ARQUIPELAGO Life and Marine Sciences

Total Page:16

File Type:pdf, Size:1020Kb

ARQUIPELAGO Life and Marine Sciences ARQUIPELAGO Life and Marine Sciences SCOPE ARQUIPELAGO - Life and Marine Sciences, publishes annually original scientific articles, short communications and reviews on the terrestrial and marine environment of Atlantic oceanic islands and seamounts. PUBLISHER University of the Azores Rua da Mãe de Deus, 13A PT – 9501-801 Ponta Delgada, Azores, Portugal. EDITOR Helen Rost Martins Phone: + 351 292 200 400 / 428 - Fax: +351 292 200 411 E-mail: [email protected] GUEST EDITOR FOR SUPPLEMENT 10 Odd Aksel Bergstad E-mail: [email protected] INTERNET RESOURCES http://www.arquipelago.info Journal information, instructions to authors; free access to all papers. FINANCIAL SUPPORT The Census of Marine Life project MAR-ECO, 2001-2010 EDITORIAL SECRETARIAT Helen R. Martins, Ruth Higgins, José Gomes Pereira, Paula Lourinho, Emmanuel Arand. EDITORIAL COMMITTEE Paulo A.V. Borges, Angra do Heroísmo; José M.N. Azevedo, Ponta Delgada; João M. Gonçalves, Horta. ADVISORY BOARD Miguel A. Alcaraz, Barcelona, Spain; Alan B. Bolten, Florida, USA; António B. de Sousa, Lisboa, Portugal; Richard D.M. Nash, Bergen, Norway; Erik Sjögren, Uppsala, Sweden; Charles H.J.M. Fransen, Leiden, Netherlands; George R. Sedberry, Georgia, USA; Hanno Schäfer, Munich, Germany; Tony Pitcher, Vancouver, Canada; João Canning Clode, Funchal, Portugal; Louise Allcock, Ireland. Indexed in: Aquatic Sciences and Fisheries Abstracts (ASFA), BIOSIS Previews, Zoological Record, Directory of Open Access Journals (DOAJ), Web of Science. Cover design: Emmanuel Arand. Photo: Anoplogaster cornuta – David Shale. Fishes of the Northern Mid-Atlantic Ridge collected during the MAR-ECO cruise in June-July 2004 An Annotated Checklist Filipe Porteiro, Tracey Sutton, Ingvar Byrkjedal, Alexei Orlov, Mikko Heino, Gui Menezes & Odd Aksel Bergstad Contents Abstract ………………………………………………………………………………. 1 Introduction .................................................................................................................... 2 Material and Methods .................................................................................................... 4 Checklist of Fishes from the Northern Mid-Atlantic Ridge ........................................ 10 Chondrichthyes ............................................................................................................ 10 Chimaeriformes ....................................................................................................... 10 Chimaeridae ......................................................................................................... 10 Rhinochimaeridae ................................................................................................ 11 Carcharhiniformes ................................................................................................... 11 Pseudotriakidae .................................................................................................... 11 Pentanchidae ........................................................................................................ 11 Carcharhinidae ..................................................................................................... 12 Squaliformes ............................................................................................................ 13 Centrophoridae ..................................................................................................... 13 Somniosidae ......................................................................................................... 13 Etmopteridae ........................................................................................................ 15 Rajiformes ................................................................................................................ 15 Rajidae ................................................................................................................. 15 Arhynchobatidae .................................................................................................. 16 Actinopterygii .............................................................................................................. 17 Notacanthiformes ..................................................................................................... 17 Halosauridae ........................................................................................................ 17 Notacanthidae ...................................................................................................... 17 Anguilliformes ......................................................................................................... 18 Synaphobranchidae .............................................................................................. 18 Derichthyidae ....................................................................................................... 19 Nemichthyidae ..................................................................................................... 20 Serrivomeridae ..................................................................................................... 21 Saccopharyngiformes ............................................................................................... 22 Eurypharyngidae .................................................................................................. 22 Saccopharyngidae ................................................................................................ 22 Osmeriformes ........................................................................................................... 23 Bathylagidae ........................................................................................................ 23 Microstomatidae .................................................................................................. 24 Opisthoproctidae .................................................................................................. 25 Alepocephalidae ................................................................................................... 26 Leptochilithyidae ................................................................................................. 33 Platytroctidae ....................................................................................................... 33 Stomiiformes ............................................................................................................ 36 i Checklist of Fishes from the Northern Mid-Atlantic Ridge Gonostomatidae .................................................................................................... 36 Phosichthyidae ...................................................................................................... 39 Sternoptychidae .................................................................................................... 40 Stomiidae .............................................................................................................. 43 Aulopiformes ............................................................................................................ 50 Scopelarchidae ...................................................................................................... 50 Notosudidae .......................................................................................................... 51 Anotopteridae ....................................................................................................... 52 Paralepididae ........................................................................................................ 52 Evermannellidae ................................................................................................... 54 Alepisauridae ........................................................................................................ 54 Omosudidae .......................................................................................................... 55 Bathysauridae ....................................................................................................... 55 Ipnopidae .............................................................................................................. 56 Myctophiformes ....................................................................................................... 57 Myctophidae ......................................................................................................... 57 Ophidiiformes ........................................................................................................... 70 Ophidiidae ............................................................................................................ 70 Bythitidae ............................................................................................................. 72 Aphyonidae ........................................................................................................... 72 Gadiformes ............................................................................................................... 72 Macrouridae .......................................................................................................... 72 Merluccidae .......................................................................................................... 78 Moridae ................................................................................................................. 78 Melanonidae ......................................................................................................... 80 Lotidae .................................................................................................................
Recommended publications
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • IATTC-94-01 the Tuna Fishery, Stocks, and Ecosystem in the Eastern
    INTER-AMERICAN TROPICAL TUNA COMMISSION 94TH MEETING Bilbao, Spain 22-26 July 2019 DOCUMENT IATTC-94-01 REPORT ON THE TUNA FISHERY, STOCKS, AND ECOSYSTEM IN THE EASTERN PACIFIC OCEAN IN 2018 A. The fishery for tunas and billfishes in the eastern Pacific Ocean ....................................................... 3 B. Yellowfin tuna ................................................................................................................................... 50 C. Skipjack tuna ..................................................................................................................................... 58 D. Bigeye tuna ........................................................................................................................................ 64 E. Pacific bluefin tuna ............................................................................................................................ 72 F. Albacore tuna .................................................................................................................................... 76 G. Swordfish ........................................................................................................................................... 82 H. Blue marlin ........................................................................................................................................ 85 I. Striped marlin .................................................................................................................................... 86 J. Sailfish
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Marine Fishes of the Azores: an Annotated Checklist and Bibliography
    MARINE FISHES OF THE AZORES: AN ANNOTATED CHECKLIST AND BIBLIOGRAPHY. RICARDO SERRÃO SANTOS, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS SANTOS, RICARDO SERRÃO, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS 1997. Marine fishes of the Azores: An annotated checklist and bibliography. Arquipélago. Life and Marine Sciences Supplement 1: xxiii + 242pp. Ponta Delgada. ISSN 0873-4704. ISBN 972-9340-92-7. A list of the marine fishes of the Azores is presented. The list is based on a review of the literature combined with an examination of selected specimens available from collections of Azorean fishes deposited in museums, including the collection of fish at the Department of Oceanography and Fisheries of the University of the Azores (Horta). Personal information collected over several years is also incorporated. The geographic area considered is the Economic Exclusive Zone of the Azores. The list is organised in Classes, Orders and Families according to Nelson (1994). The scientific names are, for the most part, those used in Fishes of the North-eastern Atlantic and the Mediterranean (FNAM) (Whitehead et al. 1989), and they are organised in alphabetical order within the families. Clofnam numbers (see Hureau & Monod 1979) are included for reference. Information is given if the species is not cited for the Azores in FNAM. Whenever available, vernacular names are presented, both in Portuguese (Azorean names) and in English. Synonyms, misspellings and misidentifications found in the literature in reference to the occurrence of species in the Azores are also quoted. The 460 species listed, belong to 142 families; 12 species are cited for the first time for the Azores.
    [Show full text]
  • Recycled Fish Sculpture (.PDF)
    Recycled Fish Sculpture Name:__________ Fish: are a paraphyletic group of organisms that consist of all gill-bearing aquatic vertebrate animals that lack limbs with digits. At 32,000 species, fish exhibit greater species diversity than any other group of vertebrates. Sculpture: is three-dimensional artwork created by shaping or combining hard materials—typically stone such as marble—or metal, glass, or wood. Softer ("plastic") materials can also be used, such as clay, textiles, plastics, polymers and softer metals. They may be assembled such as by welding or gluing or by firing, molded or cast. Researched Photo Source: Alaskan Rainbow STEP ONE: CHOOSE one fish from the attached Fish Names list. Trout STEP TWO: RESEARCH on-line and complete the attached K/U Fish Research Sheet. STEP THREE: DRAW 3 conceptual sketches with colour pencil crayons of possible visual images that represent your researched fish. STEP FOUR: Once your fish designs are approved by the teacher, DRAW a representational outline of your fish on the 18 x24 and then add VALUE and COLOUR . CONSIDER: Individual shapes and forms for the various parts you will cut out of recycled pop aluminum cans (such as individual scales, gills, fins etc.) STEP FIVE: CUT OUT using scissors the various individual sections of your chosen fish from recycled pop aluminum cans. OVERLAY them on top of your 18 x 24 Representational Outline 18 x 24 Drawing representational drawing to judge the shape and size of each piece. STEP SIX: Once you have cut out all your shapes and forms, GLUE the various pieces together with a glue gun.
    [Show full text]
  • Effects of 16/0 Circle Hooks on Pelagic Fish Catches in Three South Pacific Albacore Longline Fisheries
    BULLETIN OF MARINE SCIENCE. 88(3):485–497. 2012 http://dx.doi.org/10.5343/bms.2011.1060 EFFECTS OF 16/0 CIRCLE HOOKS ON PELAGIC FISH CATCHES IN THRee SOUTH PACIFIC ALBACORE LONGLINE FISHERIES Daniel Curran and Steve Beverly ABSTRACT The present study tested the effects of using large 16/0 circle hooks on catch rates in three pelagic longline fisheries in the South Pacific Ocean. Large (16/0) circle hooks were tested against a variety of smaller hooks already in use by longline vessels in American Samoa, Cook Islands, and New Caledonia. The majority of these fleets use a mix of hook sizes, including circle hooks that are smaller than a 16/0 circle hook. Vessels alternated hooks throughout every set, maintaining a 1:1 ratio of 16/0 circle hooks to their existing hooks. Information on catch by hook size, fish lengths, and condition at gear retrieval was collected. In total, 4912 fishes of 33 species were observed on 145,982 hooks from 67 sets. In the Cook Islands fishery, there was no significant difference in catch by hook type for two main target species, but there was an increase in catchability for swordfish, Xiphias gladius (Linnaeus, 1758). In the New Caledonia fishery, there was no significant difference in catch by hook size for any species. In the American Samoa fishery, 16/0 circle hooks did not significantly affect the catch of albacore, Thunnus alalunga (Bonnaterre, 1788), but did significantly reduce the catch of skipjack tuna, Katsuwonus pelamis (Linnaeus, 1758), dolphinfish, Coryphaena hippurus (Linnaeus, 1758), and wahoo, Acanthocybium solandri (Cuvier, 1832).
    [Show full text]
  • Marine Fishes from Galicia (NW Spain): an Updated Checklist
    1 2 Marine fishes from Galicia (NW Spain): an updated checklist 3 4 5 RAFAEL BAÑON1, DAVID VILLEGAS-RÍOS2, ALBERTO SERRANO3, 6 GONZALO MUCIENTES2,4 & JUAN CARLOS ARRONTE3 7 8 9 10 1 Servizo de Planificación, Dirección Xeral de Recursos Mariños, Consellería de Pesca 11 e Asuntos Marítimos, Rúa do Valiño 63-65, 15703 Santiago de Compostela, Spain. E- 12 mail: [email protected] 13 2 CSIC. Instituto de Investigaciones Marinas. Eduardo Cabello 6, 36208 Vigo 14 (Pontevedra), Spain. E-mail: [email protected] (D. V-R); [email protected] 15 (G.M.). 16 3 Instituto Español de Oceanografía, C.O. de Santander, Santander, Spain. E-mail: 17 [email protected] (A.S); [email protected] (J.-C. A). 18 4Centro Tecnológico del Mar, CETMAR. Eduardo Cabello s.n., 36208. Vigo 19 (Pontevedra), Spain. 20 21 Abstract 22 23 An annotated checklist of the marine fishes from Galician waters is presented. The list 24 is based on historical literature records and new revisions. The ichthyofauna list is 25 composed by 397 species very diversified in 2 superclass, 3 class, 35 orders, 139 1 1 families and 288 genus. The order Perciformes is the most diverse one with 37 families, 2 91 genus and 135 species. Gobiidae (19 species) and Sparidae (19 species) are the 3 richest families. Biogeographically, the Lusitanian group includes 203 species (51.1%), 4 followed by 149 species of the Atlantic (37.5%), then 28 of the Boreal (7.1%), and 17 5 of the African (4.3%) groups. We have recognized 41 new records, and 3 other records 6 have been identified as doubtful.
    [Show full text]
  • Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
    Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E.
    [Show full text]
  • The Exceptional Diversity of Visual Adaptations in Deep-Sea Teleost Fishes
    Seminars in Cell and Developmental Biology xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Seminars in Cell & Developmental Biology journal homepage: www.elsevier.com/locate/semcdb Review The exceptional diversity of visual adaptations in deep-sea teleost fishes Fanny de Busserolles*, Lily Fogg, Fabio Cortesi, Justin Marshall Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia ARTICLE INFO ABSTRACT Keywords: The deep-sea is the largest and one of the dimmest habitats on earth. In this extreme environment, every photon Deep-sea teleost counts and may make the difference between life and death for its inhabitants. Two sources of light are present Dim-light vision in the deep-sea; downwelling light, that becomes dimmer and spectrally narrower with increasing depth until Ocular adaptation completely disappearing at around 1000 m, and bioluminescence, the light emitted by animals themselves. Retina Despite these relatively dark and inhospitable conditions, many teleost fish have made the deep-sea their home, Opsin relying heavily on vision to survive. Their visual systems have had to adapt, sometimes in astonishing and Bioluminescence bizarre ways. This review examines some aspects of the visual system of deep-sea teleosts and highlights the exceptional diversity in both optical and retinal specialisations. We also reveal how widespread several of these adaptations are across the deep-sea teleost phylogeny. Finally, the significance of some recent findings as well as the surprising diversity in visual adaptations is discussed. 1. Introduction or mate detection, to communicate, camouflage, or for navigation, in- cluding to stay within a particular depth range [4,5].
    [Show full text]
  • Taxonomy and Ecology of the Deep-Pelagic Fish Family Melamphaidae, with Emphasis on Interactions with a Mid- Ocean Ridge System
    TAXONOMY AND ECOLOGY OF THE DEEP-PELAGIC FISH FAMILY MELAMPHAIDAE, WITH EMPHASIS ON INTERACTIONS WITH A MID- OCEAN RIDGE SYSTEM by Kyle Allen Bartow A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL December 2010 Copyright by Kyle Bartow 2010 ii ACKNOWLEDGEMENTS The research in this dissertation is due to funding from Tracey Sutton from the U.S. National Science Foundation Ocean Sciences Division – Biological Oceanography Program (OCE 0623568). Funding for travel and tuition were received for various parts of this project from Florida Atlantic University and Virginia Institute of Marine Science. I am grateful to the crew of the RV G.O. Sars, MAR-ECO and the staff of the Bergen Museum for the collection and curation of samples. I would also like to thank the U.S. National Museum of Natural History - Division of Fishes for allowing me into their enormous collection of melamphaid fishes and being so flexible and accommodating during the largest blizzard I've ever been in. The final entity that I would like to thank is MAR-ECO, through whose association I have been afforded many of these opportunities. I would like to thank Tracey Sutton for initially believing in me and my interest in deep-sea fish and research. Tracey not only offered me a place to fulfill my goals, but offered much support and encouragement during many of my trials and tribulations. Thanks are also due to the members of my advisory committee: Edie Widder, Jon Moore, C.
    [Show full text]
  • Catch Rates with Weak Hooks
    BULLETIN OF MARINE SCIENCE. 88(3):425–447. 2012 http://dx.doi.org/10.5343/bms.2011.1052 CATCH RATES WITH VARIABLE STRENGTH CIRCLE HOOKS IN THE HAWAIi-bASED TUNA LONGLINE FISHERY Keith A Bigelow, David W Kerstetter, Matthew G Dancho, and Jamie A Marchetti ABSTRACT The Hawaii-based deep-set longline fleet targets bigeye tuna Thunnus[ obesus (Lowe, 1839)] and infrequently takes false killer whales [FKW, Pseudorca crassidens (Owen, 1846)] as bycatch. From 2004 to 2008 with 20%–26% observer coverage, nine mortalities of and serious injuries to FKW were documented in the deep-set fishery in the Hawaii EEZ, yielding a mean take estimate of 7.3 animals yr−1. Weak hook technology can utilize the size disparity between target and other species to promote the release of larger non-target species. Four vessels tested the catch efficacy and size selectivity of 15/0 “strong” circle hooks (4.5 mm wire diameter) that straighten at 138 kg of pull in comparison with 15/0 “weak” (4.0 mm) that straighten at 93 kg of pull. Vessels alternated hook types throughout the longline gear and maintained a 1:1 ratio of strong and weak hooks. Observers monitored a total of 127 sets of 302,738 hooks, and randomization tests were applied to test for significant differences in catch for 22 species. There were no significant catch differences for bigeye tuna; however, there may be limitations to these inferences because trials were not conducted during spring when larger bigeye tuna are available to the fishery. There were no significant differences in mean length of 15 species.
    [Show full text]
  • Vertical Structure, Biomass and Topographic Association of Deep-Pelagic fishes in Relation to a Mid-Ocean Ridge System$
    ARTICLE IN PRESS Deep-Sea Research II 55 (2008) 161–184 www.elsevier.com/locate/dsr2 Vertical structure, biomass and topographic association of deep-pelagic fishes in relation to a mid-ocean ridge system$ T.T. Suttona,Ã, F.M. Porteirob, M. Heinoc,d,e, I. Byrkjedalf, G. Langhellef, C.I.H. Andersong, J. Horneg, H. Søilandc, T. Falkenhaugh, O.R. Godøc, O.A. Bergstadh aHarbor Branch Oceanographic Institution, 5600 US 1 North, Fort Pierce, FL 34946, USA bDOP, University of the Azores, Horta, Faial, Azores, Portugal cInstitute of Marine Research, P.O. Box 1870, Nordnes 5817, Bergen, Norway dDepartment of Biology, University of Bergen, P.O. Box 7800, N5020 Bergen, Norway eInternational Institute for Applied Systems Analysis, A2361 Laxenburg, Austria fBergen Museum, University of Bergen, Muse´plass 3, N-5007 Bergen, Norway gSchool of Aquatic and Fishery Sciences, University of Washington, P.O. Box 355020, Seattle, WA 98195, USA hInstitute of Marine Research, Flodevigen Marine Research Station, 4817 His, Norway Accepted 15 September 2007 Available online 11 December 2007 Abstract The assemblage structure and vertical distribution of deep-pelagic fishes relative to a mid-ocean ridge system are described from an acoustic and discrete-depth trawling survey conducted as part of the international Census of Marine Life field project MAR-ECO /http://www.mar-eco.noS. The 36-station, zig-zag survey along the northern Mid-Atlantic Ridge (MAR; Iceland to the Azores) covered the full depth range (0 to 43000 m), from the surface to near the bottom, using a combination of gear types to gain a more comprehensive understanding of the pelagic fauna.
    [Show full text]