Interest Rate Derivatives the Most Widely Used Underlying Variables in Derivatives Are Stock Prices, Stock Indexes, Commodity Pr

Total Page:16

File Type:pdf, Size:1020Kb

Interest Rate Derivatives the Most Widely Used Underlying Variables in Derivatives Are Stock Prices, Stock Indexes, Commodity Pr Interest Rate Derivatives By Majd Bakir / www.investment-and-finance.com The most widely used underlying variables in derivatives are stock prices, stock indexes, commodity prices, exchanges rates, and interest rates. Other types of derivatives becoming very popular in recent years include credit derivatives, weather derivatives, energy derivatives, insurance derivatives, and volatility derivatives. However, the interest rate derivatives market is the largest derivative market worldwide, with a whopping notional amount outstanding, estimated in June 2009 at US$437 trillion according to the Bank for International Settlements. Of which, OTC interest rate swaps claim the lion’s share with an estimated amount outstanding of US$ 342 trillion, or 78% thereof). An interest rate derivative is a financial instrument whose payoff is based or dependent in some way on the performance of an underlying interest rate. It gives the holder the right to pay or receive a notional principal at a predetermined interest rate. This instrument, with all its different types and variants, is notoriously used to hedge exposures to interest rate movements. Product-type Classification In terms of product type, interest rate derivatives fall into three major groups: interest rate options, interest rate futures, and interest rate swaps. Interest Rate Options The most popular interest rate option products are: bond options, interest rate caps and floors, and swap options (swaptions). - Bond Options A bond option is an option that gives the holder the right to buy or sell a specific bond within a particular period or by some future date for a set price. Bond options are mainly traded over the counter, and are also embedded in bonds to be issued. A callable bond is an example of a bond with an embedded option allowing the issuer to redeem or buy back the bond at a predetermined price before, after, or by a certain future time or even at certain different times in the future. A bond call option constitutes a call option the seller and buyer of which are the bond holder and the issuer, respectively. The quoted yields on bonds reflect the price of a call option. Callable bonds (bonds with call options) generally offer higher yields than vanilla bonds (bonds with no call options). The opposite cousin of a callable bond is a puttable bond. This bond contains a embedded option that allows the holder to redeem his money. i.e., sell back his bond to the issuer, at an early date prior to maturity and at a predetermined price, certain times in the future. The puttable bond holder is said to have purchased the bond along with a put option on the bond. Puttable bonds provide lower yields than regular bonds because their prices are higher thanks to the embedded put option. - Interest Rate Caps/Floors An interest rate cap is typically designed to protect the holder from exposure to upward interest rate movements by putting a ceiling on such movements. It is actually a portfolio of individual caplets, each representing an option on the underlying interest rate index. In the same token, an interest rate floor is a tool used to protect the holder from adverse downward movements in interest rate. To that end, a lower limit is imposed on interest rate movements. A floor is similarly a series of individual floorlets, each being an option on the underlying index. Paid for upfront by a purchaser, the benefits of the cap or floor can be realized over its life. - Interest Rate Futures The most popular interest rate futures contract is the 3-month Eurodollar futures, which is a futures contract on a Eurodollar interest rate such as the 3-month (90-day) Eurodollar interest rate. In the US markets, it allows the holder to lock in an interest rate on US$ 1 million for a 3-month period in the future. - Interest Rate Swaps An interest rate swap is an exchange of a fixed rate of interest on a certain notional amount for a floating rate of interest on the same notional amount. For example, an interest rate swap entitles an institution to receive 6-month LIBOR rate and pay a fixed rate of 6% per year every six months for a period of 4 years on a notional principal of $200 million. This kind of swaps is typically used to convert a liability from fixed rate to floating rate or vice versa. It can also be used to convert an investment from fixed rate to floating rate or vice versa. Complexity Degree Classification With respect to complexity, there are mainly three categories of interest rate derivatives, namely: the vanilla, the quasi-vanilla, and the exotic. Each category is set apart by three essential factors: extent of liquidity, scope of tradability, and degree of complexity. The three structures or categories equip investors with helpful tools to meet customized cash flow requirements in varying circumstances and to take views on interest rate changes whether in terms of directional or volatility movements. 1- Vanilla Interest Rate Derivatives This category provides the basic building blocks for the other two categories. It constitutes plain and standard derivative products which usually trade on organized exchanges (and also on OTC markets) and are characterized by high liquidity. Those products include: - Interest rate option. - Bond option. - Fixed-for-floating interest rate swap. - Interest rate cap/interest rate floor. - Interest rate caption/interest rate floortion. - Interest rate futures. - Forward rate agreement. - Cross currency swap. 2- Quasi-vanilla Interest Rate Derivatives Fairly liquid derivatives make up this category. The following products belong to the quasi-vanilla type: - Arrears swap. - Corridor swap. - Corridor accrual swap. - Corridor accrual note/corridor accrual bond. - Constant maturity swap/constant maturity cap/ constant maturity floor. - Constant treasury swap/ constant treasury cap/ constant treasury floor. - Floating-for-floating interest rate swap. 3- Exotic Interest Rate Derivatives This category encompasses those interest rate derivatives which have low liquidity and are mainly traded over the counter. Examples are: - Cross currency swaption. - Bermudan swaption. - CMS steepener. - Target redemption note. - Snowball. - Inverse floater. - Ratchet cap/ratchet floor. - CMO strip. - Power reverse dual currency note. Most of exotic interest rate derivatives are based on two legs. The first is the funding leg which is composed of a series of fixed coupon payments or floating coupon payments in addition to a fixed basis spread. The second is the exotic coupon leg which is defined in view of past and current underlying reference rates such as LIBOR, FX rate, and CMS rate. Sometimes, and in some exotic derivatives (such as snowballs and target redemption notes, the second leg capitalizes on the tool’s past performance. The exotic coupon leg confers on the payer the right to terminate at any payment date. Sometimes, this leg comes with some non-standard add-ins like knock-out and range- accrual features. .
Recommended publications
  • Up to EUR 3,500,000.00 7% Fixed Rate Bonds Due 6 April 2026 ISIN
    Up to EUR 3,500,000.00 7% Fixed Rate Bonds due 6 April 2026 ISIN IT0005440976 Terms and Conditions Executed by EPizza S.p.A. 4126-6190-7500.7 This Terms and Conditions are dated 6 April 2021. EPizza S.p.A., a company limited by shares incorporated in Italy as a società per azioni, whose registered office is at Piazza Castello n. 19, 20123 Milan, Italy, enrolled with the companies’ register of Milan-Monza-Brianza- Lodi under No. and fiscal code No. 08950850969, VAT No. 08950850969 (the “Issuer”). *** The issue of up to EUR 3,500,000.00 (three million and five hundred thousand /00) 7% (seven per cent.) fixed rate bonds due 6 April 2026 (the “Bonds”) was authorised by the Board of Directors of the Issuer, by exercising the powers conferred to it by the Articles (as defined below), through a resolution passed on 26 March 2021. The Bonds shall be issued and held subject to and with the benefit of the provisions of this Terms and Conditions. All such provisions shall be binding on the Issuer, the Bondholders (and their successors in title) and all Persons claiming through or under them and shall endure for the benefit of the Bondholders (and their successors in title). The Bondholders (and their successors in title) are deemed to have notice of all the provisions of this Terms and Conditions and the Articles. Copies of each of the Articles and this Terms and Conditions are available for inspection during normal business hours at the registered office for the time being of the Issuer being, as at the date of this Terms and Conditions, at Piazza Castello n.
    [Show full text]
  • Interest Rate Options
    Interest Rate Options Saurav Sen April 2001 Contents 1. Caps and Floors 2 1.1. Defintions . 2 1.2. Plain Vanilla Caps . 2 1.2.1. Caplets . 3 1.2.2. Caps . 4 1.2.3. Bootstrapping the Forward Volatility Curve . 4 1.2.4. Caplet as a Put Option on a Zero-Coupon Bond . 5 1.2.5. Hedging Caps . 6 1.3. Floors . 7 1.3.1. Pricing and Hedging . 7 1.3.2. Put-Call Parity . 7 1.3.3. At-the-money (ATM) Caps and Floors . 7 1.4. Digital Caps . 8 1.4.1. Pricing . 8 1.4.2. Hedging . 8 1.5. Other Exotic Caps and Floors . 9 1.5.1. Knock-In Caps . 9 1.5.2. LIBOR Reset Caps . 9 1.5.3. Auto Caps . 9 1.5.4. Chooser Caps . 9 1.5.5. CMS Caps and Floors . 9 2. Swap Options 10 2.1. Swaps: A Brief Review of Essentials . 10 2.2. Swaptions . 11 2.2.1. Definitions . 11 2.2.2. Payoff Structure . 11 2.2.3. Pricing . 12 2.2.4. Put-Call Parity and Moneyness for Swaptions . 13 2.2.5. Hedging . 13 2.3. Constant Maturity Swaps . 13 2.3.1. Definition . 13 2.3.2. Pricing . 14 1 2.3.3. Approximate CMS Convexity Correction . 14 2.3.4. Pricing (continued) . 15 2.3.5. CMS Summary . 15 2.4. Other Swap Options . 16 2.4.1. LIBOR in Arrears Swaps . 16 2.4.2. Bermudan Swaptions . 16 2.4.3. Hybrid Structures . 17 Appendix: The Black Model 17 A.1.
    [Show full text]
  • Futures and Options Workbook
    EEXAMININGXAMINING FUTURES AND OPTIONS TABLE OF 130 Grain Exchange Building 400 South 4th Street Minneapolis, MN 55415 www.mgex.com [email protected] 800.827.4746 612.321.7101 Fax: 612.339.1155 Acknowledgements We express our appreciation to those who generously gave their time and effort in reviewing this publication. MGEX members and member firm personnel DePaul University Professor Jin Choi Southern Illinois University Associate Professor Dwight R. Sanders National Futures Association (Glossary of Terms) INTRODUCTION: THE POWER OF CHOICE 2 SECTION I: HISTORY History of MGEX 3 SECTION II: THE FUTURES MARKET Futures Contracts 4 The Participants 4 Exchange Services 5 TEST Sections I & II 6 Answers Sections I & II 7 SECTION III: HEDGING AND THE BASIS The Basis 8 Short Hedge Example 9 Long Hedge Example 9 TEST Section III 10 Answers Section III 12 SECTION IV: THE POWER OF OPTIONS Definitions 13 Options and Futures Comparison Diagram 14 Option Prices 15 Intrinsic Value 15 Time Value 15 Time Value Cap Diagram 15 Options Classifications 16 Options Exercise 16 F CONTENTS Deltas 16 Examples 16 TEST Section IV 18 Answers Section IV 20 SECTION V: OPTIONS STRATEGIES Option Use and Price 21 Hedging with Options 22 TEST Section V 23 Answers Section V 24 CONCLUSION 25 GLOSSARY 26 THE POWER OF CHOICE How do commercial buyers and sellers of volatile commodities protect themselves from the ever-changing and unpredictable nature of today’s business climate? They use a practice called hedging. This time-tested practice has become a stan- dard in many industries. Hedging can be defined as taking offsetting positions in related markets.
    [Show full text]
  • Master Thesis the Use of Interest Rate Derivatives and Firm Market Value an Empirical Study on European and Russian Non-Financial Firms
    Master Thesis The use of Interest Rate Derivatives and Firm Market Value An empirical study on European and Russian non-financial firms Tilburg, October 5, 2014 Mark van Dijck, 937367 Tilburg University, Finance department Supervisor: Drs. J.H. Gieskens AC CCM QT Master Thesis The use of Interest Rate Derivatives and Firm Market Value An empirical study on European and Russian non-financial firms Tilburg, October 5, 2014 Mark van Dijck, 937367 Supervisor: Drs. J.H. Gieskens AC CCM QT 2 Preface In the winter of 2010 I found myself in the heart of a company where the credit crisis took place at that moment. During a treasury internship for Heijmans NV in Rosmalen, I experienced why it is sometimes unescapable to use interest rate derivatives. Due to difficult financial times, banks strengthen their requirements and the treasury department had to use different mechanism including derivatives to restructure their loans to the appropriate level. It was a fascinating time. One year later I wrote a bachelor thesis about risk management within energy trading for consultancy firm Tensor. Interested in treasury and risk management I have always wanted to finish my finance study period in this field. During the master thesis period I started to work as junior commodity trader at Kühne & Heitz. I want to thank Kühne & Heitz for the opportunity to work in the trading environment and to learn what the use of derivatives is all about. A word of gratitude to my supervisor Drs. J.H. Gieskens for his quick reply, well experienced feedback that kept me sharp to different levels of the subject, and his availability even in the late hours after I finished work.
    [Show full text]
  • Seeking Income: Cash Flow Distribution Analysis of S&P 500
    RESEARCH Income CONTRIBUTORS Berlinda Liu Seeking Income: Cash Flow Director Global Research & Design Distribution Analysis of S&P [email protected] ® Ryan Poirier, FRM 500 Buy-Write Strategies Senior Analyst Global Research & Design EXECUTIVE SUMMARY [email protected] In recent years, income-seeking market participants have shown increased interest in buy-write strategies that exchange upside potential for upfront option premium. Our empirical study investigated popular buy-write benchmarks, as well as other alternative strategies with varied strike selection, option maturity, and underlying equity instruments, and made the following observations in terms of distribution capabilities. Although the CBOE S&P 500 BuyWrite Index (BXM), the leading buy-write benchmark, writes at-the-money (ATM) monthly options, a market participant may be better off selling out-of-the-money (OTM) options and allowing the equity portfolio to grow. Equity growth serves as another source of distribution if the option premium does not meet the distribution target, and it prevents the equity portfolio from being liquidated too quickly due to cash settlement of the expiring options. Given a predetermined distribution goal, a market participant may consider an option based on its premium rather than its moneyness. This alternative approach tends to generate a more steady income stream, thus reducing trading cost. However, just as with the traditional approach that chooses options by moneyness, a high target premium may suffocate equity growth and result in either less income or quick equity depletion. Compared with monthly standard options, selling quarterly options may reduce the loss from the cash settlement of expiring calls, while selling weekly options could incur more loss.
    [Show full text]
  • Calls, Puts and Select Alls
    CIMA P3 SECTION D – MANAGING FINANCIAL RISK THE PUTS, THE CALLS AND THE DREADED ‘SELECT ALLs’ Example long form to OT approach Here is my favourite long form question on Interest rate risk management: Assume you are the Treasurer of AB, a large engineering company, and that it is now May 20X4. You have forecast that the company will need to borrow £2 million in September 20X4 for 6 months. The need for finance will arise because the company has extended its credit terms to selected customers over the summer period. The company’s bank currently charges customers such as AB plc 7.5% per annum interest for short-term unsecured borrowing. However, you believe interest rates will rise by at least 1.5 percentage points over the next 6 months. You are considering using one of four alternative methods to hedge the risk: (i) A traded interest rate option (cap only); or (ii) A traded interest rate option (cap and floor); or (iii) Forward rate agreements; or (iv) Interest rate futures; or You can purchase an interest rate cap at 93.00 for the duration of the loan to be guaranteed. You would have to pay a premium of 0.2% of the amount of the loan. For (ii) as part of the arrangement, the company can buy a traded floor at 94.00. Required: Discuss the features of using each of the four alternative methods of hedging the interest rate risk, apply to AB and advise on how each might be useful to AB, taking all relevant and known information into account.
    [Show full text]
  • An Analysis of OTC Interest Rate Derivatives Transactions: Implications for Public Reporting
    Federal Reserve Bank of New York Staff Reports An Analysis of OTC Interest Rate Derivatives Transactions: Implications for Public Reporting Michael Fleming John Jackson Ada Li Asani Sarkar Patricia Zobel Staff Report No. 557 March 2012 Revised October 2012 FRBNY Staff REPORTS This paper presents preliminary fi ndings and is being distributed to economists and other interested readers solely to stimulate discussion and elicit comments. The views expressed in this paper are those of the authors and are not necessarily refl ective of views at the Federal Reserve Bank of New York or the Federal Reserve System. Any errors or omissions are the responsibility of the authors. An Analysis of OTC Interest Rate Derivatives Transactions: Implications for Public Reporting Michael Fleming, John Jackson, Ada Li, Asani Sarkar, and Patricia Zobel Federal Reserve Bank of New York Staff Reports, no. 557 March 2012; revised October 2012 JEL classifi cation: G12, G13, G18 Abstract This paper examines the over-the-counter (OTC) interest rate derivatives (IRD) market in order to inform the design of post-trade price reporting. Our analysis uses a novel transaction-level data set to examine trading activity, the composition of market participants, levels of product standardization, and market-making behavior. We fi nd that trading activity in the IRD market is dispersed across a broad array of product types, currency denominations, and maturities, leading to more than 10,500 observed unique product combinations. While a select group of standard instruments trade with relative frequency and may provide timely and pertinent price information for market partici- pants, many other IRD instruments trade infrequently and with diverse contract terms, limiting the impact on price formation from the reporting of those transactions.
    [Show full text]
  • The Promise and Peril of Real Options
    1 The Promise and Peril of Real Options Aswath Damodaran Stern School of Business 44 West Fourth Street New York, NY 10012 [email protected] 2 Abstract In recent years, practitioners and academics have made the argument that traditional discounted cash flow models do a poor job of capturing the value of the options embedded in many corporate actions. They have noted that these options need to be not only considered explicitly and valued, but also that the value of these options can be substantial. In fact, many investments and acquisitions that would not be justifiable otherwise will be value enhancing, if the options embedded in them are considered. In this paper, we examine the merits of this argument. While it is certainly true that there are options embedded in many actions, we consider the conditions that have to be met for these options to have value. We also develop a series of applied examples, where we attempt to value these options and consider the effect on investment, financing and valuation decisions. 3 In finance, the discounted cash flow model operates as the basic framework for most analysis. In investment analysis, for instance, the conventional view is that the net present value of a project is the measure of the value that it will add to the firm taking it. Thus, investing in a positive (negative) net present value project will increase (decrease) value. In capital structure decisions, a financing mix that minimizes the cost of capital, without impairing operating cash flows, increases firm value and is therefore viewed as the optimal mix.
    [Show full text]
  • Modeling VXX
    Modeling VXX Sebastian A. Gehricke Department of Accountancy and Finance Otago Business School, University of Otago Dunedin 9054, New Zealand Email: [email protected] Jin E. Zhang Department of Accountancy and Finance Otago Business School, University of Otago Dunedin 9054, New Zealand Email: [email protected] First Version: June 2014 This Version: 13 September 2014 Keywords: VXX; VIX Futures; Roll Yield; Market Price of Variance Risk; Variance Risk Premium JEL Classification Code: G13 Modeling VXX Abstract We study the VXX Exchange Traded Note (ETN), that has been actively traded in the New York Stock Exchange in recent years. We propose a simple model for the VXX and derive an analytical expression for the VXX roll yield. The roll yield of any futures position is the return not due to movements of the underlying, in commodity futures it is often called the cost of carry. Using our model we confirm that the phenomena of the large negative returns of the VXX, as first documented by Whaley (2013), which we call the VXX return puzzle, is due to the predominantly negative roll yield as proposed but never quantified in the literature. We provide a simple and robust estimation of the market price of variance risk which uses historical VXX returns. Our VXX price model can be used to study the price of options written on the VXX. Modeling VXX 1 1 Introduction There are three major risk factors which are traded in financial markets: market risk which is traded in the stock market, interest rate risk which is traded in the bond markets and interest rate derivative markets, and volatility risk which up until recently was only traded indirectly in the options market.
    [Show full text]
  • International Harmonization of Reporting for Financial Securities
    International Harmonization of Reporting for Financial Securities Authors Dr. Jiri Strouhal Dr. Carmen Bonaci Editor Prof. Nikos Mastorakis Published by WSEAS Press ISBN: 9781-61804-008-4 www.wseas.org International Harmonization of Reporting for Financial Securities Published by WSEAS Press www.wseas.org Copyright © 2011, by WSEAS Press All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press. All papers of the present volume were peer reviewed by two independent reviewers. Acceptance was granted when both reviewers' recommendations were positive. See also: http://www.worldses.org/review/index.html ISBN: 9781-61804-008-4 World Scientific and Engineering Academy and Society Preface Dear readers, This publication is devoted to problems of financial reporting for financial instruments. This branch is among academicians and practitioners widely discussed topic. It is mainly caused due to current developments in financial engineering, while accounting standard setters still lag. Moreover measurement based on fair value approach – popular phenomenon of last decades – brings to accounting entities considerable problems. The text is clearly divided into four chapters. The introductory part is devoted to the theoretical background for the measurement and reporting of financial securities and derivative contracts. The second chapter focuses on reporting of equity and debt securities. There are outlined the theoretical bases for the measurement, and accounting treatment for selected portfolios of financial securities.
    [Show full text]
  • Derivative Valuation Methodologies for Real Estate Investments
    Derivative valuation methodologies for real estate investments Revised September 2016 Proprietary and confidential Executive summary Chatham Financial is the largest independent interest rate and foreign exchange risk management consulting company, serving clients in the areas of interest rate risk, foreign currency exposure, accounting compliance, and debt valuations. As part of its service offering, Chatham provides daily valuations for tens of thousands of interest rate, foreign currency, and commodity derivatives. The interest rate derivatives valued include swaps, cross currency swaps, basis swaps, swaptions, cancellable swaps, caps, floors, collars, corridors, and interest rate options in over 50 market standard indices. The foreign exchange derivatives valued nightly include FX forwards, FX options, and FX collars in all of the major currency pairs and many emerging market currency pairs. The commodity derivatives valued include commodity swaps and commodity options. We currently support all major commodity types traded on the CME, CBOT, ICE, and the LME. Summary of process and controls – FX and IR instruments Each day at 4:00 p.m. Eastern time, our systems take a “snapshot” of the market to obtain close of business rates. Our systems pull over 9,500 rates including LIBOR fixings, Eurodollar futures, swap rates, exchange rates, treasuries, etc. This market data is obtained via direct feeds from Bloomberg and Reuters and from Inter-Dealer Brokers. After the data is pulled into the system, it goes through the rates control process. In this process, each rate is compared to its historical values. Any rate that has changed more than the mean and related standard deviation would indicate as normal is considered an outlier and is flagged for further investigation by the Analytics team.
    [Show full text]
  • Interest Rate Caps “Smile” Too! but Can the LIBOR Market Models Capture It?
    Interest Rate Caps “Smile” Too! But Can the LIBOR Market Models Capture It? Robert Jarrowa, Haitao Lib, and Feng Zhaoc January, 2003 aJarrow is from Johnson Graduate School of Management, Cornell University, Ithaca, NY 14853 ([email protected]). bLi is from Johnson Graduate School of Management, Cornell University, Ithaca, NY 14853 ([email protected]). cZhao is from Department of Economics, Cornell University, Ithaca, NY 14853 ([email protected]). We thank Warren Bailey and seminar participants at Cornell University for helpful comments. We are responsible for any remaining errors. Interest Rate Caps “Smile” Too! But Can the LIBOR Market Models Capture It? ABSTRACT Using more than two years of daily interest rate cap price data, this paper provides a systematic documentation of a volatility smile in cap prices. We find that Black (1976) implied volatilities exhibit an asymmetric smile (sometimes called a sneer) with a stronger skew for in-the-money caps than out-of-the-money caps. The volatility smile is time varying and is more pronounced after September 11, 2001. We also study the ability of generalized LIBOR market models to capture this smile. We show that the best performing model has constant elasticity of variance combined with uncorrelated stochastic volatility or upward jumps. However, this model still has a bias for short- and medium-term caps. In addition, it appears that large negative jumps are needed after September 11, 2001. We conclude that the existing class of LIBOR market models can not fully capture the volatility smile. JEL Classification: C4, C5, G1 Interest rate caps and swaptions are widely used by banks and corporations for managing interest rate risk.
    [Show full text]