<<

TurkJMedSci 33(2003)347-355 ©TÜB‹TAK

PERSPECTIVES IN MEDICAL SCIENCES

PathophysiologicalSignificanceof

O¤uzKerimBAfiKURT DepartmentofPhysiology,FacultyofMedicine,AkdenizUniversity,Antalya-Turkey

Received:September16,2003

Abstract: Tissueisdeterminedbybothbloodvesselgeometryandtherheologicalpropertiesofblood.Bloodisanon- Newtonian,itsbeingdependentonflowconditions.Bloodandplasma,aswellastherheologicalpro perties ofbloodcells(e.g.,deformabilityandaggregationofredbloodcells),areinfluencedbydiseaseprocessesandextremephysio logical conditions.Theserheologicalparametersmayinturnaffectthebloodflowinvessels,andhencetissueperfusion.Unfortunatel yit isnotalwayspossibletodetermineifachangeinrheologicalparametersisthecauseortheresultofadiseaseprocess.The hemorheology-tissueperfusionrelationshipisfurthercomplicatedbythedistinctinvivobehaviorofblood.Besidesthespecia l hemodynamicmechanismsaffectingthecompositionofbloodinvariousregionsofthevascularsystem,autoregulationbasedon vascularcontrolmechanismsfurthercomplicatesthisrelationship.Hemorheologicalparametersmaybeespeciallyimportantfor adequatetissueperfusionifthevascularsystemisgeometricallychallenged.

KeyWords: Hemorheology,tissueperfusion,metabolicautoregulation,shearstress

Introduction resistance.Adequatebloodflowtoagiventissuerequires Itisaverybasicmedicalfactthatpropertissue/organ themaintenanceofasufficientpressuregradientacross functionstronglydependsonadequatebloodflow. thetissuethatisgeneratedbythe. Obviously,“adequacy”doesnotdenoteasteadystate Thevascularcomponentofflowresistanceis condition,buttheabilitytomatchthesupplywiththe determinedbythegeometryofthebloodvessels demandofagiventissue.Anydisturbanceofthisdelicate network.Thiscomponentisusuallycalledvascular balanceresultsinclinicalproblems.Higherlevelliving hindrance(1).Jean-MariePoiseuilledescribedthe organismsarewellequippedwithpowerfulcontrol vascularhindranceofagivenbloodvesselsegmentas mechanismstomaintainthisbalanceandtokeepthe beingdirectlyproportionaltothelengthofthesegment organismingoodhealth,accordingly. andinverselyproportionaltothefourthpowerofthe vesselradius(2),basedonhisexperimentalstudies.Flow resistanceisalsodirectlyproportionaltotheviscosityof Factorsaffectingbloodflow bloodflowinginthatsegment.Thissimplerelationshipis Bloodflowinthevascularsystemisdeterminedbythe knownsincethe19th century;however,underthestrong pressuredifference(i.e.perfusionpressure),hydraulic influenceofcellularpathologytheory,medicalscientists conductivityofthebloodvesselsandthefluidityofthe ignoredtheroleofbloodviscosityinflowthroughagiven blood.Thelast2factorscanbecombinedintoa vascularnetworkmainlyfor3reasons(3):1).Thefourth resistanceparameter(R),yieldingasimplerelationship powerfactorofthebloodvesselradiusdefinitely betweenperfusionpressure(∆P)andbloodflow(Q):∆P suppressedtheimportanceoftheviscosityfactorthatis =QxR.Inotherwords,bloodflowunderagiven representedbyapowerof1.2).Static,microscopic perfusionpressureisinverselyproportionaltohydraulic observationsofdead,fixedtissueshadlongbeentheonly

347 PathophysiologicalSignificanceofBloodRheology

basisofmedicaldiagnosis,andfunctionalparameters,like RBCs,whichconstitute99%ofcellularelements(6,7). bloodviscosity,havebeenignoredforalongtime.3). WBCsandplateletsdonotplayasignificantrolein Theviscosityfactorwasconsideredaconstant,rather determiningthefluidityofbloodunderbulkflow thanavariableinthefamousPoiseuilleequation. conditions,becauseoftheirsmallernumber,butshould Despitetheeffortsofseveraldistinguishedmedical beconsideredwhenstudyingmicrocirculation(10). scientists(e.g.,RobinFahraeus)(4,5),theimportanceof TwospecialfeaturesofRBCsthatunderliethenon- bloodrheology(i.e.theflowpropertiesofblood)wasnot Newtonianrheologicalbehaviorarecellulardeformability appreciatedduringthefirst60yearsofthe20thcentury. andaggregation(11-14).Deformability(i.e.theabilityof theentirecelltoreversiblyadoptanewshapeinresponse todeformingforces)isauniqueproperty(13)andpartly Bloodrheologyasadeterminantofbloodflow contributestothethinningofbloodunderhighshear Theroleofbloodrheologyasadeterminantofblood conditions(9,14)bypromotingtheorientationofRBCs flowandtissueperfusionreceivedconsiderableattention totheflowstreamlinestherebyreducingthefriction withthedevelopmentofhemorheologicaltheoryafter betweenthem(Figure1).Aggregationdenotesthe the1960s.Boththebasicscienceandclinicalaspectsof formationofreversibleclumpsofRBCsundersufficiently thisrelationshiphavebeeninvestigatedextensively, lowshearstresses(15-17).Thisbehaviortendsto togetherwiththeuniquerheologicalbehaviorofblood. increasetheparticlesizeunderlowshearconditionsand Therheology(i.e.flowbehavior)ofafluidcan increasethedistortionoftheflowstreamlines(Figure1), physicallybedescribedbyitsviscosity.Inlaminarfluid andhencefrictionalresistancebetweenthem(11). flowasdescribedbyNewton(6),viscosityistheratioof Therefore,theeffectofRBCaggregationistoincrease theforcethatmovesthefluidlayersorlaminae(shear bloodviscosityundersmallershearforces,contributing stress)tothevelocitygradientinthefluid(shearrate), tothenon-Newtonianbehavior.Adetaileddescriptionof representinginternalresistancebetweenthelaminae themechanismsrelatedtoRBCdeformabilityand (6,7).Suchafluidflowcanbemodeledasflowstream- aggregationcanbefoundintheliterature(18-21);this linesmovingonasteadysurfaceor,morerealistically,as topicisoutsidethescopeofthisreview. concentriccylindersmovinginthedirectionofflowina Followingtheabovediscussion,itcanbestatedthat cylindricaltube(8). anyalterationsintheabove-mentionedparameters(e.g., Bloodisa2-phaseliquid.Itcanbeconsideredasolid- ,plasmaviscosity,RBCdeformabilityand liquidsuspensionifthecellularelements(redbloodcells aggregation)mayresultinalterationsofbloodflow (RBG),whitebloodcells(WBCs)andplatelets)are resistanceandtissueperfusion.Unfortunately,the regardedassolidparticles.Itcanalsobeconsidereda liquid-liquidemulsionbasedonthefluiddrop-like 100 behaviorofRBCsundercertainconditions(i.e.underhigh shearforces)(9).Therefore,dependingontheflow conditions,bloodtissuecanberegardedasasuspension oranemulsion.Thistransitionisoneofthemainreasons forthespecialrheologicalbehaviorofblood. 10

Bloodisanon-Newtonian,shearthinningfluid(7);its Viscosity(mPa.s) viscosityisnotconstant,evenwithunchanged composition,andvariesastheflowconditionschange. Bloodbecomesthinner(ormorefluid)astheshearforces 1 0.1 1 10 100 thatgenerateflowincrease.Thisisareversiblechange Shearrate(s-1) andbloodviscosityincreasesasshearforcesgetsmaller. Figure1. Shearrate-viscositycurveofnormalblood.RBC Theviscosityofbloodunderagivenshearstressis deformabilityreducestheresistancebetweenflowstream determinedbyhematocritvalue,plasmaviscosity(asthe linesathighershearrates,whiletheresistanceisincreased duetoincreasedRBCaggregation(henceincreasedparticle suspendingphase)andtherheologicalpropertiesof size)atlowershearrates.

348 O.K.BAfiKURT

interactionbetweenbloodrheologyfactorsand RBCaggregationisdeterminedbybothplasmaand hemodynamicmechanismsarehighlycomplexandthe cellularfactors(17).Increasedplasmafibrinogen exactroleofbloodrheologyinphysiopathological concentrationisoneofthemaincausesofenhancedRBC processesisstilldebatable.However,thisuncertaintydid aggregation(16).Suchanalterationisacommon notpreventtheextensiveinvestigationof consequenceofacutephasereactionandaccompanies hemorheologicalparametersunderawidevarietyof mostinflammatoryprocessesyieldingenhancedRBC clinicalandexperimentalconditions. aggregation(30).Considerableevidencehasbeen accumulatedimplyingthatRBCsurfacepropertiesalso playsignificantroleintheaggregationprocess(17,31). Alterationsinbloodrheology Changesundertheinfluenceofmetabolicdisturbancesin Pathophysiology damagedtissues(e.g.,increasedproductionofoxidants) mayresultinalteredRBCaggregation(29). Hematocritvalueisadynamicparameterandmay varydependingonthefluidbalanceofthebody.Under variousphysiologicaland/orpathologicalconditions Clinicalconsiderations hematocritmayreachvalueshighenoughtoincrease Thepathophysiologicalconsiderationsaboveare bloodviscosityconsiderably(22).Plasmaviscosityisalso backedupbyahugenumberofclinicalobservationsthat sensitivetobothgeneralandlocalhomeostasis(23). canbeaccessedthroughspecificjournalsinthefield(e.g., RBCdeformabilityisdeterminedbythematerial Biorheology,ClinicalHemorheologyandMicrocirculation) properties,aswellasthemetabolicstatusofRBCs. andanumberoftextbooks(32,33).Mostofthese Variousgenetic,structuralalterationsinthecytoplasm observationsarebasedonthemeasurementof andmembraneleadtoalteredRBCdeformability hemorheologicalparametersinbloodsamplesoutsidethe (13,24).RBCdeformabilityalsodependsonintact vascularsystem(i.e.exvivo).Averybriefclassified metabolicpathwaysandanadequateATPsupplyto summaryofclinicalobservationsinimportantdisease supporttheiontransportsystems(25).Failureofthese categoriesispresentedbelow. systemswouldresultinincreasedintracellularsodium andcalciumconcentrations.Impairedsodiumexclusionis thecauseofalteredfluid-electrolytebalanceofthissimple Cardiovasculardiseases cellandisusuallyaccompaniedbyalterationsincellular Cardiovasculardiseasesareamongtheclinical volumeinmetabolicallydepletedRBCs.Anincreased conditionswithwellestablishedhemorheological cytosoliccalciumconcentrationhasbeenshowntobe consequences.Increasedbloodviscosity,impairedRBC relatedtoimpairedRBCdeformabilitybyaffectingthe deformabilityandincreasedRBCaggregationare RBCmembraneskeleton(26,27). reportedinavarietyofcardiovasculardiseases(32). Amongthese,peripheralvasculardiseasesarethemost Itshouldbenotedthatsuchametabolicdepletion widelyinvestigated(34).Ischemicdiseasesofvarious mightbetheresultofalocalstasisinanareaofimpaired organsareknowntobeassociatedwithhemorheological tissueperfusion.Adequatesuppliesofmetabolitestothe impairment(35,36).Itshouldbenotedthatinall RBCsarealsorequiredtoregenerateseveralco-factorsof vascularinsufficienciesandischemicdiseases, antioxidantmechanisms(e.g.,NADH,NADPH)andalack hemorheologicalalterationsmayresultfromthe ofthesefactorsmayshiftthebalancebetweenoxidant disturbanceoflocalhomeostasisasmentionedabove. stressandantioxidantdefensetoyieldincreasedoxidant Therefore,hemorheologicalalterationsincardiovascular damageinRBCs(28).Alternatively,increasedgeneration diseasescaneasilybeconsideredaresult(oranindicator) ofoxidantsinischemicorinflamedtissuesmaycontribute ofinsufficientcirculatoryfunction.Alternatively, tothisshift.Oxidantdamageisawellknowncauseof alterationsinhemorheologicalparametersmayaffect impaireddeformability(29).Otheralterationsinthe tissueperfusionandbemanifestedascirculatory micro-environmentofRBCs(e.g.,changeinpH, problems. osmolarity,)mayalsoaffectRBCs’ mechanicalproperties(13). isaninterestingexampleofclinical disorderscharacterizedbyhemorheologicalalterations.

349 PathophysiologicalSignificanceofBloodRheology

Hypertensionisacomplexpathohphysiologicalprocess deficiency)(49,50).Adetaileddiscussionofthe (37).Especiallytheadvancedformsofhypertensionare rheologicalalterationsinhematologicalproblemsis certainlyassociatedwithvasculardamageandthis outsidethescopeofthispaper. damageisclaimedtobethecauseofhemorheological alterations.However,impairedhemorheologycanalsobe expectedtobethecauseofincreasedbloodpressure,by Non-clinicalconditions contributingtoincreasedperipheralresistance(38). Notonlydiseaseprocesses,butcertainextreme RecentevidencesuggeststhatalteredRBCrheological physiologicalconditionsarealsocharacterizedbyaltered propertiesmightbetheunderlyingcause,atleastinsome hemorheology.Strenuousexercisehasbeen typesofhypertension(39). demonstratedtohavesignificanteffectsonblood rheologicalparameters(51,52).Theeffectofexhausting exerciseonRBCdeformabilitywasimmediate,witha mellitus partialrecoveryin15-30min.Therewasalate Diabetesisanotherimportantdiseaseprocessthatis componentoftheeffectofthisexhaustingexercise accompaniedbygeneralizedmicrocirculatory startingat60min;thislateeffectwascharacterizedby disturbances.Thereareanumberofstudiesdocumenting markedgranulocytosis,alteredRBCaggregationand increasedbloodandplasmaviscosity,enhancedRBC furtherimpairmentinRBCdeformability.Itisquite aggregationandalteredRBCdeformabilityindiabetes possiblethatthesehemorheologicalalterationsplayarole mellitus(40,41).Impaireddeformabilityof inexercise-relatedmortality(53).Alternatively,regular polymorphonuclearleukocyteswasalsoreportedin exercise(i.e.training)isknowntoincreaseRBC diabetesandthisalterationmayalsobeassociatedwith deformabilityanddecreasebloodviscosity,improvingthe tissueperfusionproblems(42). rheologicalcomponentofflowresistance.Additionally, recentevidencesuggeststhattrainingmayreducethe magnitudeofthehemorheologicalalterationafter Sepsissyndrome exhaustiveexercise(52,54),andthereforemayhavea Sepsissyndromerepresentsoneofthemostdramatic protectiveeffectagainsttheexpectedhemodynamic disturbancesofthegeneralhomeostasis;therefore,itis extra-load. notsurprisingtodetectimportanthemorheological alterationsinsepsis.Bothclinicalandexperimental studiesindicatedthatsepsisischaracterizedby The“chickenversusegg”story significantlyimpairedRBCdeformability(43-45)and Thepathophysiologicalandclinicalaspectsof increasedaggregation(46).SuchalterationsinRBCsmay hemorheologicalalterationssummarizedabovepointout wellcontributetothegeneralizedvascularproblems aspecialfeatureofbloodrheology:alterationsin encounteredinsepsissyndrome. hemorheologicalparametersmightbetheresultoflocal and/orgeneralizeddisturbancesinhomeostasis.From anotheraspect,hemorheologicalalterationsmightbe Hematologicaldiseases responsiblefortissueperfusionproblemsandconsequent Hematologicaldiseasesareexceptionsinthat functionaldeteriorations.Itisnotalwayseasyto hemorheologicalalterationscaneasilybeidentifiedasthe determinewhetherthehemorheologicalalterationisthe causeoftissueperfusionproblems.Sicklecelldiseaseis causeortheresultofapathophysiologicalprocess. themoststrikingexampleinwhichthedramaticclinical Thisuncertaintyabouttheexactnatureof manifestationscanbedirectlyrelatedtotheextreme hemorheologicalalterationdidnotkeepthemedical rheologicalchangesinRBCscontainingS scientistsfromstudyinghemorheologicalalterationsina (47,48).Otherexamplesofhematologicaldiseaseswith verywiderangeofclinicaldisordersandextreme hemorheologicalconsequencesincludevarious physiologicalconditions.Thedevelopmentoftechniques hemoglobinopathies(e.g.,thalasemia),membrane tomeasurehemorheologicalparameters(e.g.,bloodand deficiencies(e.g.,band4.2deficiency)and plasmaviscosity,andRBCdeformabilityandaggregation) enzymedeficiencies(e.g.,glucose-6-phosphate

350 O.K.BAfiKURT

encouragedclinicianstostudyhemorheological parametersinbloodsamplesobtainedfromtheir patients.Theyreportedstatisticallysignificant hemorheologicalalterationsinavarietyof pathophysiologicalconditions.

Pathophysiologicalsignificance:Hemorheological alterations Hemorheologicalalterationsinvariousclinical disorderswerestatisticallysignificant;however,the pathophysiologicalsignificanceofthesealterationsis debatable.Themainreasonforthisdiscrepancyisthe experimentallydetecteddifferencesbetweeninvivoand exvivo(i.e.outsideofthevascularnetwork)rheological Figure2. AccumulationofRBCsinthecentralflowzone.Sidebranches behaviorsofbloodtissue(55,56).Therefore,itisnot ofthisvesselarefedbytheplasma-richzoneandhavelower hematocritvaluescomparedtothemainvessel(Redrawn possibletoapplytheresultsofexvivomeasurements from3). directlytoinvivoflowconditions. Calculationsbasedonperfusionpressureandblood Thefluidzoneclosesttothevesselwallhasthe flowmeasurementsobtainedunderrealflowconditions greatestcontributiontoflowresistance,asthefrictional revealedthatbloodviscosityinvivoislowerthanthe energylossinthisregionismaximal(61,62).Frictional valuemeasuredexvivo,usingrotational(3). resistanceinthiszoneisdeterminedbythevelocityof Theunderlyingreasonsforthisdifferencecanbe fluidlayersandviscosityinthisregion.DecreasedRBC understoodbyexaminingthecompositionofbloodin concentrationandtherelateddropinviscosityresultin varioussegmentsofthevascularsystem.Careful decreasedlocalhydrodynamicresistanceandalsoaffect experimentalstudiesindicatedthatespeciallythecellular generalhydrodynamicresistanceinthewholevascular contentofbloodatdifferentlevelsofcirculatorysystem system.Alterationsineitherplasmacompositionorin variesoverawiderange(57-59).Thisvariationiseven cellularpropertiesmayinfluencethethicknessand truefordifferentpositionsatthecross-sectionofasingle compositionofthiszone.IncreasedRBCaggregationwas bloodvessel(60).Particlesthatcanadaptthemselvesto demonstratedtoincreasethethicknessofthisplasma- hydrodynamicforces(e.g.,deformableparticleslike richzonebyincreasingtheaxialmigrationofRBCs(60). RBCs)tendtomovetothecentralregionsoftubes,a Aseriesofexperimentalstudiesrevealedthatbloodflow more“silent”regionintermsofhydrodynamicforces resistancemaydecreaseduetoincreasedRBC (61,62).Thisphenomenoniscalledaxialmigrationandin aggregation,especiallyinlowshearratezones(63-65). bloodvesselsresultsinaplasma-richzonenearthevessel Itcanbeconcludedfromtheabovediscussionthatthe wall(Figure2),withrelativelylowerRBCcontent(i.e. composition,fluidityandcontributiontotheflow lowerhematocrit).Thesidebranchesofthesevesselsare resistanceofbloodstronglydependontheflow fedbythismarginalstreamwithlowerhematocrit conditionsandcannotbefullydescribedbasedonsimple (plasmaskimming),leadingtosignificantlylower rheologicalmeasurementsobtainedexvivo. hematocritvaluesinbloodvesselssmallerthan500µmin ThecontributionofRBCdeformabilitytoflow diameter(tissuehematocrit),comparedtosamples resistanceinvivoismoreclearlyunderstood.RBC obtainedfromlargebloodvessels.Ithasbeen deformabilitymayaffectflowresistanceatvariouslevels demonstratedthatmeanhematocritvaluesinthese ofthecirculatorysystemwithdifferenthemodynamic vesselsdirectlyperfusingtissuesmightbeaslowas40- conditions.Bloodviscosityunderbulkflowconditions 50%ofsystemichematocrit(58,59).Therefore,the (i.e.bloodflowinlargebloodvessels)ismainlyaffected compositionofbloodsamplesobtainedfromlargeblood bytheorientationofRBCstotheflowstreamlines, vesselsmaynotrepresentthebloodinallbloodvessels. reducingthefrictionalresistance(viscosity)between

351 PathophysiologicalSignificanceofBloodRheology

them(12,13).Thedegreeofthisorientationisadirect (e.g.,increasedbloodviscosity,impairedRBC functionofdeformability.Flowvelocitybecomessmaller deformability)canbecorrectedbycompensatorychanges asbloodmovestowardsthemicrocirculationandRBC invascularhindrance.Obviously,inordertocompensate aggregationdominatesindeterminingbloodfluidityand forahemorheologicalextra-load,thevascularnetwork flowresistance.However,asthebloodapproachesblood shouldbecapableofdecreasingthevascularhindrance vesselswithdiameterscomparablewiththesizeofthe enoughtocorrecttheimbalanceintroducedbyaltered cellularelements,thentheabilitytoadoptanewshape hemorheology.Inotherwords,thereshouldbeenough becomestheonlyimportantfactordeterminingthe vasodilatoryreservetomaintainsufficientbloodflow transitoftheseelementsthroughmicrocirculation(66). withthecontinuinghemorheologicalextra-load.Figure3 However,despitethisclearlogicbehindtheroleofRBC indicatesthatthedegreeofalterationinflowresistance deformabilityin,thereisnoconsensuson withgivenhemorheologicalalterations(i.e.impairmentin thedegreeofalterationindeformabilitythatmayresult RBCdeformability)stronglydependsonthevascular intissueperfusionproblems(67). controlmechanisms.Inanexperimentconductedusingan Thereisalsoaccumulatingevidenceforthesignificant isolated-perfusedrathindlimbpreparationitwas roleforWBCs’rheologicalpropertiesin demonstratedthatthechangeinflowresistancewas pathophysiologicalprocesses(68).Itiswellestablished aboutthreefoldthatofthecontrolinpreparationswith thatWBCs’mechanicalpropertieschangeextensively paralyzedsmoothmuscles(73).Basedonthis duringtheactivationprocessofthesecells(69,70).Ithas experiment,itcanbearguedthatthedegreeoftissue beendemonstratedthatWBCsmaysignificantlyaffect perfusionprobleminducedbyacertaindegreeof microvascularbloodflow,despitetheirrelativelysmall hemorheologicalalterationstronglydependsonthe numbers(68).Incontrast,WBCshavenoeffectonthe vasodilatoryreserve(74).Vasodilatoryreservecan rheologicalpropertiesofbloodstudiedexvivo. frequentlybefoundtobediminishedunderclinical conditionsandhemorheologicalalterationsmayinduce dramaticmanifestationsundersuchconditions. Pathophysiologicalsignificance:Normalversus Hemorheologicalparametersmayalsoaffectvascular geometricallychallengedvascularbed controlmechanismsbymodulatingthenitricoxide(NO) Vasculargeometryisthemostimportantdeterminant outputofendothelium.NOsynthesisinendothelialcellsis ofbloodflowinagivenvascularnetwork,asdescribedby controlledbyavarietyoffactorsincludingtheshear J.M.Poiseuillein19th century.Theimportanceofvascular forcesactingonthevesselwall(75).Theshearforces geometryisamplifiedbythefactthatbloodvessel diameterisaregulatedparameter(71).Itiswellknown 300 Control * thatthediameterofresistanceiscontrolledby ParalyzedSM powerfulregulatorymechanisms,ononehand 225 determiningtheperipheralresistanceinthe,andontheotherhandbloodflowtothe microcirculatorynetwork.Theadequacyof 150 microcirculatorybloodflowisthecontrolparameterof * thisregulatorymechanism. ChangeinPRU(%) 75 Vasculargeometryisalteredbychangingthevascular smoothmuscletone.Themostimportantdeterminantof 0 vascularsmoothmuscletoneisthemetabolicdemandof 0 5 10 15 20 theperfusedtissue(71,72).Anyimbalancebetweenthe ChangeinRBCDeformability(%) suppliedbloodflowandmetabolicdemandsofthetissue Figure3.Changeinflowresistance(PRU%)plottedagainstchangein resultsinalteredsmoothmuscletone,aimingat RBCdeformability(%)inducedbylowconcentrationof eliminatingtheimbalance.Therefore,undernormal, glutaraldehyde,inisolatedrathindlimbpreparations. -4 physiologicalconditionsanydisturbanceofthetissue Vascularsmoothmuscle(SM)wasparalyzedwith10 papaverin.Dataispresentedasmean±standarddeviation. perfusionresultingfromahemorheologicalalteration (n=4;*:Differencefromcontrol,P<0.05).

352 O.K.BAfiKURT

nearthevesselwallareinturndeterminedbytheblood vivobehaviorofblood.Thisdisagreementcanbe flowrateandtheviscosityoffluidinclosecontactwith explainedinpartbyhemodynamicmechanismssuchas theendothelialcells(76).Thecompositionandthe theaxialmigrationofRBC,plasmaskimmingandreduced viscosityofbloodinthemarginalregionoftheblood tissuehematocrit.However,thedetailedunderstanding vesselsareknowntobeinfluencedbytherheological oftheroleofvascularcontrolmechanismsandespecially propertiesofbloodandbloodcells(e.g.,RBC thevasodilatoryreserveisequallyimportantfroma aggregation).Ithasbeendemonstratedthatchronically pathophysiologicalpointofview.Hemorheological enhancedRBCaggregationresultsindownregulationof alterationscanbewelltoleratedbythesemechanisms,if NO-relatedcontrolmechanismsofskeletalmuscle thereisenoughvasodilatoryreserve.However,ifthe resistancearteriesinrats(77)). vascularsystemisgeometricallychallengedtissue perfusionproblemsmightbeclinicallymanifested.

Conclusion Theunderstandingofpathophysiologicalsignificance Correspondingauthor: ofbloodrheologicalalterationsindiseaseprocessesis O¤uzKerimBAfiKURT seriouslychallengedbyexperimentalobservationsthat DepartmentofPhysiology,FacultyofMedicine, demonstratediscrepanciesbetweentheexvivoandin AkdenizUniversity,Antalya-TURKEY

References 1. Schmid-SchönbeinH.Hemorheology.ComprehensiveHuman 12. ChienS.Biophysicalbehaviorofredcellsinsuspension.RedBlood Physiology(Eds.RGregerandUWindkorst)Springer-Verlag. Cell(Ed.DMSurgenor)Vol.3,AcademicPress.NewYork,1975, Berlin,1996,pp.1747-1792. pp.1031-1133. 2. CopleyAL.RobinFahraeus–Thescientistandtheperson.Clin 13. ChienS.Redcelldeformabilityanditsrelevancetobloodflow. Hemorheol9:395-433,1989. AnnRevPhysiol49:177-192,1987. 3. BaskurtOK,MeiselmanHJ.Bloodrheologyandhemodynamics. 14. WellsR,Schmid-SchönbeinH.Redcelldeformationandfluidityof SemThromHemostas29:435-450,2003. concentratedcellsuspensions.JApplPhysiol27:213-217,1969. 4. FahraeusR.Theinfluenceoftherouleauformationofthe 15. ChienS,SungLA.Physicochemicalbasisandclinicalimplications erythrocytesontherheologyoftheblood.ActaMedScand161: ofredcellaggregation.ClinHemorheol7:71-91,1987. 151-165,1958. 16. RamplingMW.Redcellaggregationandyieldstress.Clinical 5. FahraeusR.Thesuspensionstabilityoftheblood.PhysiolRev9: BloodRheology(Ed.GDOLowe)Vol1,CRCPress.BocaRaton, 241-274,1929. 1988,pp.45-64. 6. LoweGDO,BarbenelJC.Plasmaandbloodviscosity.ClinicalBlood 17. MeiselmanHJ.RedbloodcellroleinRBCaggregation:1963- Rheology(Ed.GDOLowe)Vol1,CRCPress.BocaRaton,1988, 1993andbeyond.ClinHemorheol13:575-592,1993. pp.11-44. 18. BrooksDE,GreigRG,JanzenJ.Mechanismsoferythrocyte 7. MerrillEW.Rheologyofblood.PhysiolRev49:863-888,1969. aggregation.In:ErythrocyteMechanicsandBloodFlow(Eds.GR Cokelet,HJMeiselman,DEBrooks)A.R.Liss.NewYork,1980, 8. CokeletGR.Rheologyandtubeflowofblood.Handbookof pp.119-140. Engineering(Eds.RSkalakandSChien)McGraw-HillBookCo. 19. ChienS,JanKM.Ultrastructuralbasisofthemechanismof NewYork,1987,pp.14.1-14.17. formation.MicrovascRes5:155-166,1973. 9. Schmid-SchönbeinH,WellsRE,GoldstoneJ.Fluiddrop-like 20. BaskurtOK,TugralE,NeuB,etal.Particleelectrophoresisasa behaviouroferythrocyte–disturbanceinpathologyinits tooltounderstandtheaggregationbehaviorofredbloodcells. quantification.Biorheology7:227-234,1971. Electrophoresis23:2103-2109,2002. 10. EppihimerMJ,LipowskyHH.Effectsofleukocyte- 21. NeuB,MeiselmanHJ.Depletion-mediatedredbloodcell pluggingontheresistanceofflowinthemicrovasculatureof aggregationinpolymersolutions.BiophysJ83:2482-2490, cremastermusclefornormalandactivatedleukocytes.Microvasc 2002. Res51:187-201,1996. 22. IsbisterJP.Thestresspolycythaemiasyndromesandtheir 11. BaskurtOK,MeiselmanHJ.Cellulardeterminantsoflow-shear haemorheologicalsignificance.ClinHemorheol15:159-179, bloodviscosity.Biorheology34:235-247,1997. 1987.

353 PathophysiologicalSignificanceofBloodRheology

23. RosensonRS,TangneyCC.Effectsoftourniquietapplicationon 41. McMillanDE.Hemorheologicalstudiesinthediabetescontroland plasmaviscositymeasurements.ClinHemorheolMicrocirc18: complicationstrial.ClinHemorheol13:147-154,1993. 191-194,1998. 42. PecsvaradyS,FisherTC,DarwinCH,etal.Decreased 24. MohandasN,EvansE.Mechanicalpropertiesoftheredcell polymorphonuclearleukocytedeformabilityinNIDDM.Diabetes membraneinrelationtomolecularstructureandgeneticdefects. Care17:57-63,1994. AnnuRevBiophysBiomolStruct23:787-818,1994. 43. MachiedoGW,PowellRJ,RushBF,etal.Theincidenceof 25. MohandasN,ShohetSB.Theroleofmembrane-associated decreasedredbloodcelldeformabilityinsepsisandthe enzymesinregulationoferythrocyteshapeanddeformability. associationwithfreeradicaldamageandmultiple-system ClinHaematol10:223-237,1981. organfailure.ArchSurg124:1386-1389,1989. 26. ClarkMR,MohandasN,Feo,C,etal.Separatemechanismsof 44. HinshawLB.Sepsis/septicshock:participationofthe deformabilitylossinATP-depletedandCa-loadederythrocytes. microcirculation.Anabbreviatedreview.CritCareMed24:1072- ClinInvest67:531-539,1981. 1078,1996. 45. BaflkurtOK,GelmontD,MeiselmanHJ.Redbloodcell 27. FriederichsE,MeiselmanHJ.Effectsofcalciumpermeabilitization deformabilityinsepsis.AmJRespirCritCareMed157:421- onRBCrheologicbehavior.Biorheology31:207-215,1994. 427,1998. 28. BaflkurtOK,YavuzerS.Somehematologicaleffectsofoxidants. 46. BaflkurtOK,TemizA,MeiselmanHJ.Redbloodcellaggregation Environmetaloxidants,(Eds.JONriaguandMSSimmons)John inexperimentalsepsis.JLabClinMed130:183-190,1997. WileyandSons,NewYork,1994,pp.405-423. 47. NashGB,JohnsonCS,MeiselmanHJ.Mechanicalpropertiesof 29. BaflkurtOK,TemizA,MeiselmanHJ.Effectofsuperoxideanions oxygenatedredbloodcellsinsicklecell(HbSS)disease.Blood63: onredbloodcellrheologicproperties.FreeRadBiolMed24: 73-82,1984. 102-110,1998. 48. StuartJ.Sicklecellanaemia–rheologyofthesteadystateand 30. RamplingMW.Haemorheologyandtheinflammatoryprocess. vaso-occlusivecrisis.ClinHemorheol12:797-804,1992. ClinHemorheolMicrocirc19:129-132,1998. 49. ChenS,EldorA,BarshteinG,etal.Enhancedaggregabilityofred 31. RamplingMW,MeiselmanHJ,NeuB,etal.Influenceofcell- bloodcellsof β-thalassemiamajorpatient.AmJPhysiol270: specificfactorsonredbloodcellaggregation:anopinionated H1951-H1956,1996. review.Biorheology,(Inpress). 50. CohenCM,DotimasE,KorsgrenC.Humanerythrocyte 32. ChienS,DormandyJ,ErnstE,etal.(Eds):Clinical membraneproteinband4.2(Pallidin).SeminHematol30:119- 137,1993. Hemorheology.MartinusNijhoffPub.Dordrecht,1987. 51. BrunJF,KhaledS,RaynaudE,etal.Thetriphasiceffectsof 33. LoweGDO(ed.).ClinicalBloodRheology,CRCPress,BocaRaton, exerciseonbloodrheology:whichrelevancetophysiologyand FL,1988. pathophysiology?ClinHemorheolMicrocirc19:89-104,1998. 34. LeDevehatC,BoisseauM,VimeuxM,etal.Hemorheological 52. Yalç›nÖ,Bor-KüçükatayM,fientürkÜK,etal.Effectsof factorsinthepathophysiologyofvenousdiseases.ClinHemorheol swimmingexerciseonredbloodcellrheologyintrainedand 9:861-870,1989. untrainedrats.JApplPhysiol88:2074-2080,2000. 35. BoisseauMR,DufourcqP,SeigneurM,etal.Changesincell 53. VilleneuvePJ,MorrisonHI,CraigCL,etal.Physicalactivity, behaviorduringischaemiccerebrovasculardiseases.Clin physicalfitnessandriskofdying.Epidemiology9:626-631, Hemorheol14:19-25,1994. 1998. 36. KesmarkyG,TothK,HabonL,etal.Hemorheologicalparameters 54. SenturkUK,GunduzF,KuruO,etal.Exercise-inducedoxidative incoronarydisease.ClinHemorheolMicrocirc18:245- stressaffectserythrocytesinsedentaryratsbutnotexercise 251,1998. trainedrats.JApplPhysiol91:1999-2004,2001 37. AjmaniRS.Hypertensionandhemorheology.ClinHemorheol 55. WhittakerSRF,WintonFR.Theapparentviscosityofbloodinthe Microcirc17:397-420,1997. isolatedhindlimbofthedoganditsvariationwithcorpuscular concentration.JPhysiolLondon78:339-368,1933. 38. LondonM.Theroleofbloodrheologyinregulatingblood 56. DjojosugitoAM,FolkowB,ObergB,etal.Acomparisonofblood pressure.ClinHemorheolMicrocirc17:93-106,1997. viscositymeasuredinvitroandinavascularbed.ActaPhysiol 39. Bor-KucukkatayM,YalcinO,GokalpO,etal.Redbloodcell Scand78:70-84,1970. rheologicalalterationsinhypertensioninducedbychronic 57. KlitzmanB,DulingBR.Microvascularhematocritandredcellflow inhibitionofnitricoxidesynthesisinrats.ClinHemorheol inrestingandcontractingstriatedmuscle.AmJPhysiol237: Microcirc22:267-275,2000. H481-H490,1979. 40. BarnesA,WillarsE.Diabetes.ClinicalHemorheology(Eds.S. 58. BrizelDM,KlitzmanB,CookM,etal.Acomparisonoftumorand Chien,J.Dormandy,E.ErnstandA.Matrai)MartinusNijhoff normaltissuemicrovascularandredcellfluxesina Pub,Dordrecht,1987,pp:275-309. ratwindowchambermodel.IntJRadOncolBiolPhys25:269- 276,1993.

354 O.K.BAfiKURT

59. BaskurtOK,EdremitliogluM,TemizA.Effectoferythrocyte 68. FirrellJC,LipowskyHH.Leukocytemarginationanddeformation deformabilityonmyocardialhematocritgradient.AmJPhysiol inmesentericvenulesofrat.AmJPhysiol256:H1667-1674, 37:H260-H264,1995. 1989. 60. BishopJJ,PopelAS,IntagliettaM,etal.Effectsoferythrocyte 69. ButtrumSM,NashGB,HattonR.Changesinneutrophilrheology aggregationandvenousnetworkgeometryonredbloodcellaxial afteracuteischemiaandreperfusionintherathindlimb.JLab migration.AmJPhysiol281:H939-H950,2001. ClinMed128:506-514,1996. 61. GoldsmithHL,CokeletG,GaehtgensP.RobinFahraeus:Evolution 70. ButtrumSM,DrostEM,MacNeeW,etal.Rheologicalresponseof ofhisconceptscardiovascularphysiology.AmJPhysiol257: neutrophilstodifferenttypesofstimulation.JApplPhysiol77: H1005-H1015,1989. 1801-1810,1994. 62. CokeletGR,GoldsmithHL.Decreasedhydrodynamicresistancein 71. DulingBR,HoganRD,LangilleBL,etal.Vasomotorcontrol: thetwo-phaseflowofbloodthroughsmallverticaltubesatlow functionalhyperemiaandbeyond.FedProc46:251-263,1987. flowrates,CircRes68:1-17,1991. 72. StainsbyWN.Localcontrolofregionalbloodflow.AnnuRev 63. CharansonneyO,MourenS,DufauxS,etal.Redbloodcell Physiol35:151-168,1973. aggregationandbloodviscosityinanisolatedheartpreparation. Biorheology30:75-84,1993. 73. BaskurtOK,YalcinO,MeiselmanHJ.Hemorheologyandvascular controlmechanisms.ClinHemorheolMicrocirc(Inpress). 64. BaskurtOK,Bor-KucukatayM,YalcinO.Theeffectofredaggregationonbloodflowresistance.Biorheology36:447- 74. BaskurtOK,LeviE,CaglayanS,etal.Theroleofhemorheologic 452,2000. factorsinthecoronarycirculation.ClinHemorheol11:121-127, 1991. 65. CabelM,MeiselmanHJ,PopelAS,etal.Contributionofredcell aggregationtovenousvascularresistanceinskeletalmuscle.Am 75. FlemingI,BusseR.Molecularmechanismsinvolvedinthe JPhysiol272:H1020-1032,1997. regulationoftheendothelialnitricoxidesynthase.AmJPhysiol 284:R1-R12,2003. 66. LipowskyHH,CramLE,JusticeW,etal.Effectoferythrocyte deformabilityoninvivoredcelltransittimeandhematocritand 76. MalekAM,AlperSL,IzumoS.Hemodynamicshearstressandits theircorrelationwithinvitrofilterability.MicrovascRes46:43- roleinatherosclerosis.JAMA282:2035-2042,1999. 64,1993. 77. BaskurtOK,YalcinO,OzdemS,etal.Modulationofendothelial 67. NashGB.Redcellmechanics:whatchangesareneededto nitricoxidesynthaseexpressionbyredbloodcellaggregation.Am adverselyaffectinvivocirculation.Biorheology28:231-239, JPhysiol(Inpress). 1991.

355