Encyclopedia of Renaissance Philosophy, 2 Euclid: Reception in the Renaissance

Total Page:16

File Type:pdf, Size:1020Kb

Encyclopedia of Renaissance Philosophy, 2 Euclid: Reception in the Renaissance E Euclid: Reception in the Zamberti’s texts were published – at times in Renaissance combination. From the 1540s onward, revi- sions, selections, and vernacular translations Jens Høyrup began to appear, all based on the same two Section for Philosophy and Science Studies, texts. In 1572, however, Commandino made a Roskilde University, Roskilde, Denmark new Latin translation from Zamberti’s text and a sounder manuscript, and in 1574 Clavius Abstract produced a didactically oriented redaction. Although the Latin Middle Ages received a These two set the scene for the next two number of versions of Euclid’s Elements and centuries. several other Euclidean works, by the four- teenth century, only the Campanus redaction from c. 1259 was in circulation. In the four- Medieval Latin Background teenth and fifteenth century, this redaction was encountered by students of Arts or Medicine Until the beginnings of the twelfth century, the university faculties, even though we have scant Latin Middle Ages had access to Euclid only evidence that Euclid impressed their minds. In through Boethian translation of the Elements (or, the fifteenth century, other circles discovered quite likely, of an epitome of that work) – another him: Alberti took over the idea of elements, translation, also from c. 500 CE (Bohlin 2012), Regiomontanus used Euclid alongside Archi- seems not to have circulated. Part of the Boethian medes as an argument for the superiority of translation was conserved in coherent form – how mathematics over philosophy, and one Floren- much and for how long is disputed; Boethian tine abacus school tradition was able to give fragments were also integrated in gromatic writ- correct references to the Elements. ings (which served didactical purposes rather than A turn arrived with book printing. In 1482, surveying). the Campanus Elements were printed, and in In the twelfth century, a new translation 1498 and 1501, Giorgio Valla inserted pseudo- directly from the Greek was made (ed. Busard Euclidean and Euclidean material in two bulky 1987); it was used occasionally by Fibonacci volumes. A new though somewhat problematic (Folkerts 2006, IX) but left few traces beyond Latin translation from the Greek (including that. The translations from the Arabic made by also some minor works) was published by Gerard of Cremona (ed. Busard 1984) and Zamberti in 1505, and until 1540 a number of Hermann of Carinthia (ed. Busard 1967) also reprints or reeditions of Campanus’s and had limited circulation. The one prepared by © Springer Nature Switzerland AG 2019 M. Sgarbi (ed.), Encyclopedia of Renaissance Philosophy, https://doi.org/10.1007/978-3-319-02848-4_918-1 2 Euclid: Reception in the Renaissance Adelard of Bath, so-called Adelard I, on the other contact with the schools (“have seen its door”) and hand, became the basis for the didactically have looked into some vernacular booklets and adapted redaction known as Adelard II now wish to be held philosophers; they are char- (ed. Busard and Folkerts 1992), probably due to acterized by citing authors they have never seen – Robert of Chester (or “of Ketton”), and for the “Priscian, Aristotle, Cicero, Aristarchus, Euclid, epistemologically more sophisticated “Adelard Ptolemy, and others, most famous in the sciences” III” (ed. Busard 2001), probably the work of (Boccaccio 1564, 225r–v). This may be seen as a John of Tynemouth. Versions II and III were minimal list of those authors people of manners then used by Campanus of Novara for his redac- were supposed to know about. tion, written between 1255 and 1259 (ed. Busard In the fifteenth century, Leon Battista Alberti 2005). This redaction was well adapted to use in went beyond name-dropping, manuscript posses- the scholastic university, where at least part of the sion, and possibly manuscript reading. His Elements was supposed to enter the Arts curricu- Elementi de pittura (ed. Grayson 1973,109–129) lum (in some places alternatively with Book I of from c. 1435 (as well as the parallel Latin Witelo’s Perspectiva). Campanus Elements came Elementa) not only borrow the Euclidean title. to dominate until well into the sixteenth century. “For the sake of brevity,” they also open with All of these except the Hermann translation con- 5 sets of definitions, 22 in total in each of the tain 15 books, that is, they include a Book XIV 2 versions (not fully identical, however); for the written by Hypsicles and a Book XV written by rest they consist of specified elementary tasks Isidore of Miletus; of the Hermann translation, similar to Euclidean problems – firstly “to describe only 12 books are extant. a straight line from one point to another one.” As Euclid’s Data and Optics were also translated stated in the opening of De pictura (ed. Grayson in the twelfth century (from the Greek as well as 1973,6–107), Alberti does so borrowing from the Arabic) and so was the pseudo-Euclidean mathematicians but adapting what they say Catoptrics (Murdoch 1971, 444). The (probably about the merely intelligible to a topic interested pseudo-)Euclidean De ponderoso et levi only in that which can be seen. This is probably (ed. trans. Moody and Clagett 1952,21–31) was the first Renaissance example of use of the “geo- translated from the Arabic. However, none of metric method”–inspired by Euclid and not by these works had an influence coming close to Archimedes, whose axiomatic-deductive works that of the Elements. Alberti does not know. In 1564, Regiomontanus – first trained and active in the University of Vienna and then under the influence of Bessarion drawn into Ital- Early Humanist Interest and Knowledge ian Humanism – held a series of lectures on the astronomer al-Farghānī in Padua. The inaugural The fourteenth-century humanists who had lecture (ed. Schmeidler 1972,43–53), an oration frequented one of the integrated Arts and Medi- “explaining the mathematical sciences and their cine faculties of Italian universities or an Arts or a utility,” mixes the two currents of thought (Byrne Medicine faculty elsewhere were likely to have 2006) but also shows traces of that pride of Italian gained some familiarity with the first books of the mathematical practitioners which made them Elements, but sources give little more than hints claim priority of mathematics over philosophy. (cf. Siraisi 1973,74–77). A copy of the Campanus Regiomontanus uses Euclid and Archimedes for version in the library of S. Spirito in Florence that purpose – while philosophy is split into war- listed in a catalogue from 1451 may have been ring schools, “Euclid’s theorems have the same part of the legacy from Boccaccio (Ullman 1964, certitude today as a thousand years ago, and 285). In any case, in his Della genealogia de gli Archimedes’s inventions will call forth no less Dei,wefind an attack on those who have had brief Euclid: Reception in the Renaissance 3 admiration in a thousand centuries than pleasure Euclid in Print in us when reading them.” In the beginning of the oration, Euclid has already been declared “the The fifteenth century is also the time when some father of all geometers.” pure-bred humanists started collecting mathemat- We also find in this oration an early instance of ical manuscripts for their libraries (Alberti, though the mistaken identification of Euclid the geometer a humanist, was more than that and so was with the philosophers Euclid of Megara men- Regiomontanus) – most famously of all probably tioned in Plato’s Phaedo (and by Diogenes Bessarion. However, Euclid was not their first Laërtius). This Renaissance mistake may go choice. Accordingly, the first printed Elements back to Theodoros Melichita in the early four- (Campanus 1482) were made by Erhard Ratdolt teenth century (Heath 1926, 3) (there is no reason in Venice in Campanus’ version. Ratdolt was no to believe Theodoros to have been inspired by a humanist but an outstanding and innovative Ger- similar but oblique reference in Valerius Maximus man printer. His dedicatory letter to Duke nor to assume that the fifteenth-century Italian Mocenigo of Venice shows him to be more closely writers took over from Valerius something that linked to the university tradition than to the medieval authors, eager readers of his, had not humanist current. thought of ). But Latin humanist readers, finding This edition can be seen to have fulfilled a the name Euclid in Plato, can also have reinvented need. Ratdolt produced a reprint in the same the mistake independently. year, another one was made in Ulm in 1486, and Around the same time, two encyclopedic trea- a third was in Basel in 1491 (Cantor 1892, 266f ). tises coming from the Florentine abacus school The first Euclidean texts produced by a human- environment testify of interest in the Elements. ist are found in an anthology collected by Giorgio One is the anonymous Florence, Biblioteca Valla (1498,cvir–dvr) – namely, Elements XIV Nazionale Centrale, Palat. 573; the other is and XV – and thus actually pseudo-Euclidean; Benedetto da Firenze’s Trattato di praticha Valla presents the former as Euclid’s 14th book d’arismetrica from 1463, the autograph of which and the latter as Hypsicles’s interpretation of the is Siena, L.IV.21. Both are described with copious same book. Scattered properly Euclidean frag- extracts in Arrighi (2004). That they mention ments taken from a Greek manuscript were to be Euclid’s name is not very informative – many found in his posthumous encyclopedia De abacus books excelled in dropping names in the expetendis et fugiendis rebus opus (Valla 1501). way described by Boccaccio, often in fully mis- In this work he draws much on Proclus’s com- guided ways. But these two treatises are different: mentary to Elements I, which gives him access to they refer repeatedly correctly to Euclidean books Eudemus’s catalogue of geometers and to the (II, V, VII, IX, X), at times with quotations dating of Euclid to the time of the first Ptolemy; pointing (as could be expected) to Campanus.
Recommended publications
  • Euclid's Elements - Wikipedia, the Free Encyclopedia
    Euclid's Elements - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Euclid's_Elements Euclid's Elements From Wikipedia, the free encyclopedia Euclid's Elements (Ancient Greek: Στοιχεῖα Stoicheia) is a mathematical and geometric treatise Elements consisting of 13 books written by the ancient Greek mathematician Euclid in Alexandria c. 300 BC. It is a collection of definitions, postulates (axioms), propositions (theorems and constructions), and mathematical proofs of the propositions. The thirteen books cover Euclidean geometry and the ancient Greek version of elementary number theory. The work also includes an algebraic system that has become known as geometric algebra, which is powerful enough to solve many algebraic problems,[1] including the problem of finding the square root of a number.[2] With the exception of Autolycus' On the Moving Sphere, the Elements is one of the oldest extant Greek mathematical treatises,[3] and it is the oldest extant axiomatic deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science. The name 'Elements' comes from the plural of 'element'. The frontispiece of Sir Henry Billingsley's first According to Proclus the term was used to describe a English version of Euclid's Elements, 1570 theorem that is all-pervading and helps furnishing proofs of many other theorems. The word 'element' is Author Euclid, and translators in the Greek language the same as 'letter'. This Language Ancient Greek, translations suggests that theorems in the Elements should be seen Subject Euclidean geometry, elementary as standing in the same relation to geometry as letters number theory to language.
    [Show full text]
  • $Ectton of Tbe Ibttorv of Fiebicilne President-Sir STCLAIR THOMSON, M.D
    $ectton of tbe Ibttorv of fIebicilne President-Sir STCLAIR THOMSON, M.D. [Februar?y 7, 1934] William Harvey's Knowledge of Literature-Classical, Mediaval, Renaissance and Contemporary By D. F. FRASER-HARRIS, M.D., D.Sc., F.R.S.E. UNLESS we happen to have considered the subject, we can have no adequate notion of the extent of Harvey's acquaintance with Classical, Renaissance and Contemporary Literature. We are, perhaps, too apt to think of William Harvey as the author of that libellus aureus, the De Motu, and forget that he also wrote the De Generatione, on " Parturition," on the" Uterine Membranes and Humours," and on " Conception," throughout all of which he displayed the most intimate knowledge of the works of many authors who had views on topics of biological interest germane to the matters under discussion,L nor should we forget the lost writings of Harvey *on Medicine, Pathology, Respiration and Insects. Besides the works just mentioned, Harvey composed two "Disquisitions " to -Riolanus, full of references to Galen, and nine letters to contemporaries which have come down to us-one to Caspar Hofmann, of Nuremberg; one to Paul M. Slegel, of Hamburg; three to John Nardi, of Florence; one to R. Morison, of Paris; one to -J. D. Horst, of Hesse-Darmstadt and one to John Vlackveld, of Haarlem. It is in -the letter to Morison that Harvey has so much to say of Pecquet of Dieppe, the discoverer of the Receptaculum Chyli. There seems no room for doubt that Harvey could read in the original the Greek -and Latin authors to whom he refers.
    [Show full text]
  • Meditations the Philosophy Classic
    MEDITATIONS THE PHILOSOPHY CLASSIC MEDITATIONS THE PHILOSOPHY CLASSIC THE INTERNATIONAL BESTSELLER MARCUS AURELIUS WITH AN INTRODUCTION BY DONALD ROBERTSON MEDITATIONS Also available in the same series: Beyond Good and Evil: The Philosophy Classic by Friedrich Nietzsche (ISBN: 978-0-857-08848-2) On the Origin of Species: The Science Classic by Charles Darwin (ISBN: 978-0-857-08847-5) Tao Te Ching: The Ancient Classic by Lao Tzu (ISBN: 978-0-857-08311-1) The Art of War: The Ancient Classic by Sun Tzu (ISBN: 978-0-857-08009-7) The Game of Life and How to Play It: The Self-Help Classic by Florence Scovel Shinn (ISBN: 978-0-857-08840-6) The Interpretation of Dreams: The Psychology Classic by Sigmund Freud (ISBN: 978-0-857-08844-4) The Prince: The Original Classic by Niccolo Machiavelli (ISBN: 978-0-857-08078-3) The Prophet: The Spirituality Classic by Kahlil Gibran (ISBN: 978-0-857-08855-0) The Republic: The Influential Classic by Plato (ISBN: 978-0-857-08313-5) The Science of Getting Rich: The Original Classic by Wallace Wattles (ISBN: 978-0-857-08008-0) The Wealth of Nations: The Economics Classic by Adam Smith (ISBN: 978-0-857-08077-6) Think and Grow Rich: The Original Classic by Napoleon Hill (ISBN: 978-1-906-46559-9) MEDITATIONS The Philosophy Classic MARCUS AURELIUS With an Introduction by DONALD ROBERTSON This edition first published 2020 Introduction copyright © Donald Robertson, 2020 The material for Meditations is based on The Thoughts of the Emperor M. Aurelius Antoninus, translated by George Long, published by Bell & Daldy, London 1862, and is now in the public domain.
    [Show full text]
  • UNDERSTANDING MATHEMATICS to UNDERSTAND PLATO -THEAETEUS (147D-148B Salomon Ofman
    UNDERSTANDING MATHEMATICS TO UNDERSTAND PLATO -THEAETEUS (147d-148b Salomon Ofman To cite this version: Salomon Ofman. UNDERSTANDING MATHEMATICS TO UNDERSTAND PLATO -THEAETEUS (147d-148b. Lato Sensu, revue de la Société de philosophie des sciences, Société de philosophie des sciences, 2014, 1 (1). hal-01305361 HAL Id: hal-01305361 https://hal.archives-ouvertes.fr/hal-01305361 Submitted on 20 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNDERSTANDING MATHEMATICS TO UNDERSTAND PLATO - THEAETEUS (147d-148b) COMPRENDRE LES MATHÉMATIQUES POUR COMPRENDRE PLATON - THÉÉTÈTE (147d-148b) Salomon OFMAN Institut mathématique de Jussieu-PRG Histoire des Sciences mathématiques 4 Place Jussieu 75005 Paris [email protected] Abstract. This paper is an updated translation of an article published in French in the Journal Lato Sensu (I, 2014, p. 70-80). We study here the so- called ‘Mathematical part’ of Plato’s Theaetetus. Its subject concerns the incommensurability of certain magnitudes, in modern terms the question of the rationality or irrationality of the square roots of integers. As the most ancient text on the subject, and on Greek mathematics and mathematicians as well, its historical importance is enormous.
    [Show full text]
  • Pentagons in Medieval Architecture
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Építés – Építészettudomány 46 (3–4) 291–318 DOI: 10.1556/096.2018.008 PENTAGONS IN MEDIEVAL ARCHITECTURE KRISZTINA FEHÉR* – BALÁZS HALMOS** – BRIGITTA SZILÁGYI*** *PhD student. Department of History of Architecture and Monument Preservation, BUTE K II. 82, Műegyetem rkp. 3, H-1111 Budapest, Hungary. E-mail: [email protected] **PhD, assistant professor. Department of History of Architecture and Monument Preservation, BUTE K II. 82, Műegyetem rkp. 3, H-1111 Budapest, Hungary. E-mail: [email protected] ***PhD, associate professor. Department of Geometry, BUTE H. II. 22, Egry József u. 1, H-1111 Budapest, Hungary. E-mail: [email protected] Among regular polygons, the pentagon is considered to be barely used in medieval architectural compositions, due to its odd spatial appearance and difficult method of construction. The pentagon, representing the number five has a rich semantic role in Christian symbolism. Even though the proper way of construction was already invented in the Antiquity, there is no evidence of medieval architects having been aware of this knowledge. Contemporary sources only show approximative construction methods. In the Middle Ages the form has been used in architectural elements such as window traceries, towers and apses. As opposed to the general opinion supposing that this polygon has rarely been used, numerous examples bear record that its application can be considered as rather common. Our paper at- tempts to give an overview of the different methods architects could have used for regular pentagon construction during the Middle Ages, and the ways of applying the form.
    [Show full text]
  • The Geodetic Sciences in Byzantium
    The geodetic sciences in Byzantium Dimitrios A. Rossikopoulos Department of Geodesy and Surveying, Aristotle University of Thessaloniki [email protected] Abstract: Many historians of science consider that geodeasia, a term used by Aristotle meaning "surveying", was not particularly flourishing in Byzantium. However, like “lo- gistiki” (practical arithmetic), it has never ceased to be taught, not only at public universi- ties and ecclesiastical schools, as well as by private tutors. Besides that these two fields had to do with problems of daily life, Byzantines considered them necessary prerequisite for someone who wished to study philosophy. So, they did not only confine themselves to copying and saving the ancient texts, but they also wrote new ones, where they were ana- lyzing their empirical discoveries and their technological achievements. This is the subject of this paper, a retrospect of the numerous manuscripts of the Byzantine period that refer to the development of geodesy both in teaching and practices of surveying, as well as to mat- ters relating to the views about the shape of the earth, the cartography, the positioning in travels and generally the sciences of mapping. Keywords: Geodesy, geodesy in Byzantium, history of geodesy, history of surveying, history of mathematics. Περίληψη: Πολλοί ιστορικοί των επιστημών θεωρούν ότι η γεωδαισία, όρος που χρησι- μοποίησε ο Αριστοτέλης για να ορίσει την πρακτική γεωμετρία, την τοπογραφία, δεν είχε ιδιαίτερη άνθιση στο Βυζάντιο. Ωστόσο, όπως και η “λογιστική”, δεν έπαψε ποτέ να διδά- σκεται όχι μόνο στα κοσμικά πανεπιστήμια, αλλά και στις εκκλησιαστικές σχολές, καθώς επίσης και από ιδιώτες δασκάλους. Πέρα από το ότι οι δύο αυτοί κλάδοι είχαν να κάνουν με προβλήματα της καθημερινής ζωής των ανθρώπων, οι βυζαντινοί θεωρούσαν την διδα- σκαλία τους απαραίτητη προϋπόθεση ώστε να μπορεί κανείς να παρακολουθήσει μαθήμα- τα φιλοσοφίας.
    [Show full text]
  • Babylonian Astral Science in the Hellenistic World: Reception and Transmission
    CAS® e SERIES Nummer 4 / 2010 Francesca Rochberg (Berkeley) Babylonian Astral Science in the Hellenistic World: Reception and Transmission Herausgegeben von Ludwig-Maximilians-Universität München Center for Advanced Studies®, Seestr. 13, 80802 München www.cas.lmu.de/publikationen/eseries Nummer 4 / 2010 Babylonian Astral Science in the Hellenistic World: Reception and Transmission Francesca Rochberg (Berkeley) In his astrological work the Tetrabiblos, the astronomer such as in Strabo’s Geography, as well as in an astrono- Ptolemy describes the effects of geography on ethnic mical text from Oxyrhynchus in the second century of character, claiming, for example, that due to their specific our era roughly contemporary with Ptolemy [P.Oxy. geographical location „The ...Chaldeans and Orchinians 4139:8; see Jones 1999, I 97-99 and II 22-23]. This have familiarity with Leo and the sun, so that they are astronomical papyrus fragment refers to the Orchenoi, simpler, kindly, addicted to astrology.” [Tetr. 2.3] or Urukeans, in direct connection with a lunar parameter Ptolemy was correct in putting the Chaldeans and identifiable as a Babylonian period for lunar anomaly Orchinians together geographically, as the Chaldeans, or preserved on cuneiform tablets from Uruk. The Kaldayu, were once West Semitic tribal groups located Babylonian, or Chaldean, literati, including those from in the parts of southern and western Babylonia known Uruk were rightly famed for astronomy and astrology, as Kaldu, and the Orchinians, or Urukayu, were the „addicted,” as Ptolemy put it, and eventually, in Greco- inhabitants of the southern Babylonian city of Uruk. He Roman works, the term Chaldean came to be interchan- was also correct in that he was transmitting a tradition geable with „astrologer.” from the Babylonians themselves, which, according to a Hellenistic Greek writers seeking to claim an authorita- Hellenistic tablet from Uruk [VAT 7847 obv.
    [Show full text]
  • Francis Bacon and the Transformation of Early-Modern Philosophy
    Francis Bacon and the Transformation of Early-Modern Philosophy STEPHEN GAUKROGER University of Sydney PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge cb2 2ru, UK 40 West 20th Street, New York, ny 10011-4211, USA 10 Stamford Road, Oakleigh, vic 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cup.org © Cambridge University Press 2001 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2001 Printed in the United States of America Typeface New Baskerville 10.25/13 pt. System QuarkXPress® [mg] A catalog record for this book is available from the British Library Library of Congress Cataloging in Publication Data Gaukroger, Stephen. Francis Bacon and the transformation of early-modern philosophy / Stephen Gaukroger. p. cm. Includes bibliographical references and index. isbn 0 521 80154 0 – isbn 0 521 80536 8 (pbk.) 1. Bacon, Francis, 1561–1626. 2. Philosophy, Modern – History. I. Title. b1198 .g38 2001 192 – dc21 00–063097 isbn 0 521 80154 0 hardback isbn 0 521 80536 8 paperback Contents Acknowledgments page ix References to Bacon’s works xi Prologue 1 1 The nature of Bacon’s project 6 From arcane learning to public knowledge 6 A via media
    [Show full text]
  • Apollonius of Pergaconics. Books One - Seven
    APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].
    [Show full text]
  • Medieval Mathematics
    Medieval Mathematics The medieval period in Europe, which spanned the centuries from about 400 to almost 1400, was largely an intellectually barren age, but there was significant scholarly activity elsewhere in the world. We would like to examine the contributions of five civilizations to mathematics during this time, four of which are China, India, Arabia, and the Byzantine Empire. Beginning about the year 800 and especially in the thirteenth and fourteenth centuries, the fifth, Western Europe, also made advances that helped to prepare the way for the mathematics of the future. Let us start with China, which began with the Shang dynasty in approximately 1,600 B. C. Archaeological evidence indicates that long before the medieval period, the Chinese had the idea of a positional decimal number system, including symbols for the digits one through nine. Eventually a dot may have been used to represent the absence of a value, but only during the twelfth century A. D. was the system completed by introducing a symbol for zero and treating it as a number. Other features of the Shang period included the use of decimal fractions, a hint of the binary number system, and the oldest known example of a magic square. The most significant book in ancient Chinese mathematical history is entitled The Nine Chapters on the Mathematical Art. It represents the contributions of numerous authors across several centuries and was originally compiled as a single work about 300 B. C. at the same time that Euclid was writing the Elements. However, in 213 B. C., a new emperor ordered the burning of all books written prior to his assumption of power eight years earlier.
    [Show full text]
  • Polygonal Numbers 1
    Polygonal Numbers 1 Polygonal Numbers By Daniela Betancourt and Timothy Park Project for MA 341 Introduction to Number Theory Boston University Summer Term 2009 Instructor: Kalin Kostadinov 2 Daniela Betancourt and Timothy Park Introduction : Polygonal numbers are number representing dots that are arranged into a geometric figure. Starting from a common point and augmenting outwards, the number of dots utilized increases in successive polygons. As the size of the figure increases, the number of dots used to construct it grows in a common pattern. The most common types of polygonal numbers take the form of triangles and squares because of their basic geometry. Figure 1 illustrates examples of the first four polygonal numbers: the triangle, square, pentagon, and hexagon. Figure 1: http://www.trottermath.net/numthry/polynos.html As seen in the diagram, the geometric figures are formed by augmenting arrays of dots. The progression of the polygons is illustrated with its initial point and successive polygons grown outwards. The basis of polygonal numbers is to view all shapes and sizes of polygons as numerical values. History : The concept of polygonal numbers was first defined by the Greek mathematician Hypsicles in the year 170 BC (Heath 126). Diophantus credits Hypsicles as being the author of the polygonal numbers and is said to have came to the conclusion that the nth a-gon is calculated by 1 the formula /2*n*[2 + (n - 1)(a - 2)]. He used this formula to determine the number of elements in the nth term of a polygon with a sides. Polygonal Numbers 3 Before Hypsicles was acclaimed for defining polygonal numbers, there was evidence that previous Greek mathematicians used such figurate numbers to create their own theories.
    [Show full text]
  • A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship@Claremont Journal of Humanistic Mathematics Volume 7 | Issue 2 July 2017 A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time John B. Little College of the Holy Cross Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Ancient History, Greek and Roman through Late Antiquity Commons, and the Mathematics Commons Recommended Citation Little, J. B. "A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time," Journal of Humanistic Mathematics, Volume 7 Issue 2 (July 2017), pages 269-293. DOI: 10.5642/ jhummath.201702.13 . Available at: https://scholarship.claremont.edu/jhm/vol7/iss2/13 ©2017 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time Cover Page Footnote This essay originated as an assignment for Professor Thomas Martin's Plutarch seminar at Holy Cross in Fall 2016.
    [Show full text]