of G(N,M).... 94 4 Covering Theorems and the Differentiation of Integrals 97 4.1 Wiener’s Covering Lemma and its Variants . -
Notes on Partial Differential Equations John K. Hunter
Notes on Partial Differential Equations John K. Hunter Department of Mathematics, University of California at Davis Contents Chapter 1. Preliminaries 1 1.1. Euclidean space 1 1.2. Spaces of continuous functions 1 1.3. H¨olderspaces 2 1.4. Lp spaces 3 1.5. Compactness 6 1.6. Averages 7 1.7. Convolutions 7 1.8. Derivatives and multi-index notation 8 1.9. Mollifiers 10 1.10. Boundaries of open sets 12 1.11. Change of variables 16 1.12. Divergence theorem 16 Chapter 2. Laplace's equation 19 2.1. Mean value theorem 20 2.2. Derivative estimates and analyticity 23 2.3. Maximum principle 26 2.4. Harnack's inequality 31 2.5. Green's identities 32 2.6. Fundamental solution 33 2.7. The Newtonian potential 34 2.8. Singular integral operators 43 Chapter 3. Sobolev spaces 47 3.1. Weak derivatives 47 3.2. Examples 47 3.3. Distributions 50 3.4. Properties of weak derivatives 53 3.5. Sobolev spaces 56 3.6. Approximation of Sobolev functions 57 3.7. Sobolev embedding: p < n 57 3.8. Sobolev embedding: p > n 66 3.9. Boundary values of Sobolev functions 69 3.10. Compactness results 71 3.11. Sobolev functions on Ω ⊂ Rn 73 3.A. Lipschitz functions 75 3.B. Absolutely continuous functions 76 3.C. Functions of bounded variation 78 3.D. Borel measures on R 80 v vi CONTENTS 3.E. Radon measures on R 82 3.F. Lebesgue-Stieltjes measures 83 3.G. Integration 84 3.H. Summary 86 Chapter 4. -
Notes on Calculus II Integral Calculus Miguel A. Lerma
Notes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus. -
Alfred Tarski and a Watershed Meeting in Logic: Cornell, 1957 Solomon Feferman1
Alfred Tarski and a watershed meeting in logic: Cornell, 1957 Solomon Feferman1 For Jan Wolenski, on the occasion of his 60th birthday2 In the summer of 1957 at Cornell University the first of a cavalcade of large-scale meetings partially or completely devoted to logic took place--the five-week long Summer Institute for Symbolic Logic. That meeting turned out to be a watershed event in the development of logic: it was unique in bringing together for such an extended period researchers at every level in all parts of the subject, and the synergetic connections established there would thenceforth change the face of mathematical logic both qualitatively and quantitatively. Prior to the Cornell meeting there had been nothing remotely like it for logicians. Previously, with the growing importance in the twentieth century of their subject both in mathematics and philosophy, it had been natural for many of the broadly representative meetings of mathematicians and of philosophers to include lectures by logicians or even have special sections devoted to logic. Only with the establishment of the Association for Symbolic Logic in 1936 did logicians begin to meet regularly by themselves, but until the 1950s these occasions were usually relatively short in duration, never more than a day or two. Alfred Tarski was one of the principal organizers of the Cornell institute and of some of the major meetings to follow on its heels. Before the outbreak of World War II, outside of Poland Tarski had primarily been involved in several Unity of Science Congresses, including the first, in Paris in 1935, and the fifth, at Harvard in September, 1939. -
Nested Complexes and Their Polyhedral Realizations Andrei Zelevinsky
Pure and Applied Mathematics Quarterly Volume 2, Number 3 (Special Issue: In honor of Robert MacPherson, Part 1 of 3 ) 655|671, 2006 Nested Complexes and their Polyhedral Realizations Andrei Zelevinsky To Bob MacPherson on the occasion of his 60th birthday 1. Introduction This note which can be viewed as a complement to [9], presents a self-contained overview of basic properties of nested complexes and their two dual polyhedral realizations: as complete simplicial fans, and as simple polytopes. Most of the results are not new; our aim is to bring into focus a striking similarity between nested complexes and associated fans and polytopes on one side, and cluster complexes and generalized associahedra introduced and studied in [7, 2] on the other side. First a very brief history (more details and references can be found in [10, 9]). Nested complexes appeared in the work by De Concini - Procesi [3] in the context of subspace arrangements. More general complexes associated with arbitrary ¯nite graphs were introduced and studied in [1] and more recently in [10]; these papers also present a construction of associated simple convex polytopes (dubbed graph associahedra in [1], and De Concini - Procesi associahedra in [10]). An even more general setup developed by Feichtner - Yuzvinsky in [6] associates a nested complex and a simplicial fan to an arbitrary ¯nite atomic lattice. In the present note we follow [5] and [9] in adopting an intermediate level of generality, and studying the nested complexes associated to building sets (see De¯nition 2.1 below). Feichtner and Sturmfels in [5] show that the simplicial fan associated to a building set is the normal fan of a simple convex polytope, while Postnikov in [9] gives an elegant construction of this polytope as a Minkowski sum of simplices. -
Convergence of Functions: Equi-Semicontinuity
transactions of the american mathematical society Volume 276, Number 1, March 1983 CONVERGENCEOF FUNCTIONS: EQUI-SEMICONTINUITY by szymon dolecki, gabriella salinetti and roger j.-b. wets Abstract. We study the relationship between various types of convergence for extended real-valued functionals engendered by the associated convergence of their epigraphs; pointwise convergence being treated as a special case. A condition of equi-semicontinuity is introduced and shown to be necessary and sufficient to allow the passage from one type of convergence to another. A number of compactness criteria are obtained for families of semicontinuous functions; in the process we give a new derivation of the Arzelá-Ascoli Theorem. Given a space X, by Rx we denote the space of all functions defined on X and with values in R, the extended reals. We are interested in the relationship between various notions of convergence in Rx, in particular, but not exclusively, between pointwise convergence and that induced by the convergence of the epigraphs. We extend and refine the results of De Giorgi and Franzoni [1975] (collection of "equi-Lipschitzian" functions with respect to pseudonorms) and of Salinetti and Wets [1977] (sequences of convex functions on reflexive Banach spaces). The range of applicability of the results is substantially enlarged, in particular the removal of the convexity, reflexivity and the norm dependence assumptions is significant in many applications; for illustrative purposes an example is worked out further on. The work in this area was motivated by: the search for " valid" approximations to extremal statistical problems, variational inequalities and difficult optimization problems, cf. the above mentioned articles. -
Proofs-6-2.Pdf
Real Analysis Chapter 6. Differentiation and Integration 6.2. Differentiability of Monotone Functions: Lebesgue’s Theorem—Proofs of Theorems December 25, 2015 () Real Analysis December 25, 2015 1 / 18 Table of contents 1 The Vitali Covering Lemma 2 Lemma 6.3 3 Lebesgue Theorem 4 Corollary 6.4 () Real Analysis December 25, 2015 2 / 18 By the countable additivity of measure and monotonicity ∞ of measure, if {Ik }k=1 ⊆ F is a collection of disjoint intervals in F the ∞ X `(Ik ) ≤ m(O) < ∞. (3) k=1 The Vitali Covering Lemma The Vitali Covering Lemma The Vitali Covering Lemma. Let E be a set of finite outer measure and F a collection of closed, bounded intervals that covers E in the sense of Vitali. Then for each n ε > 0, there is a finite disjoint subcollection {Ik }k=1 of F for which " n # ∗ [ m E \ Ik < ε. (2) k=1 Proof. Since m∗(E) < ∞, there is an open set O containing E for which m(O) < ∞ (by the definition of outer measure). Because F is a Vitali covering of E, then every x ∈ E is in some interval of length less than ε > 0 (for arbitrary ε > 0). So WLOG we can suppose each interval in F is contained in O. () Real Analysis December 25, 2015 3 / 18 The Vitali Covering Lemma The Vitali Covering Lemma The Vitali Covering Lemma. Let E be a set of finite outer measure and F a collection of closed, bounded intervals that covers E in the sense of Vitali. Then for each n ε > 0, there is a finite disjoint subcollection {Ik }k=1 of F for which " n # ∗ [ m E \ Ik < ε. -
Measure, Integral and Probability
Marek Capinski´ and Ekkehard Kopp Measure, Integral and Probability Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest To our children; grandchildren: Piotr, Maciej, Jan, Anna; Luk asz Anna, Emily Preface The central concepts in this book are Lebesgue measure and the Lebesgue integral. Their role as standard fare in UK undergraduate mathematics courses is not wholly secure; yet they provide the principal model for the development of the abstract measure spaces which underpin modern probability theory, while the Lebesgue function spaces remain the main source of examples on which to test the methods of functional analysis and its many applications, such as Fourier analysis and the theory of partial differential equations. It follows that not only budding analysts have need of a clear understanding of the construction and properties of measures and integrals, but also that those who wish to contribute seriously to the applications of analytical methods in a wide variety of areas of mathematics, physics, electronics, engineering and, most recently, finance, need to study the underlying theory with some care. We have found remarkably few texts in the current literature which aim explicitly to provide for these needs, at a level accessible to current under- graduates. There are many good books on modern probability theory, and increasingly they recognize the need for a strong grounding in the tools we develop in this book, but all too often the treatment is either too advanced for an undergraduate audience or else somewhat perfunctory. We hope therefore that the current text will not be regarded as one which fills a much-needed gap in the literature! One fundamental decision in developing a treatment of integration is whether to begin with measures or integrals, i.e. -
The Axiom of Choice and Its Implications
THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial. -
Simply-Riemann-1588263529. Print
Simply Riemann Simply Riemann JEREMY GRAY SIMPLY CHARLY NEW YORK Copyright © 2020 by Jeremy Gray Cover Illustration by José Ramos Cover Design by Scarlett Rugers All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below. [email protected] ISBN: 978-1-943657-21-6 Brought to you by http://simplycharly.com Contents Praise for Simply Riemann vii Other Great Lives x Series Editor's Foreword xi Preface xii Introduction 1 1. Riemann's life and times 7 2. Geometry 41 3. Complex functions 64 4. Primes and the zeta function 87 5. Minimal surfaces 97 6. Real functions 108 7. And another thing . 124 8. Riemann's Legacy 126 References 143 Suggested Reading 150 About the Author 152 A Word from the Publisher 153 Praise for Simply Riemann “Jeremy Gray is one of the world’s leading historians of mathematics, and an accomplished author of popular science. In Simply Riemann he combines both talents to give us clear and accessible insights into the astonishing discoveries of Bernhard Riemann—a brilliant but enigmatic mathematician who laid the foundations for several major areas of today’s mathematics, and for Albert Einstein’s General Theory of Relativity.Readable, organized—and simple. Highly recommended.” —Ian Stewart, Emeritus Professor of Mathematics at Warwick University and author of Significant Figures “Very few mathematicians have exercised an influence on the later development of their science comparable to Riemann’s whose work reshaped whole fields and created new ones.