Solar System Science with IRSA

Total Page:16

File Type:pdf, Size:1020Kb

Solar System Science with IRSA Solar System Science with IRSA L. Storrie-Lombardi L. M. Rebull Caltech/IPAC - IRSA DPS 48 - Pasadena 20 October 2016 hp://irsa.ipac.caltech.edu DPS 48 Pasadena • October 2016 • IRSA IRSA @ IPAC IPAC provides science opera1ons, data archives, and community support for astronomy and planetary science missions, with a special emphasis on infrared-submillimeter astronomy and exoplanet science. • Conducts Science Center funcLons for NASA mission • Carries out challenging data management tasks that enable and enhance the return from major projects such as Great Observatories or all-sky surveys • Supports NASA, NSF and privately funded projects • Provides award-winning media, outreach and educaon support • Is a vibrant environment for research, soUware engineering and operaons DPS 48 Pasadena • October 2016 • IRSA 2 DPS 48 Pasadena • October 2016 • IRSA 3 IRSA bo>om line … • IRSA has many different data sets of interest to Solar System observers • Observaons of objects: Spitzer, (NEO)WISE, “precovery” tool, … • Resources for planning observaons (FinderChart, ...) • Will be hosLng IRTF and SOFIA data too hp://irsa.ipac.caltech.edu DPS 48 Pasadena • October 2016 • IRSA 4 IRSA Mission • NASA’s premier archive for IR/submm data & tools • Enables cung edge research with ∘ MulLple high-quality space and ground-based data sets ∘ Unique data analysis and visualizaon tools At least 10% of all refereed astronomy journal ar4cles today use (at least in part) data that ul4mately come from IRSA. DPS 48 Pasadena • October 2016 • IRSA 5 IRSA Data & Tools • Curates ∼petabytes of images and billions of rows in catalogs • AcLve-mission archives (Spitzer, NEOWISE) ∘ Preparing for new missions (NEOCAM?) • New versions of exisLng data ∘ Planck, Herschel, Spitzer contributed data sets • Enable science with tools, VO, user support, mulL-wavelength sky, Lme domain … DPS 48 Pasadena • October 2016 • IRSA 6 7 IRSA’s YouTube Channel – More than 50 videos, including talks like this and other videos aimed at Solar System observers. 8 9 10 Spitzer • 3.6 and 4.5 µm imaging • Operang up to start of JWST science operaons – March 2019 • Can search for : ∘ Planned observaons of Solar System (“moving”) objects (tracking on object) ∘ Serendipitous observaons of Solar System objects (“accidently” caught: “precovery”) DPS 48 Pasadena • October 2016 • IRSA 11 WISE • Wide-field Infrared Survey Explorer. • 40 cm space-based IR telescope in Sun- synchronous polar orbit. • Survey mission, 3-22 μm • Data products: images and catalogs • Several different releases – you want any release with individual exposures. • NEOWISE moving target coadder DPS 48 Pasadena • October 2016 • IRSA 12 MOST • MOST = Moving Object Search Tool • Operang “under the hood” for Spitzer, (NEO)WISE, but can also access directly. ∘ Some PDS services also use MOST services. • Main use case: find serendipitous observaons of a moving target = precovery • MOST will idenLfy the specific data frames you may find of interest, but then you have to go get them from their respecLve archives. DPS 48 Pasadena • October 2016 • IRSA 13 PTF/ZTF • PTF = Palomar Transient Factory (& iPTF = intermediate PTF) • Ground-based (48” at Palomar) large-field (7.8 sq deg) imaging at R and g • PTF detecLons reported to MPC ∘ h>p://www.pt.caltech.edu/page/asteroids_data • ZTF = Zwicky Transient Facility coming online in 2017. DPS 48 Pasadena • October 2016 • IRSA 14 FinderChart • Complete redesign 2012 • Simultaneous access to 2MASS, WISE, and IRAS, DSS, SDSS (DR7) data (images and catalogs). • Survey missions (not exposures), and no SSO search per se, but good for examining fields where your object is/was/will be. • Images up to 1 square degree DPS 48 Pasadena • October 2016 • IRSA 15 Coming Soon to IRSA • IRTF – Infrared Telescope Facility, HI ∘ SPEX + ISHELL archive is inaugural data set; scheduled to go public when data being taken now go public (Fall 2017). More in 2018. ∘ Discussions underway regarding tools specifically for Solar System object data. • SOFIA – Stratospheric Observatory for Infrared Astronomy ∘ Calendar being worked out; will be home to all SOFIA data (public and proprietary). DPS 48 Pasadena • October 2016 • IRSA 16 IRSA bo>om line … • IRSA has many different data sets of interest to Solar System observers • Observaons of objects: Spitzer, (NEO)WISE, “precovery” tool, … • Resources for planning observaons (FinderChart, ...) • Will be hosLng IRTF and SOFIA data too hp://irsa.ipac.caltech.edu DPS 48 Pasadena • October 2016 • IRSA 17 .
Recommended publications
  • A Deep Search for Additional Satellites Around the Dwarf Planet
    Search for Additional Satellites around Haumea A Preprint typeset using LTEX style emulateapj v. 01/23/15 A DEEP SEARCH FOR ADDITIONAL SATELLITES AROUND THE DWARF PLANET HAUMEA Luke D. Burkhart1,2, Darin Ragozzine1,3,4, Michael E. Brown5 Search for Additional Satellites around Haumea ABSTRACT Haumea is a dwarf planet with two known satellites, an unusually high spin rate, and a large collisional family, making it one of the most interesting objects in the outer solar system. A fully self-consistent formation scenario responsible for the satellite and family formation is still elusive, but some processes predict the initial formation of many small moons, similar to the small moons recently discovered around Pluto. Deep searches for regular satellites around KBOs are difficult due to observational limitations, but Haumea is one of the few for which sufficient data exist. We analyze Hubble Space Telescope (HST) observations, focusing on a ten-consecutive-orbit sequence obtained in July 2010, to search for new very small satellites. To maximize the search depth, we implement and validate a non-linear shift-and-stack method. No additional satellites of Haumea are found, but by implanting and recovering artificial sources, we characterize our sensitivity. At distances between 10,000 km and 350,000 km from Haumea, satellites with radii as small as 10 km are ruled out, assuming∼ an albedo∼ (p 0.7) similar to Haumea. We also rule out satellites larger∼ than &40 km in most of the Hill sphere using≃ other HST data. This search method rules out objects similar in size to the small moons of Pluto.
    [Show full text]
  • Curriculum Vitae: Dr
    Curriculum Vitae: Dr. Yanga R. “Yan” Fernandez´ UniversityofCentralFlorida Ph: +1-407-8232325 Department of Physics Fax: +1-407-8235112 4000 Central Florida Blvd. Email: [email protected] Orlando, FL 32816-2385 U.S.A. Website: physics.ucf.edu/∼yfernandez/ Education University of Maryland, College Park, Ph.D. Astronomy, 1999 Dissertation: Physical Properties of Cometary Nuclei University of Maryland, College Park, M.S. Astronomy, 1995 California Institute of Technology, B.S. with Honors, Astronomy, 1993 Professional Experience and Appointments 2019 - present Professor, Department of Physics, University of Central Florida 2016 - present Associate Scientist, Florida Space Institute, University of Central Florida 2011 - 2019 Associate Professor, Department of Physics, University of Central Florida 2005 - 2011 Assistant Professor, Department of Physics, University of Central Florida 2002 - 2005 SIRTF/Spitzer Fellow, Institute for Astronomy, University of Hawai‘i 1999 - 2002 Scientific Researcher, Institute for Astronomy, University of Hawai‘i Honors and Awards • Asteroid (12225) Yanfernandez named in honor. • International Astronomical Union membership, awarded 2012. • SIRTF/Spitzer Fellowship, 2002-2005. • UCF Scroll & Quill Society membership, awarded 2017. External Funding • As PI, 16 grants totalling $1,337K. • As Co-PI or Co-I, 14 grants totalling $531K to YRF. Impact Indicators (as of April 22, 2021) • Google Scholar lists nearly 5500 citations all-time of refereed and unrefereed work. https://scholar.google.com/citations?user=wPjufFkAAAAJ&hl=en. • Astrophysics Data System has recorded about 3600 citations all-time of refereed and unrefereed work. https://tinyurl.com/mufdrktx. Y.R.Fern´andez CV April 2021 1 • Web of Science (WoS) has recorded over 3000 citations all-time of refereed work that is included in WoS.
    [Show full text]
  • Exploring Connections Between Neos and Meteoroid Streams
    Observers Meeting NEOCC observations with the ESA OGS, VLT, and LBT Marco Micheli ([email protected]) NEO Statistics ~ 13 700 known NEOs …of which… ~ 510 (4 %) have impact solutions (VIs) in the next century (according to NEODyS and Sentry) However… of those VIs: Only ~2 % have more than one apparition ~90 % are lost! We need to find a way to improve these numbers by: Prevent the new ones from being lost “Recover” some of the lost ones How to do it There are basically three ways to deal with this problem: Extend the observed arc at the discovery apparition Attempt wide-field recoveries at the next apparition Try to locate precovery observations in existing archives These goals can be achieved using: Large aperture telescopes Wide-field imagers Large repositories of astronomical images The observational network ~ 100 collaborators worldwide Plus all of you who More than a dozen telescopes with helped us over the various apertures years with your A wide range of observing techniques observations (astrometry, lightcurves, visual and IR Thank you! colors, spectroscopy, polarimetry, …) ESA Optical Ground Station (OGS) A 1.0 meter ESA telescope in Tenerife, Canary Islands. Originally designed for satellite optical communication experiments. We have 4 to 8 nights per month, around new Moon. ESA Optical Ground Station (OGS) Follow-up activities The OGS is one of the few follow-up facilities that can reach magnitude 22. In 2015 we have: Observed ~250 NEO observed (~20 per run) ~10-15 NEO candidates targeted every night (>50 % turn out to be
    [Show full text]
  • Instrumental Methods for Professional and Amateur
    Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A.
    [Show full text]
  • Asteroid Precovery. a Citizen-Science Project Using the Virtual Observatory
    Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9 - 13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and J. Gorgas (eds.) Asteroid precovery. A citizen-science project using the Virtual Observatory Carlos Rodrigo1;2, Enrique Solano1;2, and Rebeca Pulido1;2 1 Dpt. Astrofisica, CAB (INTA-CSIC), ESAC Campus. P.O. Box 78. 28691 Villanueva de la Ca~nada,Madrid, Spain 2 Spanish Virtual Observatory (SVO) Abstract Precovery is the process of finding an astronomical object in archive data taken before the discovery of the object. The Virtual Observatory project makes it much easier to access large collection of images in astronomical archives and, thus, opens the possibility to explore them to find more information about certain objects, for instance, Near Earth Asteroids. We have started a citizen-science project that combines some automatic algorithms, Virtual Observatory techniques and the participation of many people that, not being professional astronomers, help to find professional results and make a significant contribution to the accurate knowledge of the orbits of NEAs. The project started in July 2011 and during its first year more than 3000 registered users have collaborated to make more than 164.000 measurements corresponding to around 7600 archive images and 1000 different NEAs. As a result of this work, around 2300 new data, for more than 500 objects, have been submitted to the Minor Planet Center for publication. The great reception of the system as well as the results obtained makes it a valuable and reliable tool for improving the orbital parameters of Near Earth Asteroids.
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • Mining the ESO WFI and INT WFC Archives for Known Near Earth
    Astron. Nachr. / AN 000, No.00, 1–9 (0000)/ DOI please set DOI! Mining the ESO WFI and INT WFC archives for known Near Earth Asteroids. Mega-Precovery software ⋆ O. Vaduvescu1,2,3,⋆⋆, M. Popescu2,4,7, I. Comsa5, A. Paraschiv9,10, D. Lacatus9,10, A. Sonka6,7, A. Tudorica11,12, M. Birlan2, O. Suciu5,13, F. Char14, M. Constantinescu7, T. Badescu8,12, M. Badea8,11,12, D. Vidican7, C. Opriseanu7 1 Isaac Newton Group of Telescopes, Apartado de Correos 321, E-38700 Santa Cruz de la Palma, Canary Islands, Spain 2 IMCCE, Observatoire de Paris, 77 Avenue Denfert-Rochereau, 75014 Paris Cedex, France 3 Instituto de Astrofisica de Canarias, c/Via Lactea s/n, 38200 La Laguna, Tenerife, Spain 4 Polytechnic University of Bucharest, Faculty of Applied Sciences, Department of Physics, Bucharest, Romania 5 Babes-Bolyai University, Faculty of Mathematics and Informatics, 400084 Cluj-Napoca, Romania 6 Admiral Vasile Urseanu Observatory, B-dul Lascar Catargiu 21, sect 1, Bucharest, Romania 7 Bucharest Astroclub, B-dul Lascar Catargiu 21, sect 1, Bucharest, Romania 8 University of Bucharest, Faculty of Physics, Str. Atomistilor 405, 077125 Magurele - Ilfov, Romania 9 Institute of Geodynamics Sabba S. Stefanescu, Jean-Louis Calderon 19-21, Bucharest, Romania, RO-020032, Romania 10 Research Center for Atomic Physics and Astrophysics, Faculty of Physics, University of Bucharest, Atomistilor 405, CP Mg-11, 077125 Magurele - Ilfov, Romania 11 Bonn Cologne Graduate School of Physics and Astronomy, Germany 12 Rheinische-Friedrich-Wilhelms Universitaet Bonn, Argelander-Institut
    [Show full text]
  • Arxiv:2103.08788V1 [Astro-Ph.EP] 16 Mar 2021
    manuscript submitted to JGR: Planets 1I/`Oumuamua as an N2 ice fragment of an exo-Pluto surface: I. Size and Compositional Constraints Alan P. Jackson1∗, Steven J. Desch1† 1School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85087 Key Points: • A fragment of N2 ice would satisfy all known constraints on `Oumuamua's size, composition, and acceleration. • The presence of N2 ice in the solar system on Pluto makes it likely `Oumuamua is such a fragment • The existence of `exo-Plutos' in other stellar systems must be common. arXiv:2103.08788v1 [astro-ph.EP] 16 Mar 2021 ∗ORC-ID 0000-0003-4393-9520 †ORC-ID 0000-0002-1571-0836 Corresponding author: Alan P. Jackson, [email protected] {1{ manuscript submitted to JGR: Planets Abstract The origin of the interstellar object 1I/`Oumuamua has defied explanation. We perform calculations of the non-gravitational acceleration that would be experienced by bodies composed of a range of different ices and demonstrate that a body composed of N2 ice would satisfy the available constraints on the non-gravitational acceleration, size and albedo, and lack of detectable emission of CO or CO2 or dust. We find that `Oumuamua was small, with dimensions 45 m × 44 m × 7.5 m at the time of observation at 1.42 au from the Sun, with a high albedo of 0.64. This albedo is consistent with the N2 surfaces of bodies like Pluto and Triton. We estimate `Oumuamua was ejected about 0.4-0.5 Gyr ago from a young stellar system, possibly in the Perseus arm.
    [Show full text]
  • (LSST) Moving Object Pipeline System Design
    LSST Moving Object Pipeline System Design LDM-156 Date Large Synoptic Survey Telescope (LSST) Moving Object Pipeline System Design Jonathan Myers, Lynne Jones and Tim Axelrod LDM-156 October 7, 2013 1 LSST Moving Object Pipeline System Design LDM-156 Date Change Record Version Date Description Owner name 1 8/24/2011 Preliminary Design Review Version Jonathan Myers 2 10/7/2013 Final Design Review Version Jonathan Myers 2 Moving Object Pipeline System Design Jonathan Myers, Lynne Jones, Tim Axelrod ABSTRACT The Moving Object Pipeline System (MOPS) has two responsibilities within LSST Data Management. First, it is responsible for generating and managing the Moving Object data products. The Moving Objects are identified solar system objects with associated Keplerian orbits, errors, and detected sources associated with those solar system objects. The second responsibility of the MOPS is to predict future locations of moving objects in incoming images so that their sources may be associated with known objects; this will reduce the number of transient detections and prevent Alert Generation on detections of known Solar System objects. Contents 1 Overview 5 1.1 NightMOPS: Serving the Alert stream . 6 1.1.1 Overview . 6 1.1.2 Status Summary . 6 1.2 DayMOPS: Discovering and Managing Moving Objects . 7 1.2.1 Overview . 7 1.2.2 Status Summary . 10 2 The Linking Stages of DayMOPS 12 2.1 Linear and Quadratic and more: Models of Motion . 12 2.2 Building Tracklets : findTracklets . 14 2.2.1 Algorithm . 15 2.3 Merging Tracklets . 16 { 2 { 2.3.1 CollapseTracklets . 17 2.3.2 PurifyTracklets .
    [Show full text]
  • A DEEP SEARCH for ADDITIONAL SATELLITES AROUND the DWARF PLANET HAUMEA Luke D
    The Astronomical Journal, 151:162 (10pp), 2016 June doi:10.3847/0004-6256/151/6/162 © 2016. The American Astronomical Society. All rights reserved. A DEEP SEARCH FOR ADDITIONAL SATELLITES AROUND THE DWARF PLANET HAUMEA Luke D. Burkhart1,2, Darin Ragozzine1,3,4, and Michael E. Brown5 1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; [email protected] 2 Yale University, Department of Physics, 217 Prospect Street, New Haven, CT 06511, USA 3 University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611, USA 4 Florida Institute of Technology, Department of Physics and Space Sciences, 150 West University Boulevard, Melbourne, FL 32901, USA 5 California Institute of Technology, Division of Geological and Planetary Sciences, MC 150-21, Pasadena, CA 91125, USA Received 2015 July 10; accepted 2016 March 27; published 2016 May 27 ABSTRACT Haumea is a dwarf planet with two known satellites, an unusually high spin rate, and a large collisional family, making it one of the most interesting objects in the outer solar system. A fully self-consistent formation scenario responsible for the satellite and family formation is still elusive, but some processes predict the initial formation of many small moons, similar to the small moons recently discovered around Pluto. Deep searches for regular satellites around Kuiper belt objects are difficult due to observational limitations, but Haumea is one of the few for which sufficient data exist. We analyze Hubble Space Telescope (HST) observations, focusing on a 10- consecutive-orbit sequence obtained in 2010 July, to search for new very small satellites.
    [Show full text]
  • Arxiv:1302.5375V1 [Astro-Ph.IM] 21 Feb 2013 Srn Ah./AN / Nachr
    Astron. Nachr. / AN 999, No.88, 789–797 (2006) / DOI please set DOI! Precovery of near-Earth asteroids by a citizen-science project of the Spanish Virtual Observatory. E. Solano1,2,⋆, C. Rodrigo1,2, R. Pulido1,2, and B. Carry3 1 Centro de Astrobiolog´ıa (INTA-CSIC), Departamento de Astrof´ısica. Campus Villafranca. P.O. Box 78, E-28691 Vil- lanueva de la Ca˜nada, Madrid, Spain 2 Spanish Virtual Observatory 3 IMCCE, Observatoire de Paris, UPMC, CNRS, 77 Av. Denfert Rochereau 75014 Paris, France Received xx Dec 2012, accepted xxxxx Published online later Key words Asteroids – astronomical databases: miscellaneous This article describes a citizen-science project conducted by the Spanish Virtual Observatory (SVO) to improve the orbits of near-Earth asteroids (NEAs) using data from astronomical archives. The list of NEAs maintained at the Minor Planet Center (MPC) is checked daily to identify new objects or changes in the orbital parameters of already catalogued objects. Using NEODyS we compute the position and magnitude of these objects at the observing epochs of the 938 046 images comprising the Eigth Data Release of the Sloan Digitised Sky Survey (SDSS). If the object lies within the image bound- aries and the magnitude is brighter than the limiting magnitude, then the associated image is visually inspected by the project’s collaborators (the citizens) to confirm or discard the presence of the NEA. If confirmed, accurate coordinates and, sometimes, magnitudes are submitted to the MPC. Using this methodology, 3,226 registered users have made during the first fifteen months of the project more than 167,000 measurements which have improved the orbital elements of 551 NEAs (6% of the total number of this type of asteroids).
    [Show full text]
  • MASARYKOVA UNIVERZITA DIPLOMOVÁ PRACE Hledání
    MASARYKOVA UNIVERZITA Přírodovědecká fakulta Ustav teoretické fyziky a astrofyziky DIPLOMOVÁ PRACE Hledání předob jevových pozic transneptunických těles s použitím archivu teleskopu KLENOT Miloš Tichý Vedoucí diplomové práce: RNDr. Eduard Pittich, DrSc. Brno 2008 Děkuji RNDr. Eduardovi Pittichovi, DrSc. za podnětné připomínky a cenné rady, které vedly k vylepšení práce. Za důležité připomínky děkuji doc. RNDr. Zdeňkovi Mikuláškovi, CSc. Děkuji svým kolegům z Observatoře Klet' - Ing. Janě Tiché a Dr. Michalu Kočerovi - za vynikající spolupráci při získávání dat použitých v této práci. Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s použitím citovaných pramenů. Souhlasím se zapůjčováním práce a jejím zveřejňováním. V Brně dne 11. května 2008 Miloš Tichý 2 Abstrakt: Objevování a určování dráhových elementů transneptunických těles patří mezi významné součásti poznávání sluneční soustavy. Hledání předobjevo- vých pozorování slouží k zpřesnění drah těchto vzdálených objektů sluneční soustavy. Část nově objevovaných těles Kuiperova pásu je jasnější než my = 22m. Tato tělesa jsou vhodná pro nalezení předobjevových pozorování v archivu Projektu KLENOT Observatoře Klet'. Zorné pole jednotlivých snímků v ar­ chivu teleskopu KLENOT není velké (33 x 33 úhlových minut). Tento archiv nebyl doposud pro hledání předob jevových snímků transneptunických těles použit. V práci jsou představeny jak metody použité pro předobjevové hledání TNOs, tak i systém archivu Projektu KLENOT. Jsou zde prezentovány první zajímavé výsledky tohoto projektu, zejména nalezení předob jevových snímků obřího transneptunického tělesa 2005 FY9 a změření jeho přesných astrometrických pozic, které výsledně vedly k značnému zpřesnění jeho drá­ hových elementů. Klíčová slova: transneptunická tělesa, Kuiperův pás, předobjevová pozoro­ vání Abstract: Discovery and orbital determination of Trans-Neptunian objects (TNOs) is one of the most important part of the Solar System inventory.
    [Show full text]