Diffuse Knapweed (Centaurea Diffusa): Reproductive Thresholds, Population Ecology and Responses to the Introduction of the Buprestid Beetle Sphenoptera Jugoslavica

Total Page:16

File Type:pdf, Size:1020Kb

Diffuse Knapweed (Centaurea Diffusa): Reproductive Thresholds, Population Ecology and Responses to the Introduction of the Buprestid Beetle Sphenoptera Jugoslavica Diffuse Knapweed (Centaurea diffusa): Reproductive Thresholds, Population Ecology and Responses to the Introduction of the Buprestid Beetle Sphenoptera jugoslavica. By Robert David Powell B.Sc, The University of British Columbia, 1975 M.Sc, Dalhousie University, 1979 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Plant Science) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA December 1988 © Robert David Powell, 1988 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of PLANT SCIENCE The University of British Columbia Vancouver, Canada Date nFr.FMRFR ?Q, 1988 DE-6 (2/88) Abstract Diffuse knapweed (Centaurea diffusa), like other semelparous perennials, was found to have a minimum size requirement for flowering. This critical size conditions the plant's phenotypic response to variation in growth conditions. Experimentally crowded rosettes grew slowly, failed to reach the critical size and did not flower in the following season, whereas uncrowded rosettes grew rapidly, reached the critical size in a single year and flowered in the next. The proportion of plants that flowered and subsequently died in both field and experimental populations decreased with individual crowding. The effect of interference-related growth reduction was therefore to accentuate gaps in the population's spatial pattern. Interference-related mortality of seedlings and rosettes acted in the opposite direction. The three interference-related processes of recruitment, pre-reproductive and post-reproductive mortality determine the fine scale spatial pattern of the population, and its density. There is no theoretical basis for interpreting a shift toward regularity as evidence for interference. A model, proposed to explain the apparent ubiquity of critical size-dependent switching to reproductive development in semelparous perennials, shows that this adaptation maxi• mizes the intrinsic rate of increase of semelparous species subject to high juvenile mortality followed by low rosette mortality, seasonality, and extensive variability in rosette growth rates. The model suggests that biological control organisms might be chosen strategically to disrupt selection for the critical size. Age-structured field populations exhibit considerable spatial variation in density. To determine whether that variation could account for a significant proportion of the variability in rosette growth rates under field conditions, the growth rates of individual plants were observed and regressed against a series of 'crowding indices'. Two methods of delimiting a sample of neighbours for this purpose were compared. 'Circular sampling' defines neighbours as plants within a specified radius of a focal plant; 'polygonal sampling' defines neighbours as plants that share a boundary when the ground is partitioned into Dirichlet polygons. A simulation study of the sampling characteristics of the two methods in relation to the degree of aggregation in the population showed that polygon samples are statistically preferable ii in aggregated populations, but the two methods performed about equally, accounting for approximately 25% of the variance in the growth rates of rosettes in the field. The buprestid beetle Sphenoptera jugoslavica is the third insect established in Canada as a potential biological control for diffuse knapweed. The beetle population at the release site in British Columbia was monitored, and experiments were conducted to determine the beetle's effects on its host. S. jugoslavica reduces the survivorship of seedlings and rosettes, delays reproduction, and finally reduces seed output. Under favorable conditions the beetle can contribute to a significant reduction in knapweed population growth. Its effectiveness at the release site is limited by a phenological requirement for arrested plant growth during the oviposition period which leads to large fluctuations in the size of the beetle population, and only intermittent damage to the knapweed population. iii Table of Contents Page Abstract ii Table of Contents iv List of Tables vii List of Figures viii Acknowledgements x Introduction 1 Ecological Theory and the Biological Control of Weeds 1 The Biological Control of Diffuse Knapweed in British Columbia 4 Organization of The Thesis 6 Chapter I. The Role of Spatial Pattern in the Population Biology of Diffuse Knapweed Centaurea diffusa 9 Abstract 9 Introduction 9 Materials and Methods 11 Diffuse Knapweed 11 The Study Site 11 Field Data Collection 12 Spatial Analysis 14 A Spacing Experiment 15 Results 16 The Fate of Rosettes in the Field in Relation to Size 16 The Spacing Experiment 16 Spatial Pattern in the Field 19 The Fate of Rosettes in Relation to Nearest Neighbour Distances 22 Discussion and Conclusions 26 Recruitment 26 Rosette Mortality 29 Pre-reproductive Mortality 29 Chapter II. Why Is Flowering in Semelparous Perennials Dependent Upon a Size Threshold? 30 Abstract 30 Introduction 30 Explanations for the Critical Size Threshold in Semelparous Perennials 31 Why Have Semelparous Perennials Evolved Critical Size Thresholds? 34 Methods 35 The Life History of Centaurea diffusa 35 The Model 36 The Intrinsic Rate of Increase 39 Results 40 Conditions Selecting for Pure Size Dependence 43 Selection for Other Phenotypic Responses: Patterns of Rosette Survivorship .. 44 The Fitness of Genotypes in Relation to Variability in Individual Growth Rates 47 iv Discussion and Conclusions 51 Intrinsic Rate as a Measure of Fitness 51 Adaptations of Semelparous Perennials 53 An Hypothesis to Explain Size Threshold Dependent Switching 54 Phenotypic Thresholds and Reaction Norms, and Seasonality 54 Approaches to Testing the Hypothesis 55 Chapter III. Circular Neighborhoods, Polygonal Neighborhoods, and The Growth of Centaurea diffusa in Relation to Individual Crowding 58 Abstract 58 Introduction 58 Methods 60 Simulation Methods 60 Field Materials and Methods 63 Descriptions of Crowding 64 I: Circular Crowding Indices 64 II: Polygonal Crowding Indices 66 The Size of the Focal Plant 67 Results: Simulation Experiment 67 Numbers of Neighbors 68 Angular Dispersion of Neighbors 68 Field Results 70 Discussion 74 Predictions of Plant Performance Based on Indices of Crowding 74 The Sample Must Permit the Detection of Gaps and Edges 74 The Distinction Between Adjacent and Once Removed Neighbors 76 Circular and Polygonal Indices in Population Dynamic Models 77 Crowding and Rosette Growth in Diffuse Knapweed 79 Chapter IV. The Effect of Sphenoptera jugoslavica Obenb. (Col. Buprestidae) on Its Host Plant Centaurea diffusa Lam. (Compositae) 80 Abstract 80 Introduction 80 Efforts to Control Diffuse Knapweed 80 Life History and Phenology of the Beetle in Relation to its Host 81 Oviposition 83 Methods 83 The Distribution of Beetle Eggs in the Field 83 Oviposition Preference Tests 83 The Effect of Temperature on Oviposition 84 Results 85 Oviposition in the Field 85 Oviposition Preferences 85 The Effect of Temperature on Oviposition 89 Discussion 90 Larval Feeding 91 Methods 93 The Effect of Sphenoptera Root Damage on Rosette Growth 93 The Effect of Plant Size on Larval Survival 93 The Effect of Sphenoptera Damage on Plant Size and Seed Production 94 v Mortality of Rosettes Caused by Larvae 94 Results 95 Tie Effect of Sphenoptera Root Damage on Rosette Growth 95 The Effect of Plant Size on Larval Survival 97 The Effect of Sphenoptera Damage on Plant Size and Seed Production 98 Mortality of Rosettes Caused by Larvae 100 Discussion 102 Adult Feeding 104 Methods, 104 Feeding Preference Tests 104 The Effect of Temperature on Adult Feeding Rate 105 Seedling Mortality in Response to Drought and Herbivory 105 Results 106 Adult Feeding Preference Tests 106 The Effect of Temperature on Adult Feeding Rate 106 Seedling Mortality in Response to Drought and Herbivory 106 Discussion 107 How Much Damage Can Adult Feeding on Foliage Do? 107 Discussion and Conclusions 108 Conclusion 114 Literature Cited 119 Appendix I: Conditions for Pure Size Dependence 131 Appendix II: Critical rm Values 132 Appendix III: Fitness of Genotypes in Relation to Variation in Individual Growth Rates 132 Appendix IV: Limits of Integration to Calculate the Fitness of Size Depen• dent and Age Size Dependent Types 133 vi List of Tables Chapter I Table I The Relative Growth Rates of Rosettes Subject to Varying Degrees of Crowding 19 Table II The Fates of Seedlings and Established Plants in Relation to the Nearest Estab• lished Plant 25 Chapter IV Table III Contingency Analysis of Beetle Egg Presence, Leaf Angle, and Number of Leaves for Five Sites in the White Lake Basin 88 Table IV Oviposition Preference Tests 89 Table V The Effect of Root Damage on Rosette Growth 96 Table VI Growth as a Function of Size and Root Damage 96 Table VII The Effect of Root Damage on the Bolting Size 97 Table VIII The Effect of Sphenoptera Attack on Plant Size and Seed Production 100 Table IX Effects of Larvae on Rosette Mortality 101 Table X Root Crown Diameters
Recommended publications
  • Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO
    Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area August 2015 CNHP’s mission is to preserve the natural diversity of life by contributing the essential scientific foundation that leads to lasting conservation of Colorado's biological wealth. Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University 1475 Campus Delivery Fort Collins, CO 80523 (970) 491-7331 Report Prepared for: United States Air Force Academy Department of Natural Resources Recommended Citation: Smith, P., S. S. Panjabi, and J. Handwerk. 2015. Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Front Cover: Documenting weeds at the US Air Force Academy. Photos courtesy of the Colorado Natural Heritage Program © Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area El Paso County, CO Pam Smith, Susan Spackman Panjabi, and Jill Handwerk Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University Fort Collins, Colorado 80523 August 2015 EXECUTIVE SUMMARY Various federal, state, and local laws, ordinances, orders, and policies require land managers to control noxious weeds. The purpose of this plan is to provide a guide to manage, in the most efficient and effective manner, the noxious weeds on the US Air Force Academy (Academy) and Farish Recreation Area (Farish) over the next 10 years (through 2025), in accordance with their respective integrated natural resources management plans. This plan pertains to the “natural” portions of the Academy and excludes highly developed areas, such as around buildings, recreation fields, and lawns.
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS SUDAN January 2007 Forest Resources Development Service Working Paper FBS/31E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests – Sudan DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in the Sudan. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests – Sudan TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests and diseases................................................................................................. 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • Weed Biocontrol: Extended Abstracts from the 1997 Interagency Noxious-Weed Symposium
    Weed Biocontrol: Extended Abstracts from the 1997 Interagency Noxious-Weed Symposium Dennis Isaacson Martha H. Brookes Technical Coordinators U.S. Department of Agriculture Forest Service Forest Health Technology Enterprise Team Morgantown, WV and Oregon Department of Agriculture Salem, OR June 1999 ACKNOWLEDGMENTS Many of the tasks of organizing a symposium such as this — and there are many — are not obvious, and, if they are handled well, the effort that goes into them can easily be overlooked. Sherry Kudna of the Oregon Department of Agriculture Weed Control staff managed most of the arrangements and took care of many, many details, which helped the symposium run smoothly. We truly appreciate her many contributions. We also acknowledge the contributions of the presenters. They not only organized their own presentations and manuscripts, but also assisted with reviewing drafts of each other’s papers in the proceedings. Several of the presenters also covered their own expenses. Such dedication speaks well of their commitment to improving the practice of weed biocontrol. Both the Oregon State Office of the Bureau of Land Management and the USDA Forest Service made major contributions to supporting the symposium. Although several individuals from both organizations provided assistance, we especially note the encouragement and advice of Bob Bolton, Oregon Bureau of Land Management Weed Control Coordinator, and the willingness to help and financial support for publishing this document from Richard C. Reardon, Biocontrol/Biopesticides Program Manager, USDA Forest Service's Forest Health Technology Enterprise Team, Morgantown, WV. We thank Tinathan Coger for layout and design and Patricia Dougherty for printing advice and coordination of the manuscript We also thank Barbra Mullin, Montana State Department of Agriculture, who delivered the keynote address; Tami Lowry, Pacific Northwest Research Station, Corvallis, who helped format the document; and Eric Coombs, who provided the photographs of weeds and agents that convey the concepts of weed biocontrol.
    [Show full text]
  • Karyotype Analysis of Four Jewel-Beetle Species (Coleoptera, Buprestidae) Detected by Standard Staining, C-Banding, Agnor-Banding and CMA3/DAPI Staining
    COMPARATIVE A peer-reviewed open-access journal CompCytogen 6(2):Karyotype 183–197 (2012) analysis of four jewel-beetle species (Coleoptera, Buprestidae) .... 183 doi: 10.3897/CompCytogen.v6i2.2950 RESEARCH ARTICLE Cytogenetics www.pensoft.net/journals/compcytogen International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Karyotype analysis of four jewel-beetle species (Coleoptera, Buprestidae) detected by standard staining, C-banding, AgNOR-banding and CMA3/DAPI staining Gayane Karagyan1, Dorota Lachowska2, Mark Kalashian1 1 Institute of Zoology of Scientific Center of Zoology and Hydroecology, National Academy of Sciences of Armenia, P. Sevak 7, Yerevan 0014, Armenia 2 Department of Entomology, Institute of Zoology Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland Corresponding author: Gayane Karagyan ([email protected]) Academic editor: Robert Angus | Received 15 February 2012 | Accepted 17 April 2012 | Published 27 April 2012 Citation: Karagyan G, Lachowska D, Kalashian M (2012) Karyotype analysis of four jewel-beetle species (Coleoptera, Buprestidae) detected by standard staining, C-banding, AgNOR-banding and CMA3/DAPI staining. Comparative Cytogenetics 6(2): 183–197. doi: 10.3897/CompCytogen.v6i2.2950 Abstract The male karyotypes of Acmaeodera pilosellae persica Mannerheim, 1837 with 2n=20 (18+neoXY), Sphe- noptera scovitzii Faldermann, 1835 (2n=38–46), Dicerca aenea validiuscula Semenov, 1895 – 2n=20 (18+Xyp) and Sphaerobothris aghababiani Volkovitsh et Kalashian, 1998 – 2n=16 (14+Xyp) were studied using conventional staining and different chromosome banding techniques: C-banding, AgNOR-band- ing, as well as fluorochrome Chromomycin 3A (CMA3) and DAPI. It is shown that C-positive segments are weakly visible in all four species which indicates a small amount of constitutive heterochromatin (CH).
    [Show full text]
  • Contribution to the Knowledge of the Jewel Beetles (Coleoptera: Buprestidae) Fauna of Kurdistan Province of Iran. Part 1. Subfam
    Кавказский энтомол. бюллетень 8(2): 232–239 © CAUCASIAN ENTOMOLOGICAL BULL. 2012 Contribution to the knowledge of the jewel beetles (Coleoptera: Buprestidae) fauna of Kurdistan Province of Iran. Part 1. Subfamilies julodinae, Polycestinae and Chrysochroinae Материалы к изучению фауны жуков-златок (Coleoptera: Buprestidae) провинции Курдистан, Иран. Часть 1. Подсемейства Julodinae, Polycestinae и Chrysochroinae H. Ghobari1, M.Yu. Kalashian2, J. Nozari1 Х. Гобари1, М.Ю. Калашян2, Дж. Нозари1 1Department of Plant Protection, University College of Agriculture and Natural Resources, University of Tehran, PO Box 4111, Karaj, Iran. E-mail: [email protected], [email protected] 2Institute of Zoology, Scientific Centre of Zoology and Hydroecology of the National Academy of Sciences of Armenia, P. Sevak str., 7, Yerevan 0014 Armenia. Email: [email protected] 1Отдел защиты растений Университетского колледжа сельского хозяйства и природных ресурсов Тегеранского университета, PO Box 4111, Карадж, Иран 2Иститут Зоологии, Научный центр зоологии и гидроэкологии НАН РА, ул. П. Севака, 7, Ереван 0014 Армения Key words: Coleoptera, Buprestidae, Iran, Kurdistan, fauna, new records. Ключевые слова: Coleoptera, Buprestidae, Иран, Курдистан, фауна, новые указания. Abstract. 60 species of jewel-beetles (Coleoptera: and some identifications are obviously wrong. So, faunistic Buprestidae) belonging to three subfamilies (Julodinae, composition of the fauna of Kurdistan has to be clarified. In Polycestinae and Chrysochroinae) were collected in this paper the results of study of material collected by one Kurdistan Province of Iran during 2009–2011. Of these of the authors (H. Ghobari) in 2009–2011 in the province 7 species from 6 genera are new for Iranian fauna and are presented; in general 60 species were collected, 7 of 41 species from 9 genera are new for Kurdistan them are new for Iranian fauna and 41 – for the fauna of Province.
    [Show full text]
  • Enhancing the Effectiveness of Biological Control Programs Of
    Enhancing the Effectiveness of Biological Control Programs of Invasive Species by Utilizing an Integrated Pest Management Approach Approved by ISAC on October 30, 2015 Preface Invasive species threaten agriculture and natural ecosystems. Methods for control and management have evolved over time, and often rely on combinations of techniques and long-term planning. This white paper discusses the benefits and increased potential for long-term success of invasive species biological control programs when utilizing an Integrated Pest Management (IPM) approach. Integrated control was first defined by Stern et al. (1959) as applied insect pest control, which combines and integrates biological control and chemical control to maintain a pest population below an economic injury level. Integrated control has evolved over time to include all taxa, as well as prevention, other control, and ecological, health and economic aspects. IPM emphasizes long-term prevention of damage through the utilization of various techniques such as chemical control, biological control, physical control, habitat manipulation, modification of cultural practices and resistant varieties using combinations that are compatible and produce the desired outcome. An IPM approach can be implemented in agricultural, residential, and natural areas (www.ipm.ucdavis.edu/GENERAL/ipmdefinition.html). Biological control is an integral component of IPM programs and has far greater potential for success when used in an IPM system. Land managers rely on information provided by researchers during the time period leading up to the release of the biological control agent (generally an insect or pathogen), to help guide them on the best procedures, approaches and use of the agent. As the number of biological control programs increase, information from successful and unsuccessful programs can be used to increase the chances for the successful establishment of biological control agents in the future.
    [Show full text]
  • Biocontrol Field Guide for Utah
    Special Thanks : Many of the pictures in this field guide came from Jerry Caldwell and Morgan Mendenhall. Thank you for the use of your excellent pictures. Also to: Morgan Mendenhall for editing this field guide. Jerry Caldwell, Tooele County Weed Supervisor, for your help and support. Phil McCraley, Salt Lake County Weed Supervisor, for your encouragement and enthusiasm. Sage Fitch for your advice and assistance. Bonneville CWMA 2 Table of Contents : Dalmatian Toadflax ...................................................................................... 7 Mecinus janthinus ................................................................................ 9 Field Bindweed .......................................................................................... 11 Aceria malherbae ............................................................................... 13 Diffuse Knapweed ...................................................................................... 15 Spotted Knapweed ..................................................................................... 17 Squarrose Knapweed ................................................................................ 19 Cyphocleonus achates ....................................................................... 21 Larinus minutus ................................................................................. 23 Sphenoptera jugoslavica ................................................................... 25 Urophora affinis ...............................................................................
    [Show full text]
  • Myers, J.H. 2007. How Many and What Kind of Biological
    BiologicalJ.H. Myers Control of Diffuse Knapweed 9 How Many and What Kind of Agents for the Biological Control of Weeds: a Case Study with Diffuse Knapweed JUDITH H. MYERS Departments of Zoology and Agroecology, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia V6T 1Z4, Canada, [email protected] Overview: Following its introduction to North America, diffuse knapweed came to occupy millions of hectares of rangeland. This is the story of biological control efforts done over 25 years before an effective agent was introduced. The moral is that for optimal success of biological control, thorough work should be done to understand the ecology of the target weed and its natural enemies. Effective agents are unlikely to be abundant in the native habitat, but are likely to be able to kill the plants in the exotic habitat. Introduction Classical biological control of weeds is the introduction of natural enemies from native areas to exotic sites where their host plants have become invasive and detrimental (overview in Myers and Bazely, 2003). Three important questions that confront biological control practitioners are: (i) which species of agent are safe to introduce; (ii) what types of agents are the most likely to be effective con- trols; and (iii) how many different species of agents should be introduced? Here I describe the biological control programme against diffuse knapweed, Centaurea diffusa, which involved the introduction of 13 species and the establishment of 11 agents over a 20-year period (Bourchier et al., 2002). This is a story of a programme based on the premise that multiple species of agents would be nec- essary for successful control (Harris, 1981).
    [Show full text]
  • Enhancing the Effectiveness of Biological Control Programs of Invasive Species by Utilizing an Integrated Pest Management Approa
    U.S. Department of the Interior Oce of the Secretary C Street Washington, DC Enhancing the Effectiveness of Biological Control Programs of Invasive Species by Utilizing an Integrated Pest Management Approach Approved by isac on October 30, 2015 • the economic costs and benefits of anipm approach. Imple- PREFACE menting such efforts may increase the success of biological control efforts and the confidence of private and public land Invasive species threaten agriculture and natural ecosys- managers when making decisions about integrated invasive tems. Methods for control and management have evolved species management programs. over time, and often rely on combinations of techniques and This white paper will discuss: long-term planning. This white paper discusses the benefits and increased potential for long-term success of invasive spe- • benefits for biological control efforts through inclusion cies biological control programs when utilizing an Integrated in an ipm approach; Pest Management (ipm) approach. • partnership programs to facilitate the incorporation of Integrated control was first defined by Stern et al. (1959) as biological control in ipm programs of invasive species; applied insect pest control, which combines and integrates • incorporation of long-term stewardship in biological biological control and chemical control to maintain a pest control programs; population below an economic injury level. Integrated control • model program for integrated biological control of an has evolved over time to include all taxa, as well as prevention, invasive species; other control, and ecological, health, and economic aspects. • ecological approaches to maximize success of biological ipm emphasizes long-term prevention of damage through the control; utilization of various techniques such as chemical control, • genetic advances in biological control.
    [Show full text]
  • Field Guide to the Biological Control of Weeds in British Columbia
    forestryweeds7.qxd 11/14/99 7:42 PM Page 109 BEETLE Galerucella pusilla (Duftsschmid) (Coleoptera: Chrysomelidae) DESCRIPTION AND LIFE CYCLE Adults, 2±4 mm long, and larvae very closely resemble G. calmariensis. Refer to G. calmariensis photos for identification. Adults emerge from hibernation and feed on shoot tips and young leaves in April. Mating begins immediately, with egg laying starting approximately 1 week later and continuing until the end of July. Larvae hatch 12 days after egg laying; larvae develop over the next 2 weeks feeding first on leaf and flower buds and then on all parts of the plant in the later stages of development. Mature larvae leave the plant and pupate in leaf litter and the upper portion of the soil. Adults emerge 9±11 days later. Adults that emerge before August mate and lay eggs for a 1 month period. Adults feed on foliage and hibernate in the soil before winter. WEED ATTACKED Purple loosestrife. HABITAT Egg laying is strongly curtailed by low temperatures. Tolerates the variety of habitat conditions in which purple loosestrife is found. COLLECTION, SHIPPING, AND HANDLING Collect with the sweep net technique and use standard shipping and handling procedures. RELEASE Follow standard release procedures for insects. Take precautions not to dump the beetles in the water. MONITORING Determine presence by looking for adults on foliage in April or August. REFERENCE Blossey, B. and D. Schroeder. 1991. Study of potential biological control agents of purple loosestrife (Lythrum salicaria L.). Final Report. European Station Report. C.A.B. International Institute of Biological Control, Delemont, Switzerland.
    [Show full text]
  • Chapter 12. Biocontrol Arthropods: New Denizens of Canada's
    291 Chapter 12 Biocontrol Arthropods: New Denizens of Canada’s Grassland Agroecosystems Rosemarie De Clerck-Floate and Héctor Cárcamo Agriculture and Agri-Food Canada, Lethbridge Research Centre 5403 - 1 Avenue South, P.O. Box 3000 Lethbridge, Alberta, Canada T1J 4B1 Abstract. Canada’s grassland ecosystems have undergone major changes since the arrival of European agriculture, ranging from near-complete replacement of native biodiversity with annual crops to the effects of overgrazing by cattle on remnant native grasslands. The majority of the “agroecosystems” that have replaced the historical native grasslands now encompass completely new associations of plants and arthropods in what is typically a mix of introduced and native species. Some of these species are pests of crops and pastures and were accidentally introduced. Other species are natural enemies of these pests and were deliberately introduced as classical biological control (biocontrol) agents to control these pests. To control weeds, 76 arthropod species have been released against 24 target species in Canada since 1951, all of which also have been released in western Canada. Of these released species, 53 (70%) have become established, with 18 estimated to be reducing target weed populations. The biocontrol programs for leafy spurge in the prairie provinces and knapweeds in British Columbia have been the largest, each responsible for the establishment of 10 new arthropod species on rangelands. This chapter summarizes the ecological highlights of these programs and those for miscellaneous weeds. Compared with weed biocontrol on rangelands, classical biocontrol of arthropod crop pests by using arthropods lags far behind, mostly because of a preference to manage crop pests with chemicals.
    [Show full text]
  • Classical Biocontrol of Weeds: Its Definitions, Selection of Effective Agents, and Administrative-Political Problems1
    Reprinted with permission from: The Canadian Entomologist. 1991. 123:827-849. Published and copyrighted by: Entomological Society of Canada. Email: [email protected] Classical biocontrol of weeds: Its definitions, selection of effective agents, and 1 administrative-political problems P. HARRIS Abstract: Dilemmas in weed biocontrol are wide ranging. Even the term biological control is confusing as meanings may be restricted to the use of parasites and predators or extend to the use of all non-chemical means of control. Another problem is that two-thirds of the agents released do not become numerous enough to inflict major damage to the weed population, al- though this statistic is misleading as it includes agents costing little in pre- release studies where failure is of little consequence and those costing about two scientist years each, or currently about $400,000. Many of the suggestions for improvement are costly and time consuming. Delay is un- acceptable where agent release is seen by sponsors as a mark of progress in a program likely to require 20 years and funding is difficult. Analysis of previous biocontrol attempts for attributes of “success” have been disap- pointing, partly because there are a number of steps involved, each with its own attributes. This paper recognizes four graded “success” steps and dis- cusses many agent selection methods. There are public demands for a change in emphasis from chemical to bio- logical control; but in the absence of effective enabling legislation, the practice of biocontrol can be legally and politically hazardous; biocontrol should be carried out by a multi-disciplinary team but it is usually as- signed to a single scientist; it needs to branch in new directions to remain scientifically stimulating, but this increases the risk of failure.
    [Show full text]