Swimming Biomechanics

Total Page:16

File Type:pdf, Size:1020Kb

Swimming Biomechanics SWIMMING BIOMECHANICS INVITED CONTRIBUTION In an ideal situation the hand is fixed in the water (no dis- placement and zero velocity) and the net shoulder muscles contraction produces a full body displacement forward of the FUNDAMENTAL HYDRODYNAMICS OF SWIMMING PROPULSION. swimmer’s body (for example using the MAD system); there is no interaction between the hand and the water around it. In a Raúl Arellano1, José M. Terrés-Nicoli2, Jose M. Redondo3 real situation the hand interacts with the water and its velocity 1Faculty of Physical Activity and Sport Science, Spain is increased. But increasing the backward velocity of the hand 2Wind Engineering Lab, CEAMA University of Granada, Granada, alone will not produce the desired forward velocity (similar to a Spain caterpillar paddlewheel); a combination of curvilinear hand 3Dept. Física Aplicada, Univ. Politécnica de Catalunya, Barcelona, movements (up-down, left-right and backward) will produce Spain. the desired effect on body velocity (46). The propulsive force is a vector addition of lift (L) and drag (D) forces generated by the The purpose will be to describe the different methods applied in hand and they are proportional to velocity squared (see eq. 1,2) 2 swimming research to visualize and understand water move- L = 1/2 ρ u CL S (Eq. 1) 2 ments around the propulsive limbs and their application to D = 1/2 ρ u CD S (Eq. 2) improving swimming technique. A compilation of flow visuali- Where u is the relative velocity with respect to the fluid (m/s), zation methods applied in human swimming research is pre- S is the hand’s surface area (m2), ρ is the water density 3 sented. Simple propulsive actions will be analyzed combining (kg/m ), CL is the lift coefficient and CD is the drag coefficient. the kinematic analysis with the flow visualization: underwater The values of these coefficients are characteristic of the object undulatory swimming and sculling propulsion. The analysis of tested and are a function of the angle of attack (α) and the vortices generated and 3D analysis of the pulling path seems sweep-back angle (ψ) as Schleihauf (44, 45) and Berger (7, the most adequate method to develop a new understanding of 37) investigated. Maximum values of CL (about 0.8-1.0) are swimming propulsion. The development of flexible and portable obtained between 35º and 45º-attack angle, and maximum val- laser systems such as the recently incorporating fiber optics and ues of CD (about 1.3) are obtained at 90º. The values of CL and fiberscopes, will enable the applicability of PIV in real swim- CD are more similar when all possibilities of sweep-back (dif- ming conditions to quantify the wake momentum and vorticity. ferent “leading edges” orientations of the hand) angles are con- New and attractive ideas are emerging: the possible use by the sidered. This indirect method of propulsive force calculation is swimmer to his advantage of the vorticity if it is produced by an based on the proper knowledge of the hand position and its external source, such as the environment, another swimmer or velocity in a three-dimensional reference system (water volu- the re-use of his own vortices during the stroke or after the turn me) and in conditions of extreme accuracy the coefficients can will be topics for research in the near future. be calculated (26, 37) and the water refraction controlled in order to apply adapted DLT methods (25). Considering these Key Words: wake, sculling, undulatory, flow visualization, limitations some index characteristic have been defined in the Strouhal number. 3D pulling path (47): a) Diagonality index: the average angle of the negative hand INTRODUCTION line motion and the forward direction at the points of first, sec- The study of human swimming propulsion is one of the more ond and third maximal resultant force production (57); complex areas of interest in sport biomechanics. Over the past b) Scull index or lift-drag index: the average ratio of lift and decades, research in swimming biomechanics has evolved from drag forces (CL / CD) at the three greatest occurrences of the observation subject’s kinematics to a basic flow dynamics resultant force (57); approach, following the line of the scientists working on this c) Force distribution index: is the average location of the three subject in experimental biology (20, 56). As Dickinson stated greatest resultant forces expressed as a percentage of the total (20) “at its most fundamental level, locomotion is deceptively duration of the underwater phase of the arm pull (57). simple, an organism exerts a force on the external environment A similar approach was used by Sanders (43) to obtain the and through Newton’s laws, accelerate in the opposite direc- propulsive forces alternative vertical breaststroke kicking tion”, but the dynamics of force application are not as simple applied by the water-polo goalkeepers. as they might at first appear, specially during swimming or fly- Under this methodology four basic hand propulsive move- ing where the force is applied to a fluid. In fact, it results from ments were defined (31, 32): Downsweep, insweep, upsweep the complex three-dimensional interaction between a station- and outsweep. Each stroke was therefore composed of a combi- ary fluid and a moving body with soft boundaries. The hydro- nation of these movements. For example, breaststroke is com- dynamics of this phenomenon are yet not clear. The muscle posed of outsweep and insweep. contraction flexes or extends a particular joint, moving the The previous paragraphs based the understanding of swimming limb though the water. The water previously occupied the propulsion on steady-state flow mechanics that has left many limb’s volume; the subsequent position required the displace- questions unanswered. Some trials observing the flow behav- ment of its particles. At very slow limb displacement, the water iour around the swimmer’s body lead us to try to apply particles will occupy steadily and in an orderly way, but at unsteady mechanisms of force production to resolve them. higher limb velocities the water is moving unsteadily, generat- However, such approach needs to analyze the flow behaviour ing a turbulent wake behind. This subject was analyzed by around the propulsive limbs to identify the phenomena, a diffi- Counsilman (18), who considered that “eddy resistance is cult task in a swimming pool, but quite common in fluid more important than frontal resistance and that, at least theo- dynamic laboratories. retically, more propulsion is derived from the back of the hand The traditional semantic classification of the propulsive forces than from the front of it”. in terms of drag and lift is not relevant when applying a non- Rev Port Cien Desp 6(Supl.2) 15–113 15 SWIMMING BIOMECHANICS steady hydrodynamic analysis and it is probably more useful to movements; however in real swimming the observations are investigate the momentum and the vorticity or their respective more complex and less accurate, as it is only possible to ana- scalar indicators the energy and the enstrophy applied by the lyze the problem in a qualitative and descriptive way at the swimmers limbs on the water. moment. Our purpose will be to describe the different methods applied The approach developed in Tsukuba University is a first trial to in swimming research to visualize and understand water move- apply PIV in freestyle swimming. A sophisticated swimming ments around the propulsive limbs and their application to flume, a tool similar to that the applied in fish swimming improving swimming technique. research, is being used. The flume is filled with small close-to- buoyant particles. A laser light sheet within the working area OBSERVING WATER MOVEMENTS illuminates a horizontal plane, parallel to the water surface. During aquatic locomotion forces are exerted by the body and The arm pull action of the swimmer enables his hand to cross limbs against the surrounding water, which is not fixed in posi- the illuminated slice of the flow during the insweep and tion but instead yields in response to the action of propulsive outsweep. A triggered high-speed camera records the illumi- surfaces (27). Colwin (12, 13) and Ungerechts (54) suggested nated plane while the hand crosses this specific zone, so that it new ways of analysing the swimming propulsive movements is possible to observe the hand displacement and water parti- based on the observation of water around the propulsive limbs. cles movements. Pairs of consecutive images from the video All bodies (including propulsive limbs) displacing water will sequences are then input into a cross-correlation processing create vortices (rotating water masses) in their wakes; they algorithm, which takes a small, user-defined area of the image carry a fairly high momentum, which can transfer a strong and calculates the direction and magnitude of each particle’s propulsive impulse to the body (55). As Bixler (9) stated velocity within that region. This yields a single velocity vector when an object accelerates, decelerates, or changes its shape or representing the average flow within that small area. Repeating orientation as it moves through a fluid, the flow will be this analysis at each location, a map of velocity vectors can be unsteady. Thus, the resulting pressure field exerted by the fluid calculated that provides a snapshot of wake structure and on the body’s surface, responsible for the propulsion, will be strength (27, 35, 49) [see figure 1.7]. again unsteady, varying differently with both time and position. In this conditions the propulsive drag and lift forces developed Table 1. Flow visualization methods applied in swimming research (PIV by a swimmer’s hand at a given time are dependant not only listed bellow is not a flow visualization technique but a mechanism one).
Recommended publications
  • Product Catalog 2020
    PRODUCT CATALOG It’s not the easiest way to produce a quality diving gear, but it’s the best way we know to ensure that our diving products meet the highest standards. No shortcuts. Pure craft. It’s the SANTI way. For you. DRYSUITS Silver Moon E.Motion SILVER MOON drysuit in special color edition is unique among other drysuit models, it emphasizes the original and modern approach to diving. Is designed for divers who want to be noticeable and feel like a part of distinguished, limited group of divers. Made of lightweight Nylon fabric, which provides great flexibility and essential durability. Critical points, particularly vulnerable to damage and abrasion, have been adequately protected with a durable E.Lite fabric. The original color combination looks very attractive on a diver, especially underwater. Silver Moon has a specially designed stylish and modern logo, emphasizing dynamic features of the product. The Unique Limited Silver Moon Line was created only in limited number of drysuits, which is additionally accompanied by special benefits. Silver Moon is equipped in standard with an innovative SANTI Smart Seals® system and Neoprene hood ‘7 or ‘11. Features: • total weight: 3,4 kg, • fabric: Ripstop Nylon/Butylene 235 g/m2 and Ripstop Nylon/Butylene/Polyester 535 g/m2 (elbows, crotch/bottom area, knees, lower front of the legs). In standard equipped with: • colors: silver, black, • front aquaseal zip covered by an additional zip-fastened flap, • telescopic torso, • hood ‘11 or ‘7, • neck seal made of latex insulated by 3 mm neoprene collar, • reflective silver tape at the sleeve piping, • Flexsole boots, • Apeks inlet valve, • high-profile Apeks outlet valve, • two spacious utilities pockets with elastic bungee loops and pocket for wet notes, • the right pocket with zip-fastened flap with a small pocket for double ender clip, • latex wrist seals, • SANTI SmartSeals® ring system for easy seals exchange, • inside suspenders with handy pocket, • medium pressure hose 75cm long, • STAY DRY travel bag, • Silver Moon T-shirt.
    [Show full text]
  • Bicentennial Source Book, Level I, K-2. INSTITUTION Carroll County Public Schools, Westminster, Md
    --- I. DOCUMENT RESUME ED 106 189 S0,008 316 AUTHOR _Herb, Sharon; And Others TITLE Bicentennial Source Book, Level I, K-2. INSTITUTION Carroll County Public Schools, Westminster, Md. PUB DATE 74 NOTE 149p.; For related guides, see CO 008'317-319 AVAILABLE FROM .Donald P. Vetter, Supervisor of Social Studies, Carroll County Board of Education, Westsinister, Maryland 21157 ($10.00; Set of guides.I-IV $50:00) EDRS PRICE MF-$0..76 HC-Not Available from EDRS..PLUS POSTAGE DESCRIPTORS *American Studies; Class Activities; *Colonial History (United States); Cultural Activities; Elementary Education; I structionalMaterials; *Learning Activities; Muc Activities; Resource Materials; Revolutionary Wa (United States); Science Activities; *Social Studies; Icher Developed Materials; *United States History IDENTIFIERS *Bicentennial ABSTRACT This student activities source book ii'one of a series of four developed by the Carroll County Public School System, Maryland, for celebration of the Bicentennial. It-is-specifically designed to generate ideas integrating the Bicentennial celebration into various disciplines, classroom activitiese.and school -vide 4vents at the kindergarten through second grade levels. The guide contains 81 activities related to art, music, physical-education, language arts, science, and social studies. Each activity includes objectives, background information, materials and resources, recommended instructional proce ures,and possible variations and modifications. The activities are organized around the Bicentennial themes of Heritage, Horizons, and Festival. Heritage. activities focus on events, values, traditionp, and historical objects of the past. Horizon activities stress challenging the problems of the present and future. Festival activities include such activities as community craft shows, workshops, folk music, and dance performances. (Author /ICE) C BICENTENNIAL SOURCE BOOK LEVEL I .
    [Show full text]
  • Preparing Wetsuits
    Lesson: Learning About Textiles Preparing Wetsuits Step 1: Create a Control Wetsuit Materials Needed: 2 zipper plastic baggies Creating the Control Wetsuit: Turn one baggie inside out and then place it inside the other baggie. Squeeze out as much air as possible and zipper the inside baggie to the outside baggie. Check to make sure you can put your hand inside your control wetsuit. Be sure the zippers are zipped together! Lesson: Learning About Textiles Step 2: Create a Feather Wetsuit Materials Needed: 2 zipper baggies 2 cups of feathers Creating the Feather Wetsuit: Place the 2 cups of feathers inside one of the baggies. Turn the other baggie inside out and then place it inside the baggie with the feathers. Make sure to keep the feathers between the two baggies. Squeeze out as much air as possible and zipper the inside baggie to the outside baggie. Gently use your fingers to spread the feathers evenly around both sides of the baggie. Check to make sure you can put your hand inside your feather wetsuit. Lesson: Learning About Textiles Step 3: Create a Blubber Wetsuit Materials Needed: 2 zipper baggies 4 heaping tablespoons of solid shortening Creating the Blubber Wetsuit: Place the 4 heaping tablespoons of solid shortening inside one of the baggies. Turn the other baggie inside out and then place it inside the baggie with the shortening. (Make sure to keep the shortening between the two baggies.) Squeeze out as much air as possible and zipper the inside baggie to the outside baggie. Gently use your fingers to spread the shortening evenly around both sides of the baggie.
    [Show full text]
  • Physics 4311 ANSWERS: Sample Problems for Exam #2 (1)Short
    Physics 4311 ANSWERS: Sample Problems for Exam #2 (1)Short answer questions: (a) Consider an isolated system that consists of several subsystems interacting thermally and mechanically with each other. What does the Second Law of Thermodynamics say about the entropies of the subsystems when the system is undergoing a change? ANS: The Second Law says that the sum of the subsystem entropy changes can never decrease. It doesn’t say anything about the change for any individual subsystem. (b) Two thermally interacting subsystems form a thermally isolated composite system. The subsystems have identical total energies and pressures, but different values of $. Will net heat transfer occur between the subsystems, and if so, in which direction will it occur? ANS: Since the $ values are different, the subsystems are not in thermal equilibrium, and heat transfer will occur. Energy will be transferred from the subsystem with the lower value of $ to the subsystem with the higher value of $. (c) Briefly describe what happens to a macroscopic system’s microscopic quantum states and how the states are populated when the system’s energy changes by means of heat transfer or when work is done on (or by) the system. Use words not equations. ANS: Heat transfer changes which states are occupied, but doesn’t affect the energies of the states. Work changes the energies of the states. States may also be created or destroyed by varying external system parameters, i.e., by doing work. (d) When a system undergoes an adiabatic change of state, what must happen for its energy to change? ANS: For an adiabatic change, Q = 0, and the First Law states that )E = !W.
    [Show full text]
  • Rubber Bands, the Second Law of Thermodynamics, and Entropy
    Rubber Bands, the Second Law of Thermodynamics, and Entropy One of the main causes for a rubber bands’ incredible elasticity can be attributed to entropy and the Second Law of Thermodynamics. According to this law, a system or body will move from a state of order to another state of disorder naturally. And entropy can be defined as lack of order in a system. Take the case of a rubber band. The individual molecules that make up the rubber band are called polymers. These polymers are chemically linked to one another via a natural process called crosslinking to form a single giant molecule. In fact, it is this crosslinking that help the rubber band retain its shape after being stretched out. The crosslinks keep the polymers tied together in spite of them being stretched. In the absence of these crosslinks, the polymers would fail to come back together again and the rubber band would fail to retain its original shape, thus becoming deformed. This usually happens after the rubber band is stretched repeatedly a number of times (the crosslinks become weak and would not be able to tie the polymers together again). What exactly happens when rubber bands are stretched? The individual polymers present in a rubber band are usually coiled around each other in a tangled, haphazard arrangement. When the band is stretched, these polymers lengthen out to form an ordered line with all the molecules facing the same direction. This is where the entropy we talked about comes into play. When the force applied on the rubber band is removed, the polymers get a natural urge to return back to their original entropic state, aka the tangled form.
    [Show full text]
  • Northampton County. Pennsylvania. (2)A Description of a Geological Field Trip to Northampton County
    DOC' Plft47 RESt NE ED 033 03b SE 007 474 'Diggers to Divers. GeOlogy K -6; Elementary Science ()nit No.2. Bethlehem Area Schools. Pa. Pub Date 68 Note 217p. LDRS rticrrr $1.00 He Not Available from EMS. Descriptors -Concept Formation. *Curriculum Guides. Discover; Learning. *Earth Science. *Elementary School Science. *Geology. Instructional Materials. Marine Biology. Oceanology. Problem Solving. *ScienceActivities. Teaching Procedures Thiscurriculumguide.partofaseriesofscienceunits.stresses concept-learning through the discovery approach and child-centeredactivitiesIt is intended that the unit will be studied in depth by grades 3. 4. 5. and 6. Kindergarten pupilswillstudy theunitinless detail.Our Useful Rocks" isstudied in the kindergarten.'Rocks Then and Nowin grade3.Petrology'ingrade 4. 'Oceanography' in grade 5. and "Geology' in grade 6. The section for each grade contains (1) understandings to be discovered. (2) activities. and (3) activities to assign for homework or individual research. Each activity is introduced bya leading question.- followed by a list of materials anda description of the procedure to be followed. Children are taught to observe. infer. discuss problems anduse reference and audio-visual aid materials. There isan index of science textbooks for reference for the teacher. The 40-page appendix contains (1)a brief geological history of Northampton County. Pennsylvania. (2)a description of a geological field trip to Northampton County. (3) a description of thecommon rocks and minerals, and (4) various geological and oceanographic charts. maps and tables. [Not available in hard copy due to marginal legibility of original document). (LC) 1 0 b \CO. c., .Or Air I Air EDUCATION & WELFARE U S. DEPARTMENT Of HEALTH.
    [Show full text]
  • Thermovid 8 05
    Statistical Molecular Thermodynamics Christopher J. Cramer Video 8.5 Rubber Band Thermodynamics Stretching a Rubber Band A restoring force f is present when a rubber band is stretched to be longer than its equilibrium length—for modest displacements, f is a constant independent of length l Work must be done on the rubber band to stretch it, and that work is given by: δw = fdl − PdV non-PV work PV work Note that f is positive as work is done on the sytem to increase€ the rubber band length Δl Isothermal Stretching We can safely assume that the volume change of the rubber band is negligible for small stretches, in which case for an isothermal stretch, we will be working at constant T and V; this suggests that we should consider the Helmholtz free energy. A = U − TS If we take the the differential: dA = dU − TdS − SdT = δqrev + δwrev − TdS − SdT € = TdS + fdl − PdV − TdS − SdT dV = dT = 0 at = fdl − PdV − SdT ⎛ ∂A⎞ constant T and V = fdl f = ⎜ ⎟ ⎝ ∂l ⎠T € € Relating Force to Entropy ⎛ ∂A⎞ A = U − TS f = ⎜ ⎟ ⎝ ∂l ⎠T Differentiate A wrt l : ⎛ ∂A⎞ ⎛ ∂U ⎞ ⎛ ∂S⎞ € ⎜ ⎟ = ⎜ ⎟ − T⎜ €⎟ ⎝ ∂l ⎠T ⎝ ∂l ⎠T ⎝ ∂l ⎠T The internal energy U of a perfect elastomer depends only on temperature T and not on length l, much as U for an ideal gas€ depends only on T and not on volume V ⎛ ∂A⎞ ⎛ ∂S⎞ ⎜ ⎟ = f = −T⎜ ⎟ ⎝ ∂l ⎠T ⎝ ∂l ⎠T € Relating Force to Entropy This relationship suggests that with increasing T, the force ⎛ ∂S⎞ will decrease if the entropy increases with stretching, but f = −T the force will increase if the entropy decreases with ⎜ ⎟ ⎝ ∂l ⎠T stretching.
    [Show full text]
  • The Thermodynamic Properties of Elastomers: Equation of State and Molecular Structure
    CH 351L Wet Lab 4 / p. 1 The Thermodynamic Properties of Elastomers: Equation of State and Molecular Structure Objective To determine the macroscopic thermodynamic equation of state of an elastomer, and relate it to its microscopic molecular properties. Introduction We are all familiar with the very useful properties of such objects as rubber bands, solid rubber balls, and tires. Materials such as these, which are capable of undergoing large reversible extensions and compressions, are called elastomers. An example of such a material is natural rubber, obtained from the plant Hevea brasiliensis. An elastomer has rather unusual physical properties; for example, an ordinary elastic band can be stretched up to 15 times its original length and then be restored to its original size. Although we might initially consider elastomers to be a solids, many have isothermal compressibilities comparable with that of liquids (e.g. toluene), about 10-4 atm-1 (compared with solids such as polystyrene or aluminum which have values of ~10–6 atm–1). Certain evidence suggests that an elastomer is a disordered "solid," i.e., a glass, that cannot flow as a result of internal, structural restrictions. The reversible deformability of an elastomer is reminiscent of a gas. In fact the term elastic was first used by Robert Boyle (1660) in describing a gas, "There is a spring or elastical power in the air in which we live." In this experiment, you will encounter certain formal thermodynamic similarities between an elastomer and a gas. One of the rather dramatic and anomalous properties of an elastomer is that once brought to an extended form, it contracts upon heating.
    [Show full text]
  • Physiological Response of Female Sport Divers to Exercise During Treadmill and Underwater Workbouts
    INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessaiy, sectioning is continued again—beginning below the first row and continuing on until complete.
    [Show full text]
  • The Meaning of Velvet Jennifer Jean Wright Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 The meaning of velvet Jennifer Jean Wright Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Creative Writing Commons, and the English Language and Literature Commons Recommended Citation Wright, Jennifer Jean, "The meaning of velvet" (2000). Retrospective Theses and Dissertations. 16209. https://lib.dr.iastate.edu/rtd/16209 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The meaning of velvet by Jennifer Jean Wright A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF ARTS Major: English (Creative Writing) Major Professor: Stephen Pett Iowa State University Ames, Iowa 2000 Copyright © Jennifer Jean Wright, 2000. All rights reserved. iii that's the girl that he takes around town. she appears composed, so she is I suppose, who can really tell? she shows no emotion at all stares into space like a dead china doll. --Elliot Smith, waltz #2 The ashtray says you were up all night when you went to bed with your darkest mind your pillow wept and covered your eyes you finally slept while the sun caught fire You've changed. --Wilco, a shot in the arm two headed boy all floating in glass the sun now it's blacker then black I can hear as you tap on your jar I am listening to hear where you are ..
    [Show full text]
  • An Approach to the Interpretation of Wor/D Heritage
    Heritage Iuterpretatton Interuattoaal byfour outstanding mountainous national parks; Fiordland952!, Mount Cook 956!, Westland Te Wahipouniniu - an approach to 960!and Mt Aspiring964! Fig.1!.In 1986, the Interpretationof wor/d heritage Fiordlandand Westland/MountCook National wiiderness Parkswere designated byUNESCO as World HeritageSites. LeslieF. MoB'oy Coordinator,Interpretation Duringthe l970sand 80s, bitter resource New ZealandDepartment af Conservation controversiesraged throughout the South-West, P,O Sox 10-420 particularlythe raising of LakeManapouri for Wellington,New Zealand hydroelectricity,thepossible inining of Red Phone:64 f04! 471 0726 Mountainand thenon-sustainable logging of the FAX: 64 4! 471 3279 lowlandterrace forests of magnificentrimu snd kahikateatrees. In a majorenvironmental re- organisationof government in 1987,a new Departmentof Conservation DoC! was set up to replacethe former Lands, Forests and Wildlife THE SETTING agencies,and, in a landmarkconservation decisionin 1989,the reinaining!owland coastal The south-west of the South IsLandof New forests11,000 ha! of SouthWestland were Zealandis oneof the greatwildernesses of the reservedfroin tiinber production and passedto SouthernHemisphere. It is a landscapeboth DoC administration.This latter decisionpaved forbiddingand beautiful - peakswith glaciers theway for the effective doubling of thesize of descendingto densely-forestedcoasts, or tussock the a.reawith world heritagestatus Hutchingsk grasslandbasins dotted with lakes Potton1987; DoC 1989!.In December1990,
    [Show full text]
  • Itu a Tfo ®Tm ?0
    A Weekly Newspaper Is Close To The People ItUatfo ®tm ?0 r i I* I fs ------------- ----------------------' >11. 4i English Counterpart Visit More Thelts A world traveler, Percy Jo_ nea detoured from a vlalc to ,1 a daughter'In Canada to travel Reported Here to New Jeraey to vlalt the lo­ The Detective Bureau la ln- cal rotary club before return­ veatlgatlng two robberies re- ported here Itet Tn««A»y,------- 8 ing to hi* home In England. He laid he alao haa visited South Irving Schultz of 1573 Maple The Hillside Public Schools Africa twice alnce he retired Ave. told police that hla apart­ will open on Thursday, Sept­ In 1962, ment was entered sometime ember 8th, at the regular time between July 21, and Aug. 12, for all pupils according to an He wai In the Insurance bu­ and $408 worth of Jewelry and announcement made today by siness prior to hla retirement. caah atolen. Dr. Wayne T. Branom, Super­ Aa part of the friendship pro­ Entry may have been made intendent of Schools. ject, member* of the local club through a rear window which All new pupils who will attend are correipondlng with mem­ waa unlocked, police aald. The the Hillside schools for the first bers of the Stoke-On-Trent club of atolen Items were taken from a time, and have not previously r who are In the same occupation. dreater drawer and Included registered, are requested to Jones came to the club aeaslon Club from Jail UbAeCelVe8 * b,u,ner of 1,10 Hillside R ota^ a atrand of pearla, a man’s register at their respective with J.
    [Show full text]