Constant Maturity Products Forward CMS Rate Adjustment

Total Page:16

File Type:pdf, Size:1020Kb

Constant Maturity Products Forward CMS Rate Adjustment Risk Technical article Risk is the world's leading financial risk management magazine. Risk’s Cutting Edge articles are a showcase for the latest thinking and research into derivatives tools and techniques, with comprehensive coverage of the most recent advances in areas such as option pricing and hedging, market risk, credit risk, swaps and Monte Carlo methods. www.risk.net/technical Copyright statement © Risk Waters Group Ltd, 2003. All rights This PDF is made available for personal use reserved. No parts of this article may be only. Under the following terms you are reproduced, stored in or introduced into any granted permission to view online, print out, retrieval system, or transmitted, in any form or store on your computer a single copy, or by any means, electronic, mechanical, provided this is intended for the benefit of photocopying, recording or otherwise the individual user. Should you wish to use without the prior written permission of the multiple copies of this article, please contact copyright owners. [email protected] Constant maturity products Forward CMS rate adjustment The growing importance of constant maturity swap products as risk management tools has sparked a debate about pricing, and rumours about trading losses. Now, Dmitry Pugachevsky demonstrates that current models do not correctly adjust for convexity in forward constant maturity swap rates, and provides an improved adjustment formula constant maturity swap (CMS) rate is a swap rate that E(P(T , T ) × D ) = E(D ) = P(0, T ) (2) will be observed at a swap settlement time in the fu- i j i j j ture. Seen from today, a CMS rate is a random variable Throughout the article, we consider a forward-starting plain vanilla swap whose ultimate value depends on the evolution of in- with settlement at T0 and n subsequent payments at dates T1, ..., Tn when terest rates between today and the date when it is re- we pay Libor and receive fixed rate C. For the sake of simplicity, assume alised. In contrast, forward swap rates (FSRs) and that the notional amount of the swap is one (unit) and that the payment A“forward” CMS rates are rates that are known today. FSRs are used in pric- frequencies and bases of the fixed- and floating-rate sides of the contract ing forward starting swaps and European-style swaptions. Forward CMS and of Libor are the same. rates are used in pricing CMS swaps and CMS caps and floors. While for- If we also assume that we pay and receive notional at maturity, then ward swap rates are easily calculated from the (swap) yield curve, forward the value today of the floating-rate side of the swap is equal to par at T0, CMS rates can be found by adjusting forward swap rates. and today’s value of the swap Sw(0, C) is: In the early to mid-1990s, when fixed markets first encountered CMS n =× ∆× + − swaps/caps, much literature was published both in journals and within Sw0,C() C∑ jj P0,T( ) P0,T() n P0,T () 0 banks (eg, Jamshidian, 1997, Pugachevsky, 1996, and Schmidt, 1996), show- j1= ∆ ing that the FSR is the expectation of the CMS rate under a (forward) swap where j is the day count for time interval [Tj – 1,Tj]. measure, while CMS swaps and caps require calculation of CMS under a We now want to answer the following question: what fixed rate C makes different, forward measure. But, until recently, most of the market partic- the value of the swap Sw(0, C) equal to zero? Because the swap is forward ipants settled with the “yield convexity adjustment” formula, which uses starting, this rate is called a forward (par) swap rate, let’s denote it as FSR. just the yield curve and CMS variance. However, increasing competition in It follows that: the CMS derivatives market has made the inaccuracies of the convention- P0,T()− P0,T () FSR = n0 al yield formula more apparent. Thus, new attempts are made to find a n (3) better approximation for forward CMS rates, not only for forward-to-set- ∑ ∆×jjP0,T() tlement, but for the whole range (eg, Benhamou, 2000, and Hull, 2000). j1= This article derives the new formulas for adjustments for forward CMS When settlement time T0 = 0 (ie, today), the swap rate in (3) is a “spot rates, and compares them with the conventional formula and with exact val- swap rate”. As a practical matter, while spot rates for swaps of various ma- ues of forward CMS rates calculated numerically. The main result is given turities are quoted in the market and are used for constructing the swap below (“New formulas”), where we use the CMS identity and some extra as- yield curve, forward swap rates are not quoted, but they can be calculat- sumptions to derive adjustments for forward CMS rates. The resulting for- ed from yield curve using equation (3). mulas depend only on the yield curve and swaption variance, which makes Let’s consider now the value of swap Sw(T0,C) at settlement time T0: them convenient for fixed-income traders to use. This new approach to CMS n =× ∆× + − rates is more accurate than the conventional yield adjustment formula. Sw(T,C)C0j0j0n∑ PT,T( ) PT,T() 1 (4) j1= CMS and forward swap rates We can define the corresponding CMS rate as the time T0 swap rate. In Consider a sequence of dates 0 < T0 < T1 < T2 < ..., where time 0 is other words, the CMS rate is a spot swap rate for a forward-starting swap. today. Denote the risk-neutral stochastic discount from forward date Tj to Then, condition Sw(T0,CMs) = 0 and equation (4) imply: today as D . Denote today’s risk-neutral expectation as E, and expectation j − conditioned on information up to future time T as E . Then today’s price 1PT,T()0n i i CMS = of a zero-coupon bond maturing at time T is P(0, T ) = E(D ), and the price n j j j ∆× (5) at future time T (for i < j) of the same bond is: ∑ j0jPT,T() i j1= EDij() PT,T()ij= Then equation (4) can be rewritten as: Di n SwT,C()(=− C CMS ) ×∆×∑ P( T,T) which implies P(Ti, Ti) = 1. 0j0j(6) Throughout the article, we will also use the following probability iden- j1= tities. If X is Fi-measurable random variable (ie, its value is known at time which is the convenient representation of swap value. Ti), then: Bear in mind that CMS is a time T0 spot swap rate. Thus, it will be known E(X × P(Ti, Tj) × Di) = E(X × Dj) (1) only at T0, and as of today it is a random variable, and it cannot be calcu- which implies for X = 1: lated from today’s yield curve like spot and forward swap rates. 125 • RISK • MARCH 2001 Constant maturity products Note, that the FSR and the CMS rate considered throughout this article CMSSw0i0,ii=−()() C FCMS ×∆× P 0,T always correspond to a same forward-starting swap, which settles at time T0 and matures at time Tn. This allows us to simplify notations. Note here that it can be shown that the forward CMS rate FCMSi is an Equation (5) and identities (1) and (2) imply: at-the-money strike for the CMS caplet that settles at time T0 and pays at n time Ti, i > 0. E CMS×∆×=∑ jj D P()() 0, T 0 − P 0, T n Let us introduce a set of forward measures, each of them related to dis- j1= counting_ from some time Tj, j = 0, ..., n. The expectation under this mea- Now, using equation (3), we get the following relationship between the sure E(j) can be defined as: FSR and the CMS rate: EX()× D (j) = j nn E(X): (12) ×∆×= ×∆× P0,T( j) ECMS∑∑jj D FSR j P0,T( j) (7) j1== j1 where X is any random variable. Let’s introduce a new probabilistic measure that is related to the for- Comparing with equation (11), one can see that: ~ E ward-starting swap described above. Expectation under this measure FCMS= E(j) () CMS (13) can be expressed through the risk-neutral expectation E as: j n ie, “time Tj forward CMS rate” is an expectation of CMS rate under Tj for- EX×∆×∑ jj D ward measure. j1= It also follows from (7) that: E(X) = n (8) nn ∆× ∑ jjP0,T() ∑∑FCMSjj×∆ × P( 0,T j) = FSR × ∆ j × P( 0,T j) (14) j1= j1== j 1 where X is any random variable. thus: n Then equation (7) implies: ∑ ×∆ × ( ) FCMSjj P 0,T j FSR= E(CMS) (9) = j1= (15) FSR n so the forward swap rate is the expectation of a CMS rate under a corre- ∑ ∆×jjP0,T() sponding forward swap measure. j1= Let’s note here that it can be shown (eg, Jamshidian, 1996, Pugachevsky, ie, the FSR is the weighted average of forward CMS rates where weights 1996) that the value of receiver (payer) European-style swaption equals are discounts multiplied by daycount. the value of the put (call) option on the CMS rate under the swap mea- It can be shown (Schmidt, 1996) that the difference between two con- sure multiplied by the DV01 term (the term in the denominator in (8)). secutive forward CMS rates can be expressed through the covariance under This also implies that the at-the-money strike is an expectation of the CMS a corresponding forward measure as: rate under the swap measure, ie, the FSR. This fact is well-known to swap- P0,T()+ ×∆ −=−(j) ×j1 j tions traders.
Recommended publications
  • Interest Rate Options
    Interest Rate Options Saurav Sen April 2001 Contents 1. Caps and Floors 2 1.1. Defintions . 2 1.2. Plain Vanilla Caps . 2 1.2.1. Caplets . 3 1.2.2. Caps . 4 1.2.3. Bootstrapping the Forward Volatility Curve . 4 1.2.4. Caplet as a Put Option on a Zero-Coupon Bond . 5 1.2.5. Hedging Caps . 6 1.3. Floors . 7 1.3.1. Pricing and Hedging . 7 1.3.2. Put-Call Parity . 7 1.3.3. At-the-money (ATM) Caps and Floors . 7 1.4. Digital Caps . 8 1.4.1. Pricing . 8 1.4.2. Hedging . 8 1.5. Other Exotic Caps and Floors . 9 1.5.1. Knock-In Caps . 9 1.5.2. LIBOR Reset Caps . 9 1.5.3. Auto Caps . 9 1.5.4. Chooser Caps . 9 1.5.5. CMS Caps and Floors . 9 2. Swap Options 10 2.1. Swaps: A Brief Review of Essentials . 10 2.2. Swaptions . 11 2.2.1. Definitions . 11 2.2.2. Payoff Structure . 11 2.2.3. Pricing . 12 2.2.4. Put-Call Parity and Moneyness for Swaptions . 13 2.2.5. Hedging . 13 2.3. Constant Maturity Swaps . 13 2.3.1. Definition . 13 2.3.2. Pricing . 14 1 2.3.3. Approximate CMS Convexity Correction . 14 2.3.4. Pricing (continued) . 15 2.3.5. CMS Summary . 15 2.4. Other Swap Options . 16 2.4.1. LIBOR in Arrears Swaps . 16 2.4.2. Bermudan Swaptions . 16 2.4.3. Hybrid Structures . 17 Appendix: The Black Model 17 A.1.
    [Show full text]
  • Interest Rate and Credit Models 6
    Convexity in LIBOR CMS rates and instruments The uses of Girsanov’s theorem Interest Rate and Credit Models 6. Convexity and CMS Andrew Lesniewski Baruch College New York Spring 2019 A. Lesniewski Interest Rate and Credit Models Convexity in LIBOR CMS rates and instruments The uses of Girsanov’s theorem Outline 1 Convexity in LIBOR 2 CMS rates and instruments 3 The uses of Girsanov’s theorem A. Lesniewski Interest Rate and Credit Models Convexity in LIBOR CMS rates and instruments The uses of Girsanov’s theorem Convexity In financial lingo, convexity is a broadly understood and often non-specific term for nonlinear behavior of the price of an instrument as a function of evolving markets. Typically, such convexities reflect the presence of some sort of optionality embedded in the instrument. In this lecture we will focus on a number of convexities which arise in interest rates markets. Convex behavior in interest rate markets manifests itself as the necessity to include convexity corrections to various popular interest rates and they can be blessings and nightmares of market practitioners. From the perspective of financial modeling they arise as the results of valuation done under the “wrong” martingale measure. A. Lesniewski Interest Rate and Credit Models Convexity in LIBOR CMS rates and instruments The uses of Girsanov’s theorem Convexity Throughout this lecture we will be making careful notational distinction between stochastic processes, such as prices of zero coupon bonds, and their current (known) values. The latter will be indicated by the subscript 0. Thus, as in the previous lectures, (i) P0(t; T ) = P(0; t; T ) denotes the current value of the forward discount factor, (ii) P(t; T ) = P(t; t; T ) denotes the time t value of the stochastic process describing the price of the zero coupon bond maturing at T .
    [Show full text]
  • Banca Popolare Dell’Alto Adige Joint-Stock Company
    2016 FINANCIAL STATEMENTS 1 Banca Popolare dell’Alto Adige Joint-stock company Registered office and head office: Via del Macello, 55 – I-39100 Bolzano Share Capital as at 31 December 2016: Euro 199,439,716 fully paid up Tax code, VAT number and member of the Business Register of Bolzano no. 00129730214 The bank adheres to the inter-bank deposit protection fund and the national guarantee fund ABI 05856.0 www.bancapopolare.it – www.volksbank.it 2 3 „Wir arbeiten 2017 konzentriert daran, unseren Strategieplan weiter umzusetzen, die Kosten zu senken, die Effizienz und Rentabilität der Bank zu erhöhen und die Digitalisierung voranzutreiben. Auch als AG halten wir an unserem Geschäftsmodell einer tief verankerten Regionalbank in Südtirol und im Nordosten Italiens fest.“ Otmar Michaeler Volksbank-Präsident 4 DIE VOLKSBANK HAT EIN HERAUSFORDERNDES JAHR 2016 HINTER SICH. Wir haben vieles umgesetzt, aber unser hoch gestecktes Renditeziel konnten wir nicht erreichen. Für 2017 haben wir uns vorgenommen, unsere Projekte und Ziele mit noch mehr Ehrgeiz zu verfolgen und die Rentabilität der Bank deutlich zu erhöhen. 2016 wird als das Jahr der Umwandlung in eine Aktien- Beziehungen und wollen auch in Zukunft Kredite für Familien und gesellschaft in die Geschichte der Volksbank eingehen. kleine sowie mittlere Unternehmen im Einzugsgebiet vergeben. Diese vom Gesetzgeber aufgelegte Herausforderung haben Unser vorrangiges Ziel ist es, beste Lösungen für unsere die Mitglieder im Rahmen der Mitgliederversammlung im gegenwärtig fast 60.000 Mitglieder und über 260.000 Kunden November mit einer überwältigenden Mehrheit von 97,5 Prozent zu finden. angenommen. Gleichzeitig haben wir die Weichen gestellt, um All dies wird uns in die Lage versetzen, in Zukunft wieder auch als AG eine erfolgreiche und tief verankerte Regionalbank Dividenden auszuschütten.
    [Show full text]
  • Derivative Instruments and Hedging Activities
    www.pwc.com 2015 Derivative instruments and hedging activities www.pwc.com Derivative instruments and hedging activities 2013 Second edition, July 2015 Copyright © 2013-2015 PricewaterhouseCoopers LLP, a Delaware limited liability partnership. All rights reserved. PwC refers to the United States member firm, and may sometimes refer to the PwC network. Each member firm is a separate legal entity. Please see www.pwc.com/structure for further details. This publication has been prepared for general information on matters of interest only, and does not constitute professional advice on facts and circumstances specific to any person or entity. You should not act upon the information contained in this publication without obtaining specific professional advice. No representation or warranty (express or implied) is given as to the accuracy or completeness of the information contained in this publication. The information contained in this material was not intended or written to be used, and cannot be used, for purposes of avoiding penalties or sanctions imposed by any government or other regulatory body. PricewaterhouseCoopers LLP, its members, employees and agents shall not be responsible for any loss sustained by any person or entity who relies on this publication. The content of this publication is based on information available as of March 31, 2013. Accordingly, certain aspects of this publication may be superseded as new guidance or interpretations emerge. Financial statement preparers and other users of this publication are therefore cautioned to stay abreast of and carefully evaluate subsequent authoritative and interpretative guidance that is issued. This publication has been updated to reflect new and updated authoritative and interpretative guidance since the 2012 edition.
    [Show full text]
  • Pricing Models for Bermudan-Style Interest Rate Derivatives and Options
    Erim - 05 omslag Pietersz 9/23/05 1:41 PM Pagina 1 Design: B&T Ontwerp en advies www.b-en-t.nl Print: Haveka www.haveka.nl Pricing models for Bermudan-style interest rate 71 RAOUL PIETERSZ derivatives Bermudan-style interest rate derivatives are an important class of RAOUL PIETERSZ options. Many banking and insurance products, such as mortgages, cancellable bonds, and life insurance products, contain Bermudan interest rate options associated with early redemption or cancella- tion of the contract. The abundance of these options makes evident Pricing models for that their proper valuation and risk measurement are important to banks and insurance companies. Risk measurement allows for off- Bermudan-style setting market risk by hedging with underlying liquidly traded assets rate derivatives Pricing models for Bermudan-style interest and options. Pricing models must be arbitrage-free, and consistent with (calibrated to) prices of actively traded underlying options. interest rate derivatives Model dynamics need be consistent with the observed dynamics of the term structure of interest rates, e.g., correlation between inte- rest rates. Moreover, valuation algorithms need be efficient: Finan- cial decisions based on derivatives pricing calculations often need to be made in seconds, rather than hours or days. In recent years, a successful class of models has appeared in the literature known as market models. This thesis extends the theory of market models, in the following ways: (i) it introduces a new, efficient, and more accurate approximate pricing technique, (ii) it presents two new and fast algorithms for correlation-calibration, (iii) it develops new models that enable efficient calibration for a whole new range of deriva- tives, such as fixed-maturity Bermudan swaptions, and (iv) it presents novel empirical comparisons of the performance of existing calibra- tion techniques and models, in terms of reduction of risk.
    [Show full text]
  • Exotic Interest-Rate Options
    Exotic interest-rate options Marco Marchioro www.marchioro.org November 10th, 2012 Advanced Derivatives, Interest Rate Models 2010{2012 c Marco Marchioro Exotic interest-rate options 1 Lecture Summary • Exotic caps, floors, and swaptions • Swaps with exotic floating-rate legs • No-arbitrage methods (commodity example) • Numeraires and pricing formulas • stochastic differential equations (SDEs) • Partial differential equations (PDEs) • Feynman-Kac formula • Numerical methods: analytical approximations Advanced Derivatives, Interest Rate Models 2010{2012 c Marco Marchioro Exotic interest-rate options 2 Common exotic interest-rate options There are all sorts of exotic interest-rate options. The least exotic, i.e. commonly traded, types are • Caps and floors with a digital payoff • Caps and floors with barriers • Bermuda and American Swaptions Advanced Derivatives, Interest Rate Models 2010{2012 c Marco Marchioro Exotic interest-rate options 3 Caps and floors with a digital payoff A vanilla Cap has caplets with payoff Payoff CapletV = NT (6m; 9m) max [(3m-Libor − K); 0] (1) A digital Cap has caplets with payoff 8 > NT (6m; 9m) R for 3m-Libor ≥ K Payoff < CapletD = (2) :> 0 for 3m-Libor < K Advanced Derivatives, Interest Rate Models 2010{2012 c Marco Marchioro Exotic interest-rate options 4 Advanced Derivatives, Interest Rate Models 2010{2012 c Marco Marchioro Exotic interest-rate options 5 Caps and floors with barriers A barrier Cap has caplets with payoff Payoff CapletV = NT (6m; 9m) max [(3m-Libor − K); 0] (3) • Knock-in: paid if 3m-Libor touches a barrier rknock-in • Knock-out: paid if 3m-Libor does not reach rknock-out Discrete barriers are checked at certain given barrier dates Continuous barriers are checked on each daily Libor fixing Digital payoffs are also available.
    [Show full text]
  • Convexity Adjustment for Constant Maturity Swaps and Libor-In-Arrears Basis Swaps12
    TMG Financial Products Inc. 475 Steamboat Road Greenwich, CT 06830 Thomas S. Coleman 15 November 1995 VP, Risk Management, 203-861-8993 revised 30 August 1996 CONVEXITY ADJUSTMENT FOR CONSTANT MATURITY SWAPS AND LIBOR-IN-ARREARS BASIS SWAPS12 INTRODUCTION The Constant Maturity Swap or Treasury (CMS or CMT) market is large and active. The difficulty of evaluating the implicit convexity cost, however, makes the markets more opaque than would otherwise be the case. This note lays out a practical method for calculating the value of the convexity adjustment for the linear CMS/CMT and LIBOR-in-arrears payments. Both CMT/CMS and LIBOR-in-arrears swaps share the characteristic that the payment on one side of the swap is linear with respect to its index while the offsetting hedge is convex. The linearity of the payment (relative to the convex hedges) imposes a cost that leads to the "convexity adjustment" made to the linear payment. The basis of the approach used here is to 1. Find for each reset date the equivalent martingale measure (forward measure using a zero bond as numeraire) which makes the PV of a traded swap equal to its market value. In practical terms, this reduces to finding the "adjusted mean" of the rate distribution as of the reset date. For log-normally distributed rates, there are approximations which make this fast. 2. The same forward measure is then used to calculate the PV of the CMS/CMT swap or the LIBOR-in-arrears payment (which is not actively traded). This PV incorporates the convexity cost of the linear payment relative to its (traded) convex hedge.
    [Show full text]
  • The Efficient Pricing of CMS and CMS Spread Derivatives
    Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics The efficient pricing of CMS and CMS spread derivatives A thesis submitted to the Delft Institute of Applied Mathematics in partial fulfillment of the requirements for the degree MASTER OF SCIENCE in APPLIED MATHEMATICS by Sebastiaan Louis Cornelis Borst Delft, the Netherlands September 2014 Copyright c 2014 by Sebastiaan Borst. All rights reserved. MSc THESIS APPLIED MATHEMATICS \The efficient pricing of CMS and CMS spread derivatives" Sebastiaan Louis Cornelis Borst Delft University of Technology Daily supervisor Responsible professor Dr. N. Borovykh Prof. dr. ir. C.W. Oosterlee Other thesis committee members Dr. P. Cirillo September 2014 Delft, the Netherlands Abstract Two popular products on the interest rate market are Constant Maturity Swap (CMS) deriva- tives and CMS spread derivatives. This thesis focusses on the efficient pricing of CMS and CMS spread derivatives, in particular the pricing of CMS and CMS spread options. The notional values for these products are usually quite large, so even small errors when pricing these products can lead to substantial losses. Therefore, the pricing of these products has to be accurate. It is possible to use sophisticated models (e.g. Libor Market Model) to price these products, however the downside is that these models generally have high computational costs; they are not very efficient. To efficiently price CMS options the Terminal Swap Rate (TSR) approach can be used. From this approach TSR models are obtained, we will consider four different TSR models. Two of these TSR models are established in the literature, the other two TSR models are developed in this thesis.
    [Show full text]
  • Nessie, Yetti and CMM the Search for Costless Positive Convexity
    Value Concepts from the BAS/ML Trading Desk Nessie, Yetti and CMM The Search for Costless Positive Convexity The Quants will tell you that “Convexity” is measured by the scale of the second derivative. The Engineers will describe it as a non-linear function. And the Bookie next door will probably tell that it is his profit in the deal. But no matter your definition, low-cost Positive Convexity is the Holy Grail of the high performance money manager. We like to describe Positive Convexity as the payout function where you can make more than you can lose given equal opposing moves in the market. In the simplest example, a cash Treasury Ten-year note will go up by 9 points if rates decline by 100bps but will only decline by 8 points if rates rise by a similar 100bps. The most powerful way to buy or sell Convexity is via options. Since the cost is usually only the (relatively) small upfront premium and the potential gain is unlimited, the measured Convexity will be quite large. Securities that exhibit large Convexity profiles usually have some sort of embedded option. Since positive Convexity is inherently good, bonds that are positively Convex tend to trade to lower yields, all else equal. Similarly, negatively Convex securities tend to trade to higher yields to adjust for the inferior payoff profile. MBS bonds are the most well known Convex bonds. They offer yields, on average, of 125bps greater than Ten year Treasuries in exchange for absorbing the call (pre-payment) risk. Corporate bonds are structurally similar to being long Treasuries and short an embedded “default option” to create the extra yield.
    [Show full text]
  • A Guide to Investing in Floating-Rate Securities What You Should Know Before You Buy
    A guide to investing in floating-rate securities What you should know before you buy What are floating-rate securities? Are floating rate bonds appropriate for you? Also known as “floaters,” these fixed income investments provide interest The features, risks, and income based on widely used interest rate benchmarks. The interest rate on characteristics of floating floaters will adjust periodically (float) depending on movement in the benchmark rate bonds are different from rates to which they are tied. Floaters can be linked to almost any benchmark and traditional fixed income pay interest based on a variety of formulas, some very complex. Basic floaters, products and should be though, pay a coupon equal to the benchmark plus a spread that does not change. evaluated by you and your This type of floater, along with others, will be discussed later in this guide. financial advisor before We have a responsibility to consider reasonably available alternatives in making making an investment a recommendation. We do not need to evaluate every possible alternative either decision. Investors should within our products or outside the firm in making a recommendation. We are not note that changes in interest required to offer the “best” or lowest cost product. While cost is a factor that we payments can significantly take into consideration in making a recommendation, it is not the only factor. affect an investor’s yield and, You should consider factors such as those below prior to accepting consequently, the price of the a recommendation: security may vary. • The potential risks, rewards, and costs in purchasing and in the future selling of a security.
    [Show full text]
  • MAFS601A – Exotic Swaps • Forward Rate Agreements and Interest Rate
    MAFS601A – Exotic swaps • Forward rate agreements and interest rate swaps • Asset swaps • Total return swaps • Swaptions • Credit default swaps • Differential swaps • Constant maturity swaps 1 Forward rate agreement (FRA) The FRA is an agreement between two counterparties to exchange floating and fixed interest payments on the future settlement date T2. • The floating rate will be the LIBOR rate L[T1, T2] as observed on the future reset date T1. Recall that the implied forward rate over the future period [T1, T2] has been fixed by the current market prices of discount bonds ma- turing at T1 and T2. The fixed rate is expected to be equal to the implied forward rate over the same period as observed today. 2 Determination of the forward price of LIBOR L[T1, T2] = LIBOR rate observed at future time T1 for the accrual period [T1, T2] K = fixed rate N = notional of the FRA Cash flow of the fixed rate receiver 3 Cash flow of the fixed rate receiver collect N+NK(T22 -T) fromT- maturitybond floating rate 2 LT,T[12 ]is reset at T1 reset date settlement date tTT12 collect N atT1 from T1-maturity bond; collect invest in bank N+NLT(,)12 T account earning (-)TT21 LTT[12 , ]rate of interest 4 Valuation principle Apparently, the cash flow at T2 is uncertain since LIBOR L[T1, T2] is set (or known) at T1. Can we construct portfolio of discount bonds that replicate the cash flow? • For convenience of presenting the argument, we add N to both floating and fixed rate payments.
    [Show full text]
  • Convexity Adjustment for Constant Maturity Swaps in a Multi-Curve Framework
    Ann Oper Res (2018) 266:159–181 https://doi.org/10.1007/s10479-017-2430-6 ANALYTICAL MODELS FOR FINANCIAL MODELING AND RISK MANAGEMENT Convexity adjustment for constant maturity swaps in a multi-curve framework Nikolaos Karouzakis1 · John Hatgioannides2 · Kostas Andriosopoulos3 Published online: 6 March 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract In this paper we propose a double curving setup with distinct forward and dis- count curves to price constant maturity swaps (CMS). Using separate curves for discounting and forwarding, we develop a new convexity adjustment, by departing from the restrictive assumption of a flat term structure, and expand our setting to incorporate the more realistic and even challenging case of term structure tilts. We calibrate CMS spreads to market data and numerically compare our adjustments against the Black and SABR (stochastic alpha beta rho) CMS adjustments widely used in the market. Our analysis suggests that the proposed convexity adjustment is significantly larger compared to the Black and SABR adjustments and offers a consistent and robust valuation of CMS spreads across different market conditions. Keywords Convexity adjustment · Constant maturity swaps · Multi-curve framework · Yield curve modelling · Money market instruments 1 Introduction The recent financial crisis has led, among others, to unprecedented behavior in the money markets, which has created important discrepancies on the valuation of interest rate financial instruments. Important reference
    [Show full text]