An Open Mind on Open Data the Move to Make Scientific Findings Transparent Can Be a Major Boon to Research, but It Can Be Tricky to Embrace the Change

Total Page:16

File Type:pdf, Size:1020Kb

An Open Mind on Open Data the Move to Make Scientific Findings Transparent Can Be a Major Boon to Research, but It Can Be Tricky to Embrace the Change CAREERS INTERDISCIPLINARITY Biology and economics NETWORKING How junior faculty members NATUREJOBS For the latest career combined to save the world p.119 can recruit top staff go.nature.com/rygpmc listings and advice www.naturejobs.com DATA SHARING An open mind on open data The move to make scientific findings transparent can be a major boon to research, but it can be tricky to embrace the change. BY VIRGINIA GEWIN junior researchers, who are carving out their data-sharing requirements, and as a growing niche. On the one hand, the drive to share is number of enthusiasts call for more openness, t is a movement building steady momentum: gathering official steam. Since 2013, global junior researchers must find their place between a call to make research data, software code scientific bodies — including the European adopters and those who continue to hold out, and experimental methods publicly avail- Commission, the US Office of Science and even as they strive to launch their own careers. BAKER/GETTY ANDY Iable and transparent. A spirit of openness is Technology Policy and the Global Research One key challenge facing young scientists is gaining traction in the science community, and Council — have begun to back policies that sup- how to be open without becoming scientifi- is the only way, say advocates, to address a ‘crisis’ port increased public access to research. cally vulnerable. They must determine the risk in science whereby too few findings are success- On the other hand, scientists disagree about of jeopardizing a job offer or a collaboration fully reproduced. Furthermore, they say, it is the how much and when they should share data, proposal from those who are wary of — or best way for researchers to gather the range of and they debate whether sharing it is more likely unfamiliar with — open science. And they observations that are necessary to speed up to accelerate science and make it more robust, must learn how to capitalize on the move- discoveries or to identify large-scale trends. or to introduce vulnerabilities and problems. ment’s benefits, such as opportunities for more The open-data shift poses a conundrum for As more journals and funders adopt citations and a way to build a reputation 7 JANUARY 2016 | VOL 529 | NATURE | 117 © 2015 Macmillan Publishers Limited. All rights reserved CAREERS without the need for conventional metrics, and some require, a data-management plan of what’s happening in my lab.” such as publication in high-impact journals. that makes data available. The US National Researchers also point to the time sink that The nascent era of openness is best embodied Science Foundation is among these. “There is involved in preparing data for others to view. by the Transparency and Openness Promotion used to be no enforcement, but that’s chang- Once the data and associated materials appear (TOP) guidelines for journals, first published1 ing,” says Karthik Ram, a data scientist at the in a repository, answering questions and han- in Science by researchers at the Center for Open Berkeley Institute for Data Science in California dling complaints can take many hours. Science in Charlottesville, Virginia. Adoption of and co-founder of ROpenSci, which develops The time investment can present other the guidelines by a journal or organization signi- open-source software programmes. Some phil- problems. In some cases, Ram says, it may fies to the research community that it supports anthropic funders, including the Bill & Melinda be difficult for junior researchers to embrace transparency, openness and reproducibility Gates Foundation in Seattle, Washington, and openness when senior colleagues — many of (whether an experiment can be replicated by the Wellcome Trust in London, also mandate whom head tenure and promotion committees the original researcher or by someone else). open data from their grant recipients. — might scoff at what they may view as mis- Those tenets apply to all aspects of science, Others, such as the Gordon and Betty Moore placed energies. “I’ve heard this recently — that including experimental design, data sharing and Foundation in Palo Alto, California, encourage embracing the idea of open data and code makes the publication of null findings and replication sharing but do not require it. Still, the trend traditional academ- studies. As Nature went to press, 538 publishers is clear, says Carly Strasser, who oversees the “Open science, ics uncomfortable,” and journals — including Elsevier and Springer foundation’s Data-Driven Discovery Initiative. data sharing, says Ram. “The con- Nature — had signed up to the TOP guidelines, “Open science, data sharing, software sharing software cern seems to be that along with 57 organizations, among them the is the future of science,” she says. “It’s only sharing is open advocates don’t American Association for the Advancement of going to get more difficult to engage in science the future of spend their time Science, which publishes Science. without being open.” science.” being as productive But many young researchers, especially as possible.” A DRIVE TO REPRODUCE those who have not been mentored in open An open-science Some fields have embraced open data more science, are uncertain about whether to share stance can also add complexity to a collabora- than others. Researchers in psychology, a field or to stay private. Graduate students and post- tion. Kate Ratliff, who studies social attitudes at rocked by findings of irreproducibility in the docs, who often are working on their lab head’s the University of Florida in Gainesville, says that past few years, have been especially vocal pro- grant, may have no choice if their supervisor or it can seem as if there are two camps in a field ponents of the drive for more-open science. In another senior colleague opposes sharing. — those who care about open science and those one of the latest examples of irreproducibility Some fear that the potential repercussions who don’t. “There’s a new area to navigate — issues, investigators tried to replicate results of sharing are too high, especially at the early ‘Are you cool with the fact that I’ll want to make from 100 psychological studies but succeeded stages of a career. “Everybody has a scary story the data open?’ — when talking with somebody in fewer than half of them2. about someone getting scooped,” says New York about an interesting research idea,” she says. A few psychology journals have created University astronomer David Hogg. Those fears incentives to increase interest in reproduc- may be a factor in a lingering hesitation to share GLASS HALF FULL ible science — for example, by affixing an data even when publishing in journals that Despite complications and concerns, the ‘open-data’ badge to articles that clearly state mandate it (see Nature 515, 478; 2014). upsides of sharing can be significant. For exam- where data are available. According to social Researchers at small labs or at institutions ple, when information is uploaded to a reposi- psychologist Brian Nosek, executive director focused on teaching arguably have the most tory, a digital object identifier (DOI) is assigned. of the Center for Open Science, the average to lose when sharing hard-won data. “With my Scientists can use a DOI to publish each step of data-sharing rate for the journal Psychological institution and teaching load, I don’t have post- the research life cycle, not just the final paper. In Science, which uses the badges, increased ten- docs and grad students,” says Terry McGlynn, a so doing, they can potentially get three citations fold to 38% from 2013 to 2015. tropical biologist at California State University, — one each for the data and software, in addi- Funders, too, are increasingly adopting an Dominguez Hills. “The stakes are higher for tion to the paper itself. And although some say open-data policy. Several strongly encourage, me to share data because it’s a bigger fraction that citations for software or data have little cur- rency in academia, they can have other benefits. Many advocates think that transparent data LEARN TO SHARE procedures with a date and time stamp will pro- tect scientists from being scooped. “This is the Open-data pro tips sweet spot between sharing and getting credit for it, while dissuading plagiarism,” says Ivo Scientists who are cautious about open proprietary data formats, such as Microsoft Grigorov, a project coordinator at the National science can start small by sharing data for spreadsheets, or colour-coded cells that are Institute of Aquatic Resources Research Secre- a project that they have already completed. readable only by humans. tariat in Charlottenlund, Denmark. Hogg says Specialists in the field offer this advice: ●● Permanently archive data in reputable that scooping is less of a problem than many ●● Document a data-deposition plan while repositories such as FigShare or Zenodo, not think. “The two cases I’m familiar with didn’t working on publications, so that the data on a personal website. involve open data or code,” he says. and the paper will be ready for publication at ●● If you choose to share data from a Open science also offers junior researchers the same time. It is not necessary, however, new project, make sure to generate the the chance to level the playing field by gain- to release data alongside a paper, unless a relevant metadata as you go. It is very hard ing better access to crucial data. Ross Mounce, funder mandates it. to reconstruct important details after the a postdoc studying evolutionary biology at ●● Craft a very explicit statement about data fact. Tools such as those on Zenodo enable the University of Cambridge, UK, is a vocal reuse — including who can use the data, researchers to document such details champion of open science, partly because his how to use them and how to attribute them.
Recommended publications
  • Scholarly Communication and Data
    Mooney, H. (2016). Scholarly communication and data. In L. M. Kellam & K. Thompson (Eds.), Databrarianship: The academic data librarian in theory and practice (pp. 195–218). Chicago: Association of College and Research Libraries. CHAPTER 13 Scholarly Communication and Data Hailey Mooney Introduction The Internet and digital data are strong forces shaping the modern world of schol- arly communication, the context within which academic librarians operate. Schol- arly communication entails the ways by which scholarly and research information are created, disseminated, evaluated, and preserved.1 Recognition of the broader forces at play in research and scholarship is imperative to keep ourselves from obsolescence and to simply function as effective librarians. The operation of the scholarly communication system is the “bedrock” of academic information litera- cy and forms the “sociocultural frame of reference” for understanding library re- search skills.2 The purpose of this chapter is to provide foundational knowledge for the data librarian by developing an understanding of the place of data within the current paradigm of networked digital scholarly communication. This includes defining the nature of data and data publications, examining the open science movement and its effects on data sharing, and delving into the challenges inherent to the wider integration of data into the scholarly communication system and the academic library. The Nature of Scientific Knowledge and Data The sociology of science provides a basis from which to understand the fundamen- tal underpinnings of the norms and values that govern the institution of science and the production of scientific knowledge. In basic information literacy instruc- tion, librarians teach the difference between popular and scholarly information.
    [Show full text]
  • Exploring Controversies in the Circulation of Early SARS-Cov-2
    Global Public Health An International Journal for Research, Policy and Practice ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rgph20 Open science, COVID-19, and the news: Exploring controversies in the circulation of early SARS- CoV-2 genomic epidemiology research Stephen Molldrem, Mustafa I. Hussain & Anthony K J Smith To cite this article: Stephen Molldrem, Mustafa I. Hussain & Anthony K J Smith (2021): Open science, COVID-19, and the news: Exploring controversies in the circulation of early SARS-CoV-2 genomic epidemiology research, Global Public Health, DOI: 10.1080/17441692.2021.1896766 To link to this article: https://doi.org/10.1080/17441692.2021.1896766 © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Published online: 04 Mar 2021. Submit your article to this journal Article views: 30 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=rgph20 GLOBAL PUBLIC HEALTH https://doi.org/10.1080/17441692.2021.1896766 Open science, COVID-19, and the news: Exploring controversies in the circulation of early SARS-CoV-2 genomic epidemiology research Stephen Molldrem a, Mustafa I. Hussain b and Anthony K J Smith c aDepartment of Anthropology, University of California, Irvine, CA, USA; bDepartment of Informatics, University of California, Irvine, CA, USA; cCentre for Social Research in Health, UNSW Sydney, Sydney, Australia ABSTRACT ARTICLE HISTORY Some early English language news coverage of COVID-19 epidemiology Received 21 October 2020 focused on studies that examined how SARS-CoV-2 (the coronavirus Accepted 22 February 2021 that causes COVID-19) was evolving at the genetic level.
    [Show full text]
  • Towards Open Science in Acoustics: Foundations and Best Practices
    DAGA 2017 Kiel Towards Open Science in Acoustics: Foundations and Best Practices Sascha Spors1, Matthias Geier1 and Hagen Wierstorf2 1Institute of Communications Engineering, University of Rostock, Germany, Email: [email protected] 2Filmuniversit¨atBabelsberg KONRAD WOLF The Scientific Method myself Before introducing the open science approach in detail it my future self is worthwhile to review the foundations of the scientific my colleagues method. It may be referred to as `A method of procedure that has characterized natural science since the 17th cen- other researchers tury, consisting in systematic observation, measurement, all people in the world and experiment, and the formulation, testing, and modi- fication of hypotheses.' [1]. Science builds upon a set of science itself well accepted methods which are commonly believed to While research conducted for myself does not require any ensure above formulated principles. Besides these, the transparency in terms of underlying data, research per- reproducibility of results is one of the cornerstones of the formed for the sake of science itself should be as open as scientific method. It may be defined as `Reproducibil- possible to support scientific advancement. ity is the ability of an entire analysis of an experiment or study to be duplicated, either by the same researcher or by someone else working independently, whereas reproducing Open Science an experiment is called replicating it.' [2]. The irrepro- Open science follows the general demand for socializa- ducibility of a wide range of scientific results has drawn tion of knowledge. More specifically, it aims at making significant attention in the last decade [3, 4, 5, 6, 7, 8, 9].
    [Show full text]
  • Article (Published Version)
    Article Open Science in Switzerland: Opportunities and Challenges PFISTER, Roger, et al. Abstract Open Science stands for a new approach to the scientific process, based on cooperative work and new ways of making knowledge available. It is thus an umbrella term for various movements aiming to remove the barriers to sharing any kind of output, resources, methods or tools, at any stage of the research process.Here, we focus on the open access to scientific literature and to data because of their particularly high relevance to the scientific community in Switzerland, at which this factsheet is primarily addressed. Both Open Access and Open Data are important science policy topics in different parts of the world, but the developments in Europe are most pertinent for Switzerland. This factsheet therefore presents the issues at stake in the on-going discussion in Europe and Switzerland, points out opportunities and addresses challenges. The recommendations are guided by the key consideration to shape Open Access and Open Data so that they foster scientific progress and benefit society. Reference PFISTER, Roger, et al. Open Science in Switzerland: Opportunities and Challenges. Swiss Academies Factsheets, 2019, vol. 14, no. 2 DOI : 10.5281/zenodo.3248929 Available at: http://archive-ouverte.unige.ch/unige:122751 Disclaimer: layout of this document may differ from the published version. 1 / 1 Vol. 14, No. 2, 2019 www.swiss-academies.ch Open Science in Switzerland: Opportunities and Challenges Open Science stands for a new approach to the scientific process, based on cooperative work and new ways of making knowledge available. It is thus an umbrella term for various movements aiming to remove the barriers to sharing any kind of output, resources, methods or tools, at any stage of the research process (Figure 1).1 Here, we focus on the open access to scientific literature and to data because of their particularly high relevance to the scientific community in Switzerland, at which this factsheet is primarily addressed.
    [Show full text]
  • Open Science, the Challenge of Transparency 30
    BERNARD RENTIER OPEN SCIENCE, THE CHALLENGE OF TR ANSPARENCY Preface by Philippe Busquin ACADÉMIE ROYALE DE BELGIQUE Collection L’ACADÉMIE EN POCHE OPEN SCIENCE, THE CHALLENGE OF TRANSPARENCY BERNARD RENTIER OPEN SCIENCE, THE CHALLENGE OF TRANSPARENCY Preface by Philippe Busquin ACADÉMIE ROYALE DE BELGIQUE Collection L’ACADÉMIE EN POCHE- With the support of Académie royale de Belgique Credits: rue Ducale, 1 © Translated from French by the author, 1 000 Brussels, Belgium Bernard Rentier www.academie-editions.be www.academieroyale.be Graphic design: Loredana Buscemi, Series Pocket Book Academy Académie royale de Belgique Under the academic responsibility of Didier Viviers ISBN 978-2-8031-0667-7 Volume 118-EN Dépôt légal : 2019/0092/3 © 2019, Académie royale de Belgique To Alma Swan, my friendly mentor in Open Access activism. Preface Writing the preface to this book published in L’Académie en Poche and jointly, for the first time, in a free open access electronic version, is a pleasure and an honour. Bernard Rentier, beyond his academic quali- ties and his rectoral responsibilities at the University of Liège, is a tireless and committed activist who shares with us his fight for Open Science. In this respect, it is entirely in line with the approach advocated by the European Commission and which Carlos Moedas, the current European Commissioner for Research, has also made his main focus. The 2016 European Union Report on Science, Research and Innovation is subtitled: “Contri- bution to Open Innovation, Open Science and Open to the World Agenda”, indicating the EU’s commitment to developing high quality science and positioning itself as a global leader in Open 9 OPEN SCIENCE, THE CHALLENGE OF TRANSPARENCY Science.
    [Show full text]
  • Ethical Questions in Open Science
    Ethical Questions in Open Science Ariel Deardorff, MLIS Data Services Librarian UCSF Library About Me Data Services Librarian Open Science Researcher Situated in the Library’s Data Science Team Today’s Talk ● Explore Open Science ● COVID-19 & Open Access ● COVID-19 & Open Data ● Unpack Ethical Issues What is open science? (slides from Open Science 101 co-developed with Anneliese Taylor) “Closed” science workflow Paywall “Open science is the movement to make scientific research, data, and dissemination accessible to all levels of an inquiring society.” - FOSTER Open Science Open science workflow Open Access Open Data Open Methods Open Protocols Open Science = Open Source Open Code Open Educational Resources Open Pedagogy Why practice open science? Requirements - this is an evolving area! Funders: The NIH has had an open access mandate for publications since 2008 and a genomic data sharing mandate since 2014. Will likely have a comprehensive data sharing mandate by the end of 2021. Institutions: The University of California also has an open access mandate Journals: Several journals (PLOS, Nature, Science) now require open data to publish. Get Credit for your Work! You work hard on your data, code, and methods and they should be recognized as citable research outputs that go on your CV Making your work open leads to more citations for your articles: - Piwowar et al. found that articles published as open access receive 18% more citations than average - A study from Colavizza et al. showed that studies that provide access to underlying data are
    [Show full text]
  • Open Science Data Hubs and the New Role for Universities in Africa
    Open Information Science 2019; 3: 98–114 Communication Christine Mwongeli Mutuku* Engaging a Data Revolution: Open Science Data Hubs and the New Role for Universities in Africa https://doi.org/10.1515/opis-2019-0008 Received November 1, 2018; accepted March 13, 2019 Abstract: This paper presents a new ideology for engaging Africa in a data revolution. It explores the idea of creating open-science-data-hubs (OSDH) at flag-ship universities in Africa to preserve and share both internally and externally produced data. Although limited in the technical aspect, the objective here is to explore the pragmatism of how and why such an endeavor in Africa should be undertaken. This paper argues that the African university is uniquely placed to play this new role in today’s technological world and discusses the characteristics and foundational pillars necessary to set up such a program. The arguments provided here challenge Africa to be smart and adopt clever solutions to their data generation, collection and access problems, by finding value and a new role in the intellectuals and institutions of higher learning and in the necessity to involve them in the generation, preservation and sharing of data and knowledge that can be used in the policy formulation process. Keywords: Big Data, Data Revolution, Open-Science-Data-Hub, Flagship-universities, Africa 1 Introduction Since independence, Africa’s public policy development process has functioned with limited, if any, contribution from intellectuals and institutions of higher learning. This is because the intellectual was, and largely still is, deemed as a critic of the data-less elite process of formulating public policies and allocation of national resources.
    [Show full text]
  • Preliminary Analysis of COVID-19 Academic Information Patterns: a Call for Open Science in the Times of Closed Borders
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 March 2020 doi:10.20944/preprints202003.0443.v1 Preliminary analysis of COVID-19 academic information patterns: A call for open science in the times of closed borders Homolak J1, Kodvanj I1, Virag D1 1 Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia Abstract Introduction: The Pandemic of COVID-19, an infectious disease caused by SARS-CoV-2 motivated the scientific community to work together in order to gather, organize, process and distribute data on the novel biomedical hazard. Here, we analyzed how the scientific community responded to this challenge by quantifying distribution and availability patterns of the academic information related to COVID-19. The aim of our study was to assess the quality of the information flow and scientific collaboration, two factors we believe to be critical for finding new solutions for the ongoing pandemic. Materials and methods: The RISmed R package, and a custom Python script were used to fetch metadata on articles indexed in PubMed and published on rXiv preprint server. Scopus was manually searched and the metadata was exported in BibTex file. Publication rate and publication status, affiliation and author count per article, and submission-to-publication time were analysed in R. Biblioshiny application was used to create a world collaboration map. Results: Our preliminary data suggest that COVID-19 pandemic resulted in generation of a large amount of scientific data, and demonstrates potential problems regarding the information velocity, availability, and scientific collaboration in the early stages of the pandemic. More specifically, our results indicate precarious overload of the standard publication systems, delayed adoption of the preprint publishing, significant problems with data availability and apparent deficient collaboration.
    [Show full text]
  • Applying Library Values to Emerging Technology
    CHAPTER 6 Bringing Open Access into Interlibrary Loan with the Open Access Button Chealsye Bowley* Scholarly Communication Librarian Florida Gulf Coast University Introduction Academic journal paywalls lock out researchers, students, and the public from accessing the research they need. Although libraries may uphold the value of access with all resources provided by the library being equally accessible to all users,1 access is not equitable across institutions. Harvard University is unable to afford journal subscriptions,2 and less wealthy educational institutions both within the United States and throughout the world struggle with the costs of journal subscriptions.3 For many scholars and students, interlibrary loan provides a solution to paywalls for journals their institution is unable to subscribe to. However, interlibrary loan is not free or available at all institutions, and interlibrary loan cannot solve the access problem for most independent researchers and the public. Interlibrary loan is common in North America but may come with a charge per loan to faculty and students in other regions,4 or resource sharing among institutions in other countries may not be as strong, particularly due to funding.5 * This work is licensed under a Creative Commons Attribution 4.0 License, CC BY (https://creativecommons.org/licenses/by/4.0/). 89 90 CHAPTER 6 The need for access to academic research is so great that independent, unlawful initiatives have sprung up to circumvent paywalls. In an April 2016 feature on Sci-Hub, John Bohannon declared that everyone is downloading pirated papers.6 #icanhazpdf and Sci-Hub have become notorious examples of independent initiatives to connect researchers, students, and the public to research.
    [Show full text]
  • National Institutes of Health Advisory Committee to the Director National Library of Medicine Working Group Final Report
    PRE-ACD VOTE National Institutes of Health Advisory Committee to the Director National Library of Medicine (NLM) Working Group FINAL REPORT – JUNE 11, 2015 MEMBERS: Eric Green (co-chair), Harlan Krumholz (co-chair), Russ Altman, Howard Bauchner, Deborah Brooks, Doug Fridsma, Steven Goodman, Eric Horvitz, Trudy MacKay, Alexa McCray, Chris Shaffer, David Van Essen, Joanne Waldstreicher, James Williams, II, Kathy Hudson (ex officio), Lyric Jorgenson (executive secretary) (titles and affiliations listed in Appendix A) EXECUTIVE SUMMARY The NIH Director charged the National Library of Medicine (NLM) Working Group, hereafter referred to as the Working Group, with articulating a strategic vision for NLM to ensure that NLM remains an international leader in biomedical and health information. Over the course of five months of deliberations, the Working Group reviewed numerous documents and reports pertaining to NLM’s mission and activities, consulted with NLM leadership and staff, and solicited public comments and suggestions. The Working Group recognizes that NLM has an important opportunity to play a key leadership role in one of the most exciting periods of biomedical history: data science is increasing rapidly, computational power is expanding at a breathtaking pace, the breadth and depth of digital health data are undergoing unprecedented and accelerating growth, a movement towards more interdisciplinary work and team science continues to gain momentum, a broad commitment to open science is becoming increasingly adopted, and the demand for services to support an ever more engaged and informed public is expanding. To leverage these historic changes, the Working Group, with respect for the outstanding history of NLM and its potential for the future, formulated a series of recommendations to guide the future of NLM: RECOMMENDATION #1.
    [Show full text]
  • Reproducibility Literature Analysis - a Federal Information Professional Perspective
    Reproducibility literature analysis - a federal information professional perspective Erin Antognoli1, Regina Avila2, Jonathan Sears3, Leighton Christiansen4, Jessica Tieman5, Jacquelyn Hart6 Abstract This article examines a cross-section of literature and other resources to reveal common reproducibility issues faced by stakeholders regardless of subject area or focus. We identify a variety of issues named as reproducibility barriers, the solutions to such barriers, and reflect on how researchers and information professionals can act to address the ‘reproducibility crisis.’ The finished products of this work include an annotated list of 122 published resources and a primer that identifies and defines key concepts from the resources that contribute to the crisis. Keywords reproducibility, reproducibility crisis, replicability, research data, landscape analysis, culture shift Introduction Over the last number of years, the terms ‘reproducibility’ and ‘replicability’ have left the realm of science and become widely discussed in mainstream media. Books, blogs, and television news shows have talked about the emergence of a ‘reproducibility crisis’ which brings the validity of scientific research into question. Numerous studies and reports identifying the status of research reproducibility reveal problems at all levels of study across multiple research disciplines. Even published research from prominent journals and institutions suffer from reproducibility issues (Weir, 2015). While some question the idea that the issues surrounding reproducibility constitute a ‘crisis’ (Baker, 2016c), evidence points to a widespread difficulty to reproduce published scientific results. As data managers and information professionals in U.S. federal libraries working in a variety of disciplines and backgrounds, we understand the difficulties surrounding this topic. In order to address these concerns, we formed a team and embarked on a project to identify the ‘crisis’ and the ongoing challenge it creates for ourselves and our stakeholders.
    [Show full text]
  • Attitudes Data Sharing Final
    Attitudes towards Open Science and Public Data Sharing 1 Attitudes towards Open Science and Public Data Sharing: A Survey among Members of the German Psychological Society. Andrea E. Abele-Brehm1, Mario Gollwitzer2, Ulf Steinberg3, Felix D. Schönbrodt2 1 Friedrich-Alexander Universität Erlangen, Germany 2 Ludwig-Maximilians-Universität München, Germany 3 Technische Universität München, Germany Postprint This version of the article may not completely replicate the final authoritative version published in Social Psychology at doi:10.1027/1864-9335/a000384. It is not the ver- sion of record and is therefore not suitable for citation. Please do not copy or cite without the permission of the author(s). Send Correspondence to Andrea E. Abele-Brehm University of Erlangen Bismarckstr. 6 D 91054 Erlangen [email protected] Contributions: Andrea Abele-Brehm has written the paper and has analyzed the data. All authors were in- volved in designing and executing the study and in discussing the results. Mario Gollwitzer, Ulf Steinberg and Felix Schönbrodt gave critical feedback to former versions of the paper. Ulf Steinberg programmed the study Attitudes towards Open Science and Public Data Sharing 2 Abstract Central values of science are, among others, transparency, verifiability, replicability and openness. The currently very prominent Open Science (OS) movement supports these val- ues. Among its most important principles are open methodology (comprehensive and useful documentation of methods and materials used), open access to published research output, and open data (making collected data available for re-analyses). We here present a survey conducted among members of the German Psychological Society (N = 337), in which we ap- plied a mixed-methods approach (quantitative and qualitative data) to assess attitudes to- wards OS in general and towards data sharing more specifically.
    [Show full text]