Mortar Methods for Computational Contact Mechanics and General Interface Problems

Total Page:16

File Type:pdf, Size:1020Kb

Mortar Methods for Computational Contact Mechanics and General Interface Problems TECHNISCHE UNIVERSITAT¨ MUNCHEN¨ Lehrstuhl fur¨ Numerische Mechanik Mortar Methods for Computational Contact Mechanics and General Interface Problems Alexander Popp Vollstandiger¨ Abdruck der von der Fakultat¨ fur¨ Maschinenwesen der Technischen Universitat¨ Munchen¨ zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Klaus Drechsler Prufer¨ der Dissertation: 1. Univ.-Prof. Dr.-Ing. Wolfgang A. Wall 2. Univ.-Prof. Dr.-Ing. Michael W. Gee 3. Prof. Tod A. Laursen, Ph.D. Khalifa University, Abu Dhabi / UAE Die Dissertation wurde am 28. Juni 2012 bei der Technischen Universitat¨ Munchen¨ eingereicht und durch die Fakultat¨ fur¨ Maschinenwesen am 17. September 2012 angenommen. Abstract There exists a broad range of applications ranging from machine parts and tribology to crash- worthiness assessment and biomedical engineering, which all demand very general and powerful simulation tools for computational contact mechanics. Contact interaction of deformable bodies and its associated effects, for example frictional sliding, introduce significant additional com- plexities into the typical numerical modeling procedures of solid mechanics. This is mainly due to the inherent nonlinearity and lack of smoothness of the underlying physical principles. Sev- eral challenges have to be met on the way towards a truly general purpose simulation tool for computational contact mechanics, with the two most important aspects being given by robust space and time discretization as well as accurate and efficient constraint enforcement. In this thesis, the applicability of mortar finite element methods for problems of computational contact mechanics is explored. In particular, a novel mortar approach for contact interaction in the fully nonlinear realm (i.e. including finite deformations and nonlinear material behav- ior) is presented, which draws its superior effectiveness from a sound mathematical foundation based on findings in the fields of domain decomposition and non-conforming discretization. Ad- vantageous properties of mortar finite element methods include numerical stability with easily constructible discrete Lagrange multiplier spaces and preservation of the optimal spatial conver- gence rates of conforming discretizations, though with the added benefit of being able to deal with arbitrary non-matching interface meshes. Within the present work, mortar methods are first investigated for mesh tying in nonlinear solid mechanics before considering the actual unilateral contact case. In this regard, an emphasis is put on the so-called dual Lagrange multiplier approach, where the discrete coupling variables are de- fined based on a biorthogonality relationship with the primary unknowns (i.e. displacements). As compared with standard Lagrange multiplier techniques, a localization of the interface coupling conditions is achieved, and thus the dual Lagrange multiplier approach significantly facilitates the resulting algorithms without impinging upon the optimality of mortar methods. The compre- hensive framework presented here is the first one including feasible dual Lagrange multipliers for all types of first-order and second-order mortar finite elements. The main contribution of this thesis, however, lies in the consistent extension of a mortar method with dual Lagrange multiplier interpolation to nonlinear unilateral contact scenarios. The first fully consistent linearization of the dual mortar approach in the context of implicit time integration is presented, from which very efficient nonlinear solution methods can be derived. Moreover, the inequality nature of contact constraints is accommodated with an enhancement of so-called primal-dual active set strategies or semi-smooth Newton methods, thus combining the search for the active contact constraints and all other sources of nonlinearities within one single iteration scheme. As a result, the accuracy of Lagrange multiplier methods and the robustness of mortar-based discretization are paired with an arguably unrivaled numerical efficiency drawn from the dual Lagrange multiplier concept and tailored nonlinear solution methods. A special emphasis is also put on creating a flexible simulation framework, which allows for the straight- forward incorporation of closely related physical effects such as frictional sliding, abrasive wear and adhesion. Furthermore, all devised algorithms are designed to meet the requirements of high performance computing systems with regard to parallel efficiency and scalability. Finally, the present work demonstrates that dual mortar methods also provide a convenient framework for many other single-field and multi-field problems of computational engineering i beyond solid and contact mechanics. Exemplarily, mortar finite element discretization in com- putational fluid dynamics, mortar-based interface treatment in fluid-structure interaction and a coupled fluid-structure-contact interaction approach are outlined. Altogether, the results obtained give rise to the hope that the numerical methods and algorithms developed in this thesis will not only prove helpful for the investigation of highly nonlinear contact phenomena, but also that they may lay the foundation for a general purpose analysis tool providing all capabilities of non-conforming discretization and interface coupling for complex multiphysics simulations. ii Zusammenfassung Es existiert eine große Bandbreite an Anwendungen, angefangen bei Maschinenelementen und tribologischen Systemen bis hin zur Beurteilung von Crashsicherheit oder biomedizinischen Fragestellungen, die allesamt sehr allgemeingultige¨ und leistungsfahige¨ Simulationswerkzeuge aus dem Bereich der numerischen Kontaktmechanik benotigen.¨ Kontaktvorgange¨ deformierbarer Korper¨ und weitere eng damit verknupfte¨ Effekte, wie beispielsweise das reibungsbehaftete Gleiten, bedeuten ein erhebliches Maß an zusatzlicher¨ Komplexitat¨ fur¨ die typischerweise zum Einsatz kommenden numerischen Modellierungsverfahren der Strukturmechanik. Der Haupt- grund hierfur¨ ist die inharente¨ Nichtlinearitat¨ und mangelnde Glattheit der zugrundeliegenden physikalischen Wirkprinzipien. Zur Entwicklung eines wirklich allgemeingultigen¨ Simulations- werkzeugs fur¨ die numerische Kontaktmechanik mussen¨ daher eine ganze Reihe von Heraus- forderungen bewaltigt¨ werden, wobei die beiden wichtigsten Aspekte in der robusten raumlichen¨ und zeitlichen Diskretisierung sowie in der prazisen¨ und effizienten Einbringung von Nebenbe- dingungen zu sehen sind. Im Rahmen der vorliegenden Arbeit wird die Anwendbarkeit von Mortar-basierten Finite- Elemente-Methoden fur¨ Problemstellungen aus der numerischen Kontaktmechanik erforscht. Insbesondere wird ein neuartiger Mortar-Ansatz fur¨ vollstandig¨ nichtlineare Kontaktvorgange¨ (d.h. unter Berucksichtigung¨ großer Deformationen und nichtlinearen Materialverhaltens) vor- gestellt, der seine Leistungsfahigkeit¨ aus einem tragfahigen¨ mathematischen Fundament mit Erkenntnissen aus den Bereichen der Gebietszerlegungsmethoden sowie der nicht-konformen Diskretisierungsverfahren bezieht. Die vorteilhaften Eigenschaften von Mortar-basierten Finite- Elemente-Methoden umfassen deren numerische Stabilitat¨ fur¨ einfach zu definierende diskrete Lagrange-Multiplikator-Raume¨ und die Erhaltung der optimalen raumlichen¨ Konvergenzraten von konformen Diskretisierungsverfahren. Zusatzlich¨ wird jedoch auch der Umgang mit be- liebigen nicht-passenden Interface-Netzen ermoglicht.¨ Mortar-Methoden werden hier zunachst¨ zur Netzkopplung (Mesh Tying) in der nichtlinearen Strukturmechanik untersucht, bevor dann der eigentliche Kontaktfall betrachtet wird. Dabei liegt ein Hauptaugenmerk auf dem sogenannten dualen Lagrange-Multiplikator-Ansatz, bei dem die diskreten Kopplungsvariablen basierend auf einer Biorthogonalitatsbedingung¨ mit den primaren¨ Unbekannten (d.h. Verschiebungen) definiert sind. Im Vergleich zu Standard-Lagrange-Multi- plikator-Ansatzen¨ erreicht man eine lokale Beschrankung¨ der Kopplungsbedingungen am Inter- face. Somit kann der duale Lagrange-Multiplikator-Ansatz eine erhebliche Vereinfachung der resultierenden Algorithmen bewirken ohne sich dabei negativ auf die Optimalitat¨ von Mortar- Methoden auszuwirken. Die hier prasentierte¨ Methodik und Implementierung umfasst zum ers- ten Mal geeignete duale Lagrange-Multiplikator-Ansatze¨ fur¨ samtliche¨ linearen und quadra- tischen Mortar-basierten Elementtypen. Der wichtigste Beitrag der vorliegenden Dissertation liegt jedoch in der konsistenten Er- weiterung einer Mortar-Methode mit dualen Lagrange-Multiplikatoren auf nichtlineare Kon- taktvorgange.¨ Dabei wird zum ersten Mal eine vollstandige¨ Linearisierung des dualen Mortar- Ansatzes im Rahmen von impliziten Zeitintegrationsverfahren vorgestellt, mit deren Hilfe sehr effiziente nichtlineare Losungsmethoden¨ abgeleitet werden konnen.¨ Des Weiteren wird dem Ungleichungs-Charakter der Kontaktbedingungen durch eine entsprechende Erganzung¨ von so- genannten primal-dualen Aktive-Mengen-Strategien oder nichtglatten Newton-Methoden Rech- nung getragen, wodurch eine Kombination der Suche nach den aktiven Kontaktbedingungen iii sowie aller anderer Quellen von Nichtlinearitat¨ innerhalb eines einzigen nichtlinearen Iterations- schemas ermoglicht¨ wird. Infolgedessen zeichnen sich die vorgestellten Ansatze¨ neben der Lo-¨ sungsgenauigkeit von Lagrange-Multiplikator-Methoden und der Robustheit Mortar-basierter Diskretisierung auch durch eine wohl einzigartige numerische Effizienz aus, die sich
Recommended publications
  • An Application of the Mortar Method for Patch Coupling in NURBS-Based Isogeometric Analysis
    The weak substitution method – An application of the mortar method for patch coupling in NURBS-based isogeometric analysis W. Dornisch∗, G. Vitucci, S. Klinkel Lehrstuhl f¨urBaustatik und Baudynamik, RWTH Aachen, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany Abstract In this contribution a mortar-type method for the coupling of non-conforming NURBS surface patches is proposed. The connection of non-conforming patches with shared degrees of freedom requires mutual refinement, which prop- agates throughout the whole patch due to the tensor-product structure of NURBS surfaces. Thus, methods to handle non-conforming meshes are essential in NURBS-based isogeometric analysis. The main objective of this work is to provide a simple and efficient way to couple the individual patches of complex geometrical models without altering the variational formulation. The deformations of the interface control points of adjacent patches are interrelated with a master-slave relation. This relation is established numerically using the weak form of the equality of mutual defor- mations along the interface. With the help of this relation the interface degrees of freedom of the slave patch can be condensated out of the system. A natural connection of the patches is attained without additional terms in the weak form. The proposed method is also applicable for nonlinear computations without further measures. Linear and ge- ometrical nonlinear examples show the high accuracy and robustness of the new method. A comparison to reference results and to computations with the Lagrange multiplier method is given. Keywords: Nonlinear isogeometric analysis, NURBS, Domain decomposition, Weak substitution method, Multi-patch connection, Mortar methods 1.
    [Show full text]
  • Robust Algorithms for Contact Problems with Constitutive Contact Laws
    Robust Algorithms for Contact Problems with Constitutive Contact Laws Robuste Algorithmen zur Losung¨ von Kontaktproblemen mit konstitutiven Kontaktgesetzen Der Technischen Fakultat¨ der Friedrich-Alexander-Universitat¨ Erlangen-Nurnberg¨ zur Erlangung des Doktorgrades DR.-ING. vorgelegt von Saskia Sitzmann aus Munchen¨ Als Dissertation genehmigt von der Technischen Fakultat¨ der Friedrich-Alexander-Universitat¨ Erlangen-Nurnberg¨ Tag der mundlichen¨ Prufung:¨ 27.11.2015 Vorsitzender des Promotionsorgans: Prof. Dr. Peter Greil Gutachter: Prof. Dr.-Ing. habil. Kai Willner Prof. Dr. rer.nat. habil. Barbara I. Wohlmuth Schriftenreihe Technische Mechanik Band 20 2016 · Saskia Sitzmann Robust Algorithms for Contact Problems with Constitutive Contact Laws Herausgeber: Prof. Dr.-Ing. habil. Paul Steinmann Prof. Dr.-Ing. habil. Kai Willner Erlangen 2016 Impressum Prof. Dr.-Ing. habil. Paul Steinmann Prof. Dr.-Ing. habil. Kai Willner Lehrstuhl fur¨ Technische Mechanik Universitat¨ Erlangen-Nurnberg¨ Egerlandstraße 5 91058 Erlangen Tel: +49 (0)9131 85 28502 Fax: +49 (0)9131 85 28503 ISSN 2190-023X c Saskia Sitzmann Alle Rechte, insbesondere das der Ubersetzung¨ in fremde Sprachen, vorbehalten. Ohne Genehmigung des Autors ist es nicht gestattet, dieses Heft ganz oder teilweise auf photomechanischem, elektronischem oder sonstigem Wege zu vervielfaltigen.¨ Vorwort Die vorliegende Arbeit entstand wahrend¨ meiner Tatigkeit¨ als wissenschaftliche Mitar- beiterin am Zentral Institute fur¨ Scientific Computing und dem Lehrstuhl fur¨ Technis- che Mechanik der Friedrich-Alexander-Universitat¨ Erlangen-Nurnberg¨ in Kooperation mit der MTU Aero Engines AG in Munchen.¨ Mein besonderer Dank gilt meinem Doktorvater, Herrn Prof. Kai Willner, der im- mer ein offenes Ohr fur¨ mich hatte und mich sowohl fachlich als auch mental wahrend¨ meiner gesamten Promotion bestmoglich¨ betreut hat.
    [Show full text]
  • Mortar Finite Element Methods for Second Order Elliptic and Parabolic Problems
    MORTAR FINITE ELEMENT METHODS FOR SECOND ORDER ELLIPTIC AND PARABOLIC PROBLEMS Thesis Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy by Ajit Patel (02409001) Under the Supervision of Supervisor : Professor Amiya Kumar Pani Co-supervisor : Professor Neela Nataraj DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY 2008 Approval Sheet The thesis entitled \MORTAR FINITE ELEMENT METHODS FOR SECOND ORDER ELLIPTIC AND PARABOLIC PROBLEMS" by Ajit Patel is approved for the degree of DOCTOR OF PHILOSOPHY Examiners Supervisors Chairman Date : Place : Dedicated to My Father Sri Tarachand Patel & My Mother Smt. Latika Patel INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY, INDIA CERTIFICATE OF COURSE WORK This is to certify that Mr. Ajit Patel was admitted to the candidacy of the Ph.D. Degree on 18th July 2002, after successfully completing all the courses required for the Ph.D. Degree programme. The details of the course work done are given below. Sr. No. Course No. Course Name Credits 1. MA 501 Algebra II AU 2. MA 509 Elementary Number Theory 6.00 3. MA 825 Algebra 6.00 4. MA 827 Analysis 6.00 5. MA 530 Nonlinear Analysis AU 6. MA 534 Modern Theory of PDE's 6.00 7. MA 828 Functional Analysis 6.00 8. MA 838 Special Topics in Mathematics II 6.00 I. I. T. Bombay Dy. Registrar (Academic) Dated : Abstract The main objective of this thesis is to analyze mortar finite element methods for elliptic and parabolic initial-boundary value problems. In Chapter 2 of this dissertation, we have discussed a standard mortar finite element method and a mortar element method with Lagrange multiplier for spatial discretization of a class of parabolic initial-boundary value problems.
    [Show full text]
  • Feel++ : a Computational Framework for Galerkin Methods and Advanced Numerical Methods
    ESAIM: PROCEEDINGS, December 2012, Vol. 38, p. 429-455 F. Coquel, M. Gutnic, P. Helluy, F. Lagoutiere,` C. Rohde, N. Seguin, Editors FEEL++: A COMPUTATIONAL FRAMEWORK FOR GALERKIN METHODS AND ADVANCED NUMERICAL METHODS CHRISTOPHE PRUD’HOMME 2,VINCENT CHABANNES 1,VINCENT DOYEUX 3,MOURAD ISMAIL 3,ABDOULAYE SAMAKE 1 AND GONCALO PENA 4 Abstract. This paper presents an overview of a unified framework for finite element and spectral element methods in 1D, 2D and 3D in C++ called FEEL++. The article is divided in two parts. The first part pro- vides a digression through the design of the library as well as the main abstractions handled by it, namely, meshes, function spaces, operators, linear and bilinear forms and an embedded variational language. In every case, the closeness between the language developed in FEEL++ and the equivalent mathematical ob- jects is highlighted. In the second part, examples using the mortar, Schwartz (non)overlapping, three fields and two fictitious domain-like methods (the Fat Boundary Method and the Penalty Method) are presented and numerically solved in the scope of the library. 1. INTRODUCTION Libraries to solve problems arising from partial differential equations (PDEs) through generalized Galerkin methods are a common tool among mathematicians and engineers. However, most libraries end up specializing in a type of equation, e.g. Navier-Stokes or linear elasticity models, or a specific type of numerical method, e.g. finite elements. The increasing complexity of differential models and the implementation of state of the art robust numerical methods, demand from scientific computing platforms general and clear enough languages to express such problems and provide a wealth of solution algorithms available in a minimal amount of code but maximum mathematical control.
    [Show full text]
  • A Three-Level Bddc Algorithm for Mortar Discretizations ∗
    A THREE-LEVEL BDDC ALGORITHM FOR MORTAR DISCRETIZATIONS ∗ HYEA HYUN KIM y AND XUEMIN TU z March 27, 2008 Abstract. In this paper, a three-level BDDC algorithm is developed for the solutions of large sparse algebraic linear systems arising from the mortar discretization of elliptic boundary value problems. The mortar discretization is considered on geometrically non-conforming subdomain partitions. In two-level BDDC algorithms, the coarse problem needs to be solved exactly. However, its size will increase with the increase of the number of the subdo- mains. To overcome this limitation, the three-level algorithm solves the coarse problem inexactly while a good rate of convergence is maintained. This is an extension of previous work, the three-level BDDC algorithms for standard finite element discretization. Estimates of the condition numbers are provided for the three-level BDDC method and numerical experiments are also discussed. Key words. mortar discretization, BDDC, three-level, domain decomposition, coarse problem, condition num- ber AMS subject classifications. 65N30, 65N55 1. Introduction. Mortar methods were introduced by Bernardi, Maday, and Patera [3] to couple different approximations in different subdomains so as to obtain a good global approximate solution. They are useful for modeling multi-physics, adaptivity, problems with joints, and mesh generation for three dimensional complex structures. The coupling between different subdomains in mortar methods is done by enforcing certain constraints on solutions across the subdomain interface using Lagrange multipliers. We call these constraints the mortar matching conditions. BDDC (Balancing Domain Decomposition by Constraints) methods were introduced and analyzed in [6, 16, 17] for standard finite element discretizations.
    [Show full text]
  • A Unified FETI-DP Approach for Incompressible Stokes Equations
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2000; 00:1{6 Prepared using nmeauth.cls [Version: 2002/09/18 v2.02] A uni¯ed FETI-DP approach for incompressible Stokes equations Xuemin Tu1,¤and Jing Li2 1 Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045-7594, U.S.A. 2 Department of Mathematical Sciences, Kent State University, Kent, OH 44242, U.S.A. SUMMARY A uni¯ed framework of FETI-DP algorithms is proposed for solving the system of linear equations arising from the mixed ¯nite element approximation of incompressible Stokes equations. A distinctive feature of this framework is that it allows using both continuous and discontinuous pressures in the algorithm, while previous FETI-DP methods only apply to discontinuous pressures. A preconditioned conjugate gradient method is used in the algorithm with either a lumped or a Dirichlet preconditioner, and scalable convergence rates are proved. This framework is also used to describe several previously developed FETI-DP algorithms and greatly simpli¯es their analysis. Numerical experiments of solving a two-dimensional incompressible Stokes problem demonstrate the performances of the discussed FETI-DP algorithms represented under the same framework. Copyright °c 2000 John Wiley & Sons, Ltd. key words: domain decomposition, incompressible Stokes, FETI-DP, BDDC 1. Introduction The ¯nite element tearing and interconnecting (FETI) methods were introduced by Farhat and Roux [9, 10, 11, 12] for second order elliptic problems. In these algorithms, Lagrange multipliers are introduced to enforce the continuity of the solution across the subdomain interface. The original system of linear equations is reduced to a symmetric positive semi-de¯nite system for the Lagrange multipliers, which can be solved by a preconditioned conjugate gradient method.
    [Show full text]
  • Least-Squares Finite Element Formulation for Fluid-Structure Interaction
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-12-2009 Least-Squares Finite Element Formulation for Fluid-Structure Interaction Cody C. Rasmussen Follow this and additional works at: https://scholar.afit.edu/etd Part of the Aerodynamics and Fluid Mechanics Commons Recommended Citation Rasmussen, Cody C., "Least-Squares Finite Element Formulation for Fluid-Structure Interaction" (2009). Theses and Dissertations. 2386. https://scholar.afit.edu/etd/2386 This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. LEAST-SQUARES FINITE ELEMENT FORMULATION FOR FLUID- STRUCTURE INTERACTION DISSERTATION Cody C Rasmussen, Major, USAF AFIT/DS/ENY/09-M16 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. AFIT/DS/ENY/09-M16 LEAST-SQUARES FINITE ELEMENT FORMULATION FOR FLUID- STRUCTURE INTERACTION DISSERTATION Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Philosophy Cody C Rasmussen Major, USAF March 2009 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/DS/ENY/09-M16 Abstract Fluid-structure interaction problems prove di¢ cult due to the coupling be- tween ‡uid and solid behavior.
    [Show full text]
  • Domain Decomposition Algorithms for Mortar Discretizations
    Domain Decomposition Algorithms for Mortar Discretizations Hyea Hyun Kim National Institute for Mathematical Sciences, 385-16, Doryong-dong, Yuseong-gu, Daejeon 305-340, South Korea. [email protected] Summary. Mortar discretizations have been developed for coupling different ap- proximations in different subdomains, that can arise from engineering applications in complicated structures with highly non-uniform materials. The complexity of the mortar discretizations requires fast algorithms for solving the resulting linear sys- tems. Several domain decomposition algorithms, that have been successfully applied to conforming finite element discretizations, have been extended to the linear systems of mortar discretizations. They are overlapping Schwarz methods, FETI-DP (Dual- Primal Finite Element Tearing and Interconnecting) methods, and BDDC (Balanc- ing Domain Decomposition by Constraints) methods. The new result is that com- plete analysis, providing the optimal condition number estimate, has been done for geometrically non-conforming subdomain partitions and for problems with discon- tinuous coefficients. These algorithms were further applied to the two-dimensional Stokes and three-dimensional elasticity. In addition, a BDDC algorithm with an inexact coarse problem was developed. 1 Introduction Mortar discretizations were introduced in [2] to couple different approxima- tions in different subdomains so as to obtain a good global approximate solution. They are useful for modeling multi-physics, adaptivity, and mesh generation for three dimensional complex structures. The coupling is done by enforcing certain constraints on solutions across the subdomain interface using Lagrange multipliers. We call these constraints the mortar matching conditions. The complexity of the discretizations requires fast algorithms for solving the resulting linear systems. We focus on extension of several domain decom- position algorithms, that have been successfully applied to conforming finite element discretizations, to solving such linear systems.
    [Show full text]
  • 19. a Mortar Finite Element Method for Plate Problems Introduction
    12th International Conference on Domain Decomposition Methods Editors: Tony Chan, Takashi Kako, Hideo Kawarada, Olivier Pironneau, c 2001 DDM.org 19. A Mortar Finite Element Method for Plate Problems L. Marcinkowski 1 Introduction In the paper we discuss two versions of mortar finite element methods applied to clamped plate problems. The problems are approximated by the nonconforming Mor- ley and Adini element methods in each subregion into which the original region of the discussed problems have been partitioned. On the interfaces between subdomains and at crosspoints of subregions some continuity conditions are imposed. The main results of the paper are the proof of the solvability of the discrete prob- lems and their error bounds. The mortar method is a domain decomposition method that allow us to use discretizations of different type with independent discretizations parameters in non- overlapping subdomains, see e.g. [BMP94], [BM97], [BB99] for a general presentation of the mortar method in the two and three dimensions for elliptic boundary value problems of second order. In the paper mortar element methods for the locally nonconforming discretizations of the clamped plate problems are discussed. In [Lac98] there are formulated results for mortar method with nonconforming discrete Kirchofftriangle elements (DKT) for a similar problem while in [Bel97] the mortar method for the biharmonic problem is analyzed in the case of local spectral discretizations. The paper is based on the results which are obtained in the PhD thesis of the author, see [Mar99b], cf. also [Mar99a]. This paper is concerned with the mortar method where locally in the subdomains the nonconforming Adini and Morley plate finite elements are used.
    [Show full text]
  • Substructuring Preconditioners for H-P Mortar FEM Silvia Bertoluzza, Micol Pennacchio, Christophe Prud’Homme, Abdoulaye Samake
    Substructuring Preconditioners for h-p Mortar FEM Silvia Bertoluzza, Micol Pennacchio, Christophe Prud’Homme, Abdoulaye Samake To cite this version: Silvia Bertoluzza, Micol Pennacchio, Christophe Prud’Homme, Abdoulaye Samake. Substructuring Preconditioners for h-p Mortar FEM. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2016, 50 (4), pp.1057-1082. 10.1051/m2an/2015065. hal-01066606 HAL Id: hal-01066606 https://hal.archives-ouvertes.fr/hal-01066606 Submitted on 22 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SUBSTRUCTURING PRECONDITIONERS FOR h-p MORTAR FEM. SILVIA BERTOLUZZA, MICOL PENNACCHIO, CHRISTOPHE PRUD’HOMME, AND ABDOULAYE SAMAKE Abstract. We build and analyze a substructuring preconditioner for the mortar method in the h-p finite element framework. Particular attention is given to the construction of the coarse component of the preconditioner in this framework, in which continuity at the cross points is not required. Two variants are proposed: the first one is an improved version of a coarse preconditioner already presented in [12]. The second is new and is built by using a Discontinuous Galerkin interior penalty method as coarse problem. A bound of the condition number is proven for both variants and their efficiency and scalability is illustrated by numerical experiments.
    [Show full text]
  • A Discontinuous Galerkin Formulation for Solution of Parabolic Equations on Nonconforming Meshes
    A Discontinuous Galerkin Formulation for Solution of Parabolic Equations on Nonconforming Meshes Deepak V. Kulkarni, Dimitrios V. Rovas, and Daniel A. Tortorelli ⋆ 1206 West Green St., Mech. & Industr. Engrg. Dept., University of Illinois, Urbana, IL 61801, USA. {dkulkarn, rovas, dtortore}@uiuc.edu Summary. Non-conforming meshes are frequently employed in multi-component simula- tions and adaptive refinement. In this work we develop a discontinuous Galerkin framework capable of accommodating non-conforming meshes and apply our approach to analyzing the transient heat conduction problem. 1 Introduction Non-conforming meshes are frequently employed for adaptive solution or simula- tion of multi-component systems. Even though non-conforming meshes are easy to generate, they require the satisfaction of jump conditions across the non-conforming mesh interface. Several techniques have been developed to enforce these conditions such as mixed methods (Arbogast [1997]), local constraint equation methods (Guo and Babuska˘ [1986], Demkowicz et al. [1989]) and mortar methods (Bernadi et al. [1989], Wohlmuth [2002]). In this work we present a Discontinuous Galerkin (DG) framework for accom- modating non-conforming meshes. The DG method naturally accommodates jump conditions and has been employed to solve hyperbolic, parabolic and elliptic prob- lems (Cockburn et al. [2000]). For a historical review of DG methods and their ap- plications to elliptic problems refer to Arnold et al. [2002]. Recently, DG schemes have been applied to enforce jump conditions across non-conforming mesh interfaces such as those encountered in adaptive refinement (Becker and Hansbo [1999], Carmo and Duarte [2000], Perugia and Schotzau¨ [2001]). Here, we extend the formulation of Becker and Hansbo [1999] to parabolic problems.
    [Show full text]
  • A Hybrid Mortar Finite Element Method for the Stokes Problem
    SpezialForschungsBereich F 32 Karl{Franzens UniversitÄatGraz Technische UniversitÄatGraz Medizinische UniversitÄatGraz A HYBRID MORTAR FINITE ELEMENT METHOD FOR THE STOKES PROBLEM H. EGGER C. WALUGA SFB-Report No. 2010{012 April 2010 A{8010 GRAZ, HEINRICHSTRASSE 36, AUSTRIA Supported by the Austrian Science Fund (FWF) SFB sponsors: ² Austrian Science Fund (FWF) ² University of Graz ² Graz University of Technology ² Medical University of Graz ² Government of Styria ² City of Graz A HYBRID MORTAR FINITE ELEMENT METHOD FOR THE STOKES PROBLEM HERBERT EGGER1 AND CHRISTIAN WALUGA2 Abstract. In this paper, we consider the discretization of the Stokes problem on domain partitions with non-matching meshes. We propose a hybrid mortar method, which is moti- vated by a variational characterization of solutions of the corresponding interface problem. For the discretization of the subdomain problems, we utilize standard inf-sup stable finite element pairs. The introduction of additional unkowns at the interface allows to reduce the coupling between the subdomain problems, which comes from the variational incorporation of interface conditions. We present a detailed analysis of the hybrid mortar method, in particular, the discrete inf-sup stability condition is proven under weak assumptions on the interface mesh, and optimal a-priori error estimates are derived with respect to the energy and L2-norm. For illustration of the results, we present some numerical tests. Keywords: Stokes equation, interface problems, discontinuous Galerkin methods, hybridiza- tion, mortar methods, non-matching grids AMS subject classification: 65N30, 65N55 1. Introduction Several interesting applications in computational fluid dynamics involve moving geometries, multiple physical phenomena, or discontinuous material properties. As typical examples, let us mention the flow around spinning propellers, fluid-structure interaction, groundwater contaminant transport, or multiphase flows.
    [Show full text]